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CHAPTER 2 

Theory and Methods 

2.1 Seismic Inversion Fundamentals 

If we consider any physical system, the formulation of a forward problem would 

be predicting the result of a totally controllable experiment knowing the system 

characteristics. This can be mathematically expressed by the following equation:  

 𝑑 = 𝐺𝑚                                                    (2-1) 

where 𝑑 is a set of observed measures, 𝑚 is a model containing the system 

characteristics and 𝐺 is a Kernel matrix connecting model parameters and observations. 

 In seismic data, calculating a synthetic seismogram is considered a forward 

problem as density and sonic data are parameters of the system that are used to predict 

the ideal seismic response (Russell, 1988). Unfortunately, due to many factors – errors 

in well log measurements, unknown wavelet, inaccurate migration, etc. – this prediction 

is never perfect. Still, forward problems are normally used to determine if a model fits a 

set of observations, as a manner of validating the assumptions made (Mosegaard and 

Tarantola, 2002). The inverse problem, on the other hand, is formulated when the 

system is a black box, but a set of observations is available. Thus, inferring the system 

parameters from a set of indirect measures is known as inversion. Besides the model 

(Earth properties), the source wavelet applied to the seismic experiment is also 

unknown. Seismic inversion attempts to infer both: wavelet effects need to be removed 

(deconvolved) from seismic data in order to obtain a reflectivity series; and the 

reflection series is a link to Acoustic Impedance (AI), which then can be used to 

estimate petrophysical properties of a reservoir. Many factors make the inverse problem 

underdetermined, i.e. non-unique (Jackson, 1972). For instance, the limited bandwidth 

of the source energy prevents us from resolving thin layers. Intrinsic complications
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regarding the experiment itself (noise, etc.) end up admitting many models to give 

satisfactory matches to the seismic traces. 

Summing up, seismic inversion tries to remove the wavelet effect from the 

seismic trace in order to estimate the reflectivity series, and thus obtain the acoustic 

impedance. Properties of the geological layers cannot be inferred directly from seismic 

sections by any conventional seismic interpretation (Francis, 2005). Seismic Inversion, 

on the other hand, is able to increase the resolution of the seismic data and allows us to 

estimate rock properties by replacing the seismic signature with responses that 

correspond to acoustic impedance (Pendrel, 2006; Simm and Bacon, 2014).  

Primarily, seismic inversion can be of two types: post-stack and pre-stack. Pre-

stack Inversion methods consider the variations of amplitude with angle (AVA) through 

inverting simultaneously different angle gathers, while considering wavelet variation 

according to the angle range. But due to the nature of the present project, emphasis will 

be given to post-stack methods as the seismic data is available only as a full-stack 

volume. Lastly, this chapter will introduce the theoretical background for seismic 

inversion, including a brief explanation of the main methods to invert seismic data and 

different wavelet extraction approaches, until – finally – we present the mathematical 

formulation and virtues of the stochastic Gabor inversion (Naghadeh et al., 2017) used 

in the current study.         

 

2.1.1 The Convolutional Model 

Every seismic experiment theoretically begins with the injection of a large amount 

of acoustic energy into the Earth’s subsurface while the ongoings are monitored at the 

surface. This energy propagates as a wavefront through the system, which promptly 

responds to the impulse according to some basic physical laws. Every time the source 

impulse meets a boundary with a contrast in Acoustic Impedance, part of the energy is 

reflected back to the surface (Veeken, 2007). Acoustic Impedance (𝑍) is the product of 

bulk density and P-velocity of a particular stratum (Eq. 2-3). For rays hitting the 

interface perpendicularly, the amount of energy that is reflected when the source 
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wavelet hits these boundaries with different AI is determined by the reflection series 

(𝑟), as follows: 

 𝑟𝑛 =
𝑍𝑛 − 𝑍𝑛−1

𝑍𝑛 + 𝑍𝑛−1
 

                                                      (2-2)  

where,  

𝑍 = 𝜌𝑉                                                     (2-3) 

and 𝑟𝑛 stands for the reflection series of the 𝑛𝑡ℎ layer, with layer 𝑛 − 1 immediately 

above layer  𝑛. 

