CONTENTS

Acknowledgement	c
Abstract in Thai	d
Abstract in English	g
List of Tables	1
List of Figures	m
Chapter 1 Introduction	1
1.1 Principles of dental microwear	1
1.2 Literature review of dental microwear	2
1.3 Proboscidea	5
1.3.1 Dental nomenclature	6
1.3.2 Abbreviation of dental position	6
1.4 Sedimentary basins of the fossil locality	6
1.4.1 Ban Na Sai Subbasin	9
1.4.2 Mae Moh Basin	9
1.4.3 Chiang Muan Basin	9
1.4.4 Tha Chang sand pits	12
1.5 Purpose of study g h t s reserved	12
Chapter 2 Methodology	15
2.1 Materials and methods for casting	15
2.1.1 Sample selection	15
2.1.2 Fossil specimens	16
2.1.3 Cast preparation	16
2.2 Microwear observation	17

2.2.1 Low-magnification microscopy	17
2.2.2 Scanning electron microscopy (SEM)	19
2.3 Classification of Microwear Features	19
Chapter 3 Results	22
3.1 The characteristic of dental microwear of Stegolophodon	22
1. Stegolophodon nasaiensis	22
2. Stegolophodon cf. latidens	28
3. Stegolophodon cf. stegodontoides	36
3.2 The characteristic of dental microwear of	44
Tetralophodon cf. xiaolongtanensis	
3.3 The characteristic of dental microwear of	51
cf. Protanancus macinnesi	
3.4 The characteristic of dental microwear of	59
Prodeinotherium pentapotamiae	
3.5 Microwear orientation of scratches	63
Chapter 4 Discussion and Interpretation	68
4.1 The paleodiet of the Miocene Proboscidea in Thailand	68
4.2 The possibilities of niche separation between	
cf. Protanancus macinnesi and Prodeinotherium pentapotamiae	
4.3 Paleoecology implication	75
4.4 Microwear orientation	76
Chapter 5 Conclusion	78
All rights reserved	0 1
NCICICITUES	02
Curriculum Vitae	88

LIST OF TABLES

Table 3.1	Microwear results of Stegolophodon nasaiensis specimens from	30
	Ban Na Sai coal mine, Li District, Lamphun Province	
Table 3.2	Microwear results of Stegolophodon cf. latidens specimens from	38
	Mae Moh coal mine, Lampang Province	
Table 3.3	Microwear results of Stegolophodon cf. stegodontoides specimens	45
	from Tha Chang sand pits, Chaloem Phra Kiat District, Nakhon	
	Ratchasima Province	
Table 3.4	Microwear results of Tetralophodon cf. xiaolongtanensis	53
	specimens from Chiang Muan coal mine, Chiang Muan District,	
	Phayao Province	
Table 3.5	Microwear results of cf. Protanancus macinnesi from Tha Chang	60
	sand pits, Chaloem Phra Kiat District, Nakhon Ratchasima	
	Province	
Table 3.6	Microwear results of Prodeinotherium pentapotamiae from Tha	65
	Chang sand pits, Chaloem Phra Kiat District, Nakhon Ratchasima	
	Province	
Table 3.7	Microwear orientation observed from scanning electron	67
Со	microscope by Chiang Mai University	
A	l rights reserved	

LIST OF FIGURES

Page

- Figure 1.1 Typical microwear features of proboscidean tooth enamel as 4 observed by low-magnification stereomicroscope at 35 times magnification. A = Mammuthus primigenius from Fairbanks, Alaska (AMNH 651012-1952): B = Mammuthus columbi from South Carolina (AMNH 13708-0): C = Mammut americanum from Florida (UF 215059). Scale bar = 0.4 mm. (Rivals et al., 2012)
- Figure 1.2 Bivariate plot of the average number of pits versus average 5 number of scratches for *Mammut americanum* based on Ungulata and Proboscidea database; left: convex hulls are drawn around extant leaf browsing taxa and extant grazing taxa (after Green *et al.*, 2005), right: centroid are indicated for the extant browsers (B) and grazers (G) (after Rivals *et al.*, 2012)
- Figure 1.3 Proboscidean dental nomenclature. Key: Po1, 2, 3, 4, 5, posttrite 7 main cusp of 1st, 2nd, 3rd, 4th and 5th lophids; Pr1, 2, 3, 4, 5, pretrite main cusp of 1st, 2nd, 3rd, 4th and 5th lophids; Ccpra1, anterior pretrite central conule of 1st lophid; Ccprp1, 2, 3, posterior pretrite central conule of 1st, 2nd, 3rd lophids; Ms, median sulcus; Meso, mesoconelete of each half-lophid
- Figure 1.4 Anatomical orientation and number of molar lophid of the right 8 lower third molar, M₃, of *Stegolophodon nasaiensis* having X5X tooth formula. X in the front and the back of the number refer to the anterior cingulum and posterior cingulum, or talonid, respectively
- Figure 1.5 Stratigraphic succession of the Mae Long Formation at the Ban 10 Na Sai coal mine, Li Basin (modified from Ratanasthien, 1990)