There also is an anelastic attenuation factor (absorption) that modifies the 

waveform of the source wavelet with depth. Thus, the wavelet in the recorded 

seismogram will vary with time; i.e., it is non-stationary (Margrave et al., 2003). The 

convolutional model states that a seismic trace is the result of a convolution of the 

source wavelet with the reflectivity series, and can be expressed by: 

𝑠(𝑡) = 𝑤(𝑡) ∗ 𝑟(𝑡) + 𝑛(𝑡)                                            (2-4) 

where ∗ represents the convolution operator,  𝑠(𝑡) is the recorded seismogram, 𝑤(𝑡) is 

the propagation source wavelet, 𝑟(𝑡) is the reflectivity series (Rc) and 𝑛(𝑡) is the 

inherent noise associated with the experiment.  

But the convolutional model (Figure 2.1) works under a series of assumptions, 

including source wavelet stationarity (Yilmaz, 1987). If all the assumptions were valid 

and the source wavelet was infinitesimally short, i.e. containing all frequencies, the 

response to the seismic experiment would be the reflection series itself, or in other 

words, the response just from the geological medium. In practice, however, the source 

wavelet is band-limited and consequently the seismic data is band-limited as well 

(Tarantola, 1987). Deconvolution is commonly used to remove source wavelet effects 

from the seismic trace and consequently increases resolution. If stationary reflectivity 

inversion methods are used to obtain reflection series, the result is just a rough 

approximation due to inaccurate assumptions (Naghadeh and Morley, 2016a). Thus, in 
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order to approximate the inversion results from the real reflection coefficient function 

(geological signature), it is important to consider the seismic signal as non-stationary.  

 

Figure 2.1: The convolutional model showing the path of forward modeling (model to 

data) and the inverse problem (data to model). A synthetic seismogram is created from a 

1D model (well log data) through the convolution of a RC with the source wavelet (a 

zero-phase wavelet in this example, modified from Simm and Bacon, 2014) 

 

2.2 Seismic Inversion Methods 

2.2.1 Deterministic Inversion Methods 

Seismic inversion can be of two types, deterministic and stochastic. Deterministic 

inversion algorithms try to minimize the difference between a modelled seismic trace 

and the actual seismic trace. One example is the recursive inversion, which seeks to 

obtain absolute impedance values by inverting Equation 2.2 (Russell, 1988): 

𝑍𝑛+1 = 𝑍𝑛 [
1+𝑟𝑛

1−𝑟𝑛
]                                              (2-5)                                 
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This approach involves scaling the seismic section to reflectivity and then adding 

a low-frequency model coming from the well logs or from the stacking velocities. The 

wavelet is not addressed by the recursive inversion, but it illustrates well the idea of 

deterministic methods (Simm and Bacon, 2014).  

Deterministic inversion can be thought to be the convolutional model in reverse. 

Deconvolution is applied to the seismic trace, removing the wavelet effect and leaving 

the reflectivity series. There are numerous deterministic methods, but probably the most 

popular is known as model-based inversion (Russell and Hampson, 1991). One of its 

assumptions is that the wavelet is known. Well data (or a velocity model) is used to 

build an initial low-frequency model that is iteratively updated and checked against the 

seismic data. The aim is to modify the starting model until a minimum error between 

the synthetic and the seismic is obtained (Cooke and Schneider, 1983). The iterative 

comparison procedure used by the model-based method is a mathematical effort to 

minimize this function: 

   

𝐽(𝑅) = 𝜆1‖𝑆 − 𝑊𝑅‖2
2 +  𝜆2‖𝑀 − 𝐻𝑅‖2

2  

                               (2-6) 

where 𝑆 is the seimic trace, 𝑊 is the source wavelet, 𝑅 is the final reflectivity, 𝑀 the 

currently initial model, 𝐻 the integration operator to change RC to AI and ∗ is the 

convolution operator. Note how the first term models the seismic trace and the second 

updates the low-frequency model. In deterministic inversion, 𝜆2 assumes a value of zero 

where the calculated impedance is within a range accepted by the constraints.  