- Figure 1.6 Stratigraphic succession of Mae Moh coal mine (modified from 11 Jitapankul *et al.*, 1985)
- Figure 1.7 Stratigraphic succession of Chiang Muan coal mine (compiled 13 from Chiang Muan Company Limited (unpublished document) in Songtham, 2003; Nagaoka and Suganuma, 2002; Suganuma *et al.*, 2006; Fukuchi *et al.*, 2007)
- Figure 1.8 Stratigraphic succession of the Tha Chang sand pit (after Sato, 14 2002)
- Figure 2.1 The procedures for the preparation of the casts for microwear 18 analyses

Figure 2.2 Specimen preparation for SEM analysis

20

- Figure 2.3 Example of microwear features, including small, large and 21 puncture pits, as well as fine, coarse, and hypercoarse scratches, as seen under a standard stereoscopic microscope at low magnification (50-70×). Scale bar = 0.4 mm. (Semprebon *et al.*, 2004)
- Figure 3.1 Stegolophodon nasaiensis from the Ban Na Sai coal mine, Li 23 District, Lamphun Province. A = NS-01a (left M³): B = NS-01b (left M³): C = type specimen, M4732a1 (right M₂): D = type specimen, M4732a2 (right M₃). Selected positions for microwear analyses are indicated by square markers. All images are occlusal view. Scale bar a, 5 cm. applies to A and B, scale bar b, 10 cm. applies to C and D
- Figure 3.2 Microwear images of *Stegolophodon nasaiensis* (NS-01a), as 25 seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.3 Microwear images of *Stegolophodon nasaiensis* (NS-01b), as 26 seen under low-magnification microscope (×35); A. and B., and

under scanning electron microscope ($\times 65$); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D

- Figure 3.4 Microwear images of *Stegolophodon nasaiensis* (M4732a1), as 27 seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.5 Microwear images of *Stegolophodon nasaiensis* (M4732a2), as 29 seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.6 Bivariate plots of scratch versus pit counts for *Stegolophodon* 30 *nasaiensis*. Data obtained from light microscope (MIC) and scanning electron microscope (SEM). Gaussian confidence ellipses (p = 0.95) on the centroid are indicated for extant browsers and grazers adjusted by sample size (extant data from Solounias and Semprebon, 2002)
- Figure 3.7 Stegolophodon cf. latidens from Mae Moh coal mine, Lampang 31
 Province. A = M4733f (left M₃): B = fragmented molar of MMEL-3: C = fragmented molar of MMEL-5: D = fragmented molar of MMEL-6. Selected positions for microwear analyses are indicated by square markers. All images are occlusal view. Scale bar = 10 cm. applied to all
- Figure 3.8 Microwear images of *Stegolophodon* cf. *latidens* (M4733f), as 33 seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D

- Figure 3.9 Microwear images of *Stegolophodon* cf. *latidens* (MMEL-3), as 34 seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.10 Microwear images of *Stegolophodon* cf. *latidens* (MMEL-5), as 35 seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.11 Microwear images of *Stegolophodon* cf. *latidens* (MMEL-6), as 37 seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.12 Bivariate plots of scratch versus pit counts for *Stegolophodon* cf. 38 *latidens*. Data obtained from light microscope (MIC) and scanning electron microscope (SEM). Gaussian confidence ellipses (p = 0.95) on the centroid are indicated for extant browsers and grazers adjusted by sample size (extant data from Solounias and Semprebon, 2002)
- Figure 3.13 Stegolophodon cf. stegodontoides from Tha Chang sand pits, 39 Chaloem Phra Kiat District, Nakhon Ratchasima Province. A = NM1-13 (left M₃): B = RIN55 (right M₂): C = RIN534 (right M₃) Selected positions for microwear analyses are indicated by square markers. All images are occlusal view. Scale bar = 10 cm. applied to all
- Figure 3.14 Microwear images of *Stegolophodon* cf. *stegodontoides* (NM1- 41 13), as seen under low-magnification microscope (×35); A. and

B., and under scanning electron microscope ($\times 65$); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D