 In order to guide the algorithm to an acceptable minimised-error solution, the 

model-based method makes use of constraints. It prevents the solutions from reaching 

ranges outside of geologically possible impedance values, for example. Thus, the 

solution is an impedance trace which respects the constraints whilst minimizing the 

error between the synthetic and the seismic data. Due to the non-unique character of 

inverse problems, there are always several impedance model solutions that provide an 

admissible match (Backus and Gilbert, 1970). A source of concern regards the 

algorithm used, or more specifically, if the algorithm finds the lowest possible synthetic 
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error or stops its iterations after an acceptable error is achieved. The ideal would be to 

adopt an optimized algorithm that does not stop iterating at a so-called local minimum 

solution, but that searches for the global minimum, i.e., the lowest possible error instead 

(Simm and Bacon, 2014).  

 

2.2.2 Stochastic Inversion Methods  

A stochastic approach to the inverse problem can be thought initially to be from 

the same formulation introduced for the model-based deterministic inversion (Equation 

2-6). The sum of the weighting factors (𝜆1, 𝜆2) is equal to one (𝜆1 + 𝜆2 = 1). Thus, 

assuming that: 

𝑅 ≈ 0.5 ∆ ln(𝐴𝐼)                                                 (2-7) 

and,                                                 

  {
∆ = 𝐷

ln(𝐴𝐼) = 𝐿𝑧
                                                     (2-8) 

where 𝐷 is the differential matrix and 𝐿𝑧 is the logarithm of the Acoustic Impedance. 

This assumption is valid for RC’s ≤ 0.3, which is normally the case (Velis, 2008). 

Substituting Equation 2-8 into Equation 2-6, it is now: 

𝐽(𝐿𝑧) = 𝜆1‖𝑆 − 0.5𝑊𝐷𝐿𝑧‖2
2 + 𝜆2‖𝑀 − 0.5𝐻𝐷𝐿𝑧‖2

2 

                        (2-9) 

The first term (misfit term) minimizes the difference between the seismic and 

synthetic traces, while the second term forces a solution to honor the initial model 

(model penalty function). Clearly, the values assigned to the the weighting factors (𝜆1, 

𝜆2) control the importance given to one term or the other. It is highly subjective and 

will depend on the quality of the data. With 𝜆2 = 0, the objective function becomes the 

constrained model-based inversion and “hard” constraints are used, i.e. limited to a 

maximum fractional change in impedance from the initial-model values. If 𝜆2 ≠ 0 the 

objective function leads the solution to be stochastic and bounded by “soft” constraints, 
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i.e. the initial low-frequency model is considered as a separate component which is 

added to the seismic trace (Doyen, 2007). 

   In order to minimize the objective function, the following expression is 

established: 

𝜕𝐽

𝜕𝐿𝑧
= −𝜆1𝑊𝑇𝐷𝑇(𝑆 − 0.5𝑊𝐷𝐿𝑧) − 𝜆2𝐻𝑇𝐷𝑇(𝑀 − 0.5𝐻𝐷𝐿𝑧)          (2-10) 

 

                  ∴ 

0 = −𝜆1𝑊𝑇𝐷𝑇𝑆 +  0. 5𝜆1𝑊𝑇𝐷𝑇𝑊𝐷𝐿𝑧 − 𝜆2𝐻𝑇𝐷𝑇𝑀 + 0. 5𝜆2𝐻𝑇𝐷𝑇𝐻𝐷𝐿𝑧 

 (2-11) 

to finally get 𝐿𝑧 : 

𝐿𝑧 =
𝜆1𝑊𝑇𝐷𝑇𝑆 + 𝜆2𝐻𝑇𝐷𝑇𝑀

0. 5𝜆1𝑊𝑇𝐷𝑇𝑊𝐷 + 0. 5𝜆2𝐻𝑇𝐷𝑇𝐻𝐷
 

                                             (2-12) 

This approach allows the stochastic inversion to include a low-frequency content 

coming typically from the well logs. It also makes it possible to add high-frequency 

content (Doyen, 2007). These high frequencies – which are outside of the seismic 

bandwidth – come from variogram modeling using the well data (Figure 2.2). Thus, 

close to wells, high resolution can be reasonably inferred and away from the wells the 

absence of a simplicity term along with the statistical conditioning still makes it 

possible to achieve resolution beyond deterministic inversion methods (Bosch et al., 

2010). 
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Figure 2.2: Schematic illustrating the bandwidth of a stochastic inversion result. A 

starting model adds low-frequency information. This low-frequency model comes from 

filtered well data, which is interpolated between well control points; seismic bandwidth 

determine the intermediate frequency content; and a vertical variogram model controls 

the high-frequency end of the spectrum (Doyen, 2007) 

The wavelet is vital in the inversion process. In order to correctly estimate the 

reflectivity series from seismic amplitudes, so that the acoustic impedance values can be 

obtained, it is necessary to understand the wavelet. An assumption of the methods 

mentioned thus far is to consider that the wavelet is known (see section 2.2.1). 

Moreover, they assume the wavelet is stationary (Yilmaz, 1987), which – as discussed 

in section 2.1.1 – is not exactly a realistic assumption. Results from methods with such 

assumptions are consequently a rough approximation of the real Earth signature (i.e. the 

RC). So, to increase resolution by effectively removing the wavelet effect from seismic 

data, it is important to consider the non-stationary nature of the seismic signal 

(Naghadeh et al., 2017). 

In the early 2000’s, Margrave et al. (2003) introduced a deconvolution method 

(known as Gabor Deconvolution) that compensates for attenuation and frequency 

dispersion effects, or in other words, accounts for non-stationarity. A Gabor transform 

confines a signal in a specific time range using a window function (Gaussian window) 

and then a Fourier Transform is applied to extract the signal’s time-variable spectrum 

(Naghadeh and Morley, 2016b). The method splits the signal into multiple windows and 
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uses a Hilbert transform of the logarithm of its amplitude spectrum to estimate the 

source wavelet properties. In the end, the non-stationary deconvolution is enabled by 

“mapping” the changes in wavelet properties (amplitude and phase) at each of the 

analyzed windows, i.e. analogous to its changes with time. These non-stationary source 

wavelet properties can then be included in a kernel matrix to be deconvolved with the 

seismic data allowing for amplitude compensation, zero-phase and temporal resolution 

enhancement.  

 

2.2.2.1 Stochastic Gabor Inversion  

Naghadeh et al. (2017) incorporated the Gabor deconvolution method into a 

stochastic inversion framework. This method promises to completely remove the source 

wavelet effects by extracting the time-variant wavelet properties, even from noisy 

datasets. The estimated reflectivity will then present higher resolution and the bias 

incorporated by the well-log information (low-frequency and variogram model) will 

lead the stochastic Gabor inversion to accurately estimate acoustic impedance values. 

The mathematical formulation to the stochastic Gabor method is summarized below. 

For a complete description, please refer to Naghadeh et al. (2017).    

In order to estimate the time-variant properties of the source wavelet, Gabor 

deconvolution in the frequency domain is applied: 

𝐺𝑑(𝜏, 𝜔) = ∫ 𝑑(𝑡)𝑔(𝑡 − 𝜏)𝑒−2𝑖𝜔𝑡𝑑𝑡
+∞

−∞

 

                           (2-13) 

where 𝐺𝑑(𝜏, 𝜔) is the Gabor transform of signal 𝑑(𝑡), windowed by 𝑔(𝑡), which is a 

Gaussian function centered at location 𝜏. Angular frequency is represented by 𝜔.  

After splitting the signal into multiple windows, a time-frequency analysis is 

carried out at every single window until, eventually, the whole signal is analyzed. 

Amplitude and phase wavelet spectra at each step are obtained by: 

𝐴𝑊(𝜏, 𝜔) = 𝑆𝑤 × 𝑎𝑏𝑠 (∫ 𝑑(𝑡)𝑔(𝑡 − 𝜏)𝑒−2𝑖𝜔𝑡𝑑𝑡
+∞

−∞
)                    (2-14) 
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𝑃ℎ𝑊(𝜏, 𝜔) = Hilbert(log(𝐴𝑊(𝜏, 𝜔))) 

                           (2-15) 

where 𝑆𝑤 is the smoothing window, 𝑃ℎ𝑊(𝜏, 𝜔) is the phase spectrum and Hilbert is the 

Hilbert transform. In the frequency domain, for any time range of signal, the wavelet 

properties can be estimated by the following equation: 