- Figure 3.15 Microwear images of *Stegolophodon* cf. *stegodontoides* (RIN55), 42 as seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.16 Microwear images of *Stegolophodon* cf. *stegodontoides* 43 (RIN534), as seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.17 Bivariate plots of scratch versus pit counts for *Stegolophodon* cf. 45 *stegodontoides*. Gaussian confidence ellipses (p = 0.95) on the centroid are indicated for extant browsers and grazers adjusted by sample size (extant data from Solounias and Semprebon, 2002)
- Figure 3.18 Tetralophodon cf. xiaolongtanensis from Chiang Muan coal 46 mine, Chiang Muan District, Phayao Province. A = CMn2 (left M²): B = CMn5 (left M²): C = CMn6 (left M₃): D = fragmented molar of CMn7. Selected positions for microwear analyses are indicated by square markers. All images are occlusal view. Scale bar = 10 cm. applied to all
- Figure 3.19 Microwear images of *Tetralophodon* cf. *xiaolongtanensis* 48 (CMn2), as seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.20 Microwear images of *Tetralophodon* cf. *xiaolongtanensis* 49 (CMn5), as seen under low-magnification microscope (×35); A.

and B., and under scanning electron microscope (\times 65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D

- Figure 3.21 Microwear images of *Tetralophodon* cf. *xiaolongtanensis* 50 (CMn6), as seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.22 Microwear images of *Tetralophodon* cf. *xiaolongtanensis* 52 (CMn7), as seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.23 Bivariate plots of scratch versus pit counts for *Tetralophodon* cf. 53 *xiaolongtanensis*. Gaussian confidence ellipses (p = 0.95) on the centroid are indicated for extant browsers and grazers adjusted by sample size (extant data from Solounias and Semprebon, 2002)
- Figure 3.24 cf. *Protanancus macinnesi* from Tha Chang sand pits, Chaloem 54
 Phra Kiat District, Nakhon Ratchasima Province. A = NM1-17
 (left M₃): B = NM1-9 (left M³): C = NM1-3 (right M₃). Selected
 positions for microwear analyses are indicated by square markers.
 All images are occlusal view. Scale bar = 10 cm. applied to all
- Figure 3.25 Microwear images of *Protanancus macinnesi* (NM1-17), as seen 56 under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.26 Microwear images of *Protanancus macinnesi* (NM1-9), as seen 57 under low-magnification microscope (×35); A. and B., and under

scanning electron microscope (\times 65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D

- Figure 3.27 Microwear images of *Protanancus macinnesi* (NM1-9), as seen 58 under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.28 Bivariate plots of scratch versus pit counts for cf. *Protanancus* 60 *macinnesi*. Gaussian confidence ellipses (p = 0.95) on the centroid are indicated for extant browsers and grazers adjusted by sample size (extant data from Solounias and Semprebon, 2002)
- Figure 3.29 Prodeinotherium pentapotamiae from Tha Chang sand pits, 61
 Chaloem Phra Kiat District, Nakhon Ratchasima Province. A = KHO (right mandible with P₄ to M₃): B = RIN15 (right mandible with M₁ to M₃). Selected positions for microwear analyses are indicated by square markers. All images are occlusal view. Scale bar = 10 cm. applied to all
- Figure 3.30 Microwear images of *Prodeinotherium pentapotamiae* (KHO), as 62 seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.31 Microwear images of *Prodeinotherium pentapotamiae* (RIN15), 64 as seen under low-magnification microscope (×35); A. and B., and under scanning electron microscope (×65); C. Scale bar 10.0 mm. applies to A., scale bar 0.4 m. applies to B. and C. Microwear orientation; D
- Figure 3.32 Bivariate plots of scratch versus pit counts for *Prodeinotherium* 65 *pentapotamiae*. Gaussian confidence ellipses (p = 0.95) on the

centroid are indicated for extant browsers and grazers adjusted by sample size (extant data from Solounias and Semprebon, 2002)

- Figure 3.33 The orientation of microwear features; the dash-line showing the 66 anterolingual-posterobuccal direction and the bold-line showing the anterobuccal-posterolingual direction
- Figure 4.1 Proposed age specification of *Prodeinotherium pentapotamiae* 75 and cf. *Protanancus macinnesi* from microwear results
- Figure 4.2 The simple average angle of microwear orientation of each 77 species. A = Stegolophodon nasaiensis (133°): B = Stegolophodon cf. latidens (90°): C = Stegolophodon cf. stegodontoides (80°): D = Tetralophodon cf. xiaolongtanensis (95°): E = cf. Protanancus macinnesi (73°): F = Prodeinotherium pentapotamiae (120°)
- Figure 5.1 The summary of age of Miocene proboscidean fossils in Thailand 81 from the dental microwear

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ATTAC MAI