𝑊𝑎(𝜏, 𝜔) = 𝐴𝑊(𝜏, 𝜔). exp (𝑠𝑞𝑟𝑡(−1). 𝑃ℎ𝑊(𝜏, 𝜔)) 

                           (2-16) 

The deconvolved signal in the frequency domain will be: 

𝐷𝑒𝑐𝑠𝑖𝑔𝑛𝑎𝑙 =
𝐺𝑑(𝜏, 𝜔)

𝑊𝑎(𝜏, 𝜔)
 

                                                 (2-17) 

And in time-domain: 

𝐷𝑒𝑐𝑠𝑖𝑔𝑛𝑎𝑙 = ∫ ∫ 𝐷𝑒𝑐𝑠𝑖𝑔𝑛𝑎𝑙(𝜏, 𝜔)𝜒(𝑡 − 𝜏)
+∞

−∞

+∞

−∞

𝑒−2𝑖𝜔𝑡 𝑑𝑡 𝑑𝜔 

                                           (2-17) 

where 𝜒(𝑡 − 𝜏) is a synthesis window. Gabor deconvolution can also be applied in the 

time domain, so to get the wavelet properties for each windowed signal in time: 

𝑊𝑎(𝑡) = IFFT(𝑊𝑎(𝜏, 𝜔)) 

                           (2-18) 

where 𝑊𝑎(𝜏, 𝜔) is the extracted wavelet in a special time range and IFFT is the inverse 

of a fast Fourier Transform. Once one possesses the wavelet (with its properties) for 

different time ranges, a kernel matrix can be created to perform the non-stationary 

deconvolution in the time-domain: 

𝑑(𝑡) = [

𝑑1

𝑑2

⋮
𝑑𝑛

] , Kernel𝑀𝑎𝑡𝑟𝑖𝑥 = [
𝑊11 ⋯ 𝑊1𝑛

⋮ ⋱ ⋮
𝑊𝑛1 ⋯ 𝑊𝑛𝑛

] 

                           (2-19) 
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𝐷𝑒𝑐𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) = Kernel𝑀𝑎𝑡𝑟𝑖𝑥
−1. 𝑑(𝑡) 

                           (2-20) 

Due to the instability of the inverse solution, a regularization parameter is 

required: 

𝐷𝑒𝑐𝑠𝑖𝑔𝑛𝑎𝑙(𝑡) = (Kernel𝑀𝑎𝑡𝑟𝑖𝑥 + 𝜀𝐼)−1. 𝑑(𝑡)                           (2-21) 

where 𝐼 is the identity matrix and 𝜀 is a small positive number (pre-whitening). 

Thus, the attempt is to obtain the RC from deconvolution as close as possible to 

𝑅𝑟, which is the reference RC at the well location. Or, mathematically: 

𝑅𝑟 − 𝑅 = 𝑒𝑟 ≅ 0                                                (2-22) 

with 𝑒𝑟 corresponding to the amount of error due to noise affecting the wavelet 

extraction. Ideally 𝑒𝑟 = 0. So, similar to Equations 2.10 and 2.11, to get a stochastic 

reflectivity inversion:  

𝜕𝐽

𝜕𝑅
= 0 ⇒ 𝑅 =

𝜆1𝑊𝑇𝑆 + 𝜆2𝑊𝑇𝑆𝑟

𝑊𝑇𝑊 + 𝜇 × diag((abs(𝑅𝑟) + 𝜀)−1)
 

           (2-23) 

where 𝑆𝑟 is the product of the convolution of the reference RC at the well location with 

the non-stationary wavelet estimated by the Gabor deconvolution. 𝜇  and 𝜀 are small 

regularization parameters which will lead the inversion result to be sparse.  

Equation 2-8 is used to replace R with AI, so that the stochastic Gabor inversion is 

obtained through the following expression: 

𝐿𝑧 =
𝜆1𝐷𝑇𝑊𝑇𝑆 + 𝜆2𝐷𝑇𝑊𝑇𝑆𝑟

0.5𝐷𝑇𝑊𝑇𝑊𝐷 + 𝜇 × diag((abs(𝑅𝑟) + 𝜀)−1)
 

           (2-24) 

 


