CHAPTER 3

Experimental procedures

This chapter aims to describe the preparation and techniques of the various experiments. Because of the various combinations, the contents are separated into several topics as follows:

3.1 MWNTs preparation

3.1.1 Synthesis and preparation of MWNTs

MWNTs were synthesized at the Nanomaterials Science Research Unit, Faculty of Science, Chiangmai Univesity, Thailand, using the CVD method [1]. The length of the MWNTs produced there was more than 10 μ m, and the average diameter was approximately 40 nm.

Figure 3.1 Photograph of CVD apparatus

3.2 Preparation of copper and aluminium surfaces for adhesive bonding

3.2.1 Preparation of copper surfaces

1. Nitric acid/Ferric chloride

- degrease the surfaces
- immerse for 1 to 2 minutes at room temperature in the following

solution by weight: 197 parts water, 30 parts nitric acid (sp gr 1.42),

to 15 parts ferric chloride solution (42%).

- rinse thoroughly

- dry as quickly as possible

- apply adhesive immediately

2. Nitric acid

- Bright dip in concentrated nitric acid at 16 to 21°C for 15 s or until all

corrosion has disappeared.

- Rinse thoroughly

- Dry as fast as possible

- Apply adhesive immediately

3. Acid etch (Sulfuric acid-Dichromate-Ferric sulfate)

- Remove surface contamination by sanding, wire brushing, or

sandblasting, if necessary.

- Degrease

Immerse for 10 min at 66 °C in the following solution by weight: 8 parts water, 1 part ferric sulfate (commercial), to 75 parts sulfuric acid (sp gr 1.84).

- Rinse (with water at or below room temperature)

- Dry

- Immerse the parts until a bright clean surface has been obtained in the following solution by weight at room temperature: 17 parts water, 2

parts sulfuric acid (sp gr 1.84), to 1 part sodium dichromate.

- Rinse using cold tap water.
- Dip in concentrated ammonium hydroxide.
- Rinse in cold tap water.
- Dry quickly and apply adhesive immediately

3.2.2 Preparation of aluminium surfaces

Procedure

- Degrease
- Dip in chromic acid at 65-70 °C for 5-10 minutes
- Rinse using cold tap water and dry
- Apply adhesive immediately

Preparation of chromic acid

- Sodium dichromate 10 wt.%

- Sulfuric acid 96% 30 wt.% - DI water 100 wt.%

3.3 Preparation MWNTs/LLDPE sheet and MWNTs/PVB sheet before coated on

metal sheet

Scheme 3.1 Diagram for preparation MWNTs/polymer composites coated on copper and aluminium sheet

3.4 Sample characterization

The sample was characterized by using these microscopes as follows:

3.4.1 Scanning electron microscopy (SEM)

FE-SEM (FE-Scanning Electron Microscope: JSM 6335 F) was used to study MWNT agglomerates after milling and the distribution of MWNTs in the LLDPE matrix. In preparation for the cross-sectional images of the LLDPE/MWNT samples, the single- and four-step heating samples were frozen in liquid nitrogen before they were broken with pliers. Gold sputtering was performed on the cross-sectional surface before the FE-SEM images were taken.

3.4.2 Density test

The density of the LLDPE/MWNT composites both those prepared using step heating, and those prepared without step heating was measured by the Archimedes test compared with theory [2,3].

3.4.3 X-ray diffraction (XRD)

XRD (Rigaku- MiniFlex II, Desktop X-ray Diffractometer) was used to measure the X-ray diffraction patterns. The degree of crystallinity (X_C) was determined using the method of Hermans and Weidinger [4-6].

$X_C = A_C / (A_C + A_a) \tag{3.1}$

where A_C and A_a are the area of the crystalline and amorphous regions, respectively.

Figure 3.3 X-ray Diffractometer (XRD)

3.5 Mechanical properties test

3.5.1 Tensile tests

An ultimate tensile testing machine (Hounsfield, Model H10KS) was used to study the mechanical properties of the LLDPE/MWNT composites, following the American standard test materials ASTM D638-10 and strain rate of 50 mm/min.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure 3.4 tensile testing machine

3.5.2 Impact strength tests

An impact tester (charpy) machine (Toolquip, Leicester LE67 5FT: England) was used to determine the impact strength of the LLDPE/MWNT composites prepared using single- and four-step heating, following ASTM D6110-10 standard.

Figure 3.5 An impact tester (charpy) machine

3.6 Thermal properties test

3.6.1 The reflectance of the coating

The reflectance of the coatings was measured by ultraviolet visible spectroscopy (VARIAN Cary 50 Conc) within a wavelength range of 190–1100 nm.

Figure 3.6 An ultraviolet visible spectroscopy (VARIAN Cary 50 Conc)

3.6.2 Heat absorbing test

MA.

Scheme 3.2 Diagram of heat absorbing test

MWNTs/LLDPE composite coated on copper sheet by using MWNTs/PVB composite for the bonding layer was tested using the heat absorbing test shown in Scheme 3.2. The specimen for testing heat absorption used the MWNTs/PVB sheet at the same thickness (~4 μ m) for 40 vol.% of MWNTs/PVB composite and compared the different vol.% of MWNTs (10 and 40 vol.% MWNTs/PVB) and used the distance between the specimen and light source at 10 cm.

3.6.3 The energy conversion efficiency was measured using a home-made method

Scheme 3.3 Diagram of the home-made test system

In Sheme 3.3, heat absorbed by water from solar radiation was determined by using a home-made method. This consisted of the solar radiation from the sun (in a clear-sky day from 11:00 to 13:00 o'clock in April at Chiang Mai, Thailand) and a glass box $12 \times 12 \times 6$ cm³ in size. When converting the value of water heat absorbed for the energy per area of the sample, the following equation was used, $Q = mc(T_{out}-T_{in})$ where Q is the solar energy collected, c is the specific heat of the water, m is the mass of water flow rate in (kg/s).

3.7 References

[1] Singjai, P., Changsarn, S., Thongtem., "Electrical resistivity of bulk multi-walled carbon nanotubes synthesized by an infusion chemical vapor deposition method," Materials Science and Engineering Part A, Vol. 443, No. 1, January 2007 p.p. 42-46.

[2] Xie, X.L., Mai, Y.W., and Zhou, X.P., "Dispersion and alignment of carbon nanotubes in polymer matrix: A review," Materials Science and Engineering, Vol. 49, No. 4, May 2005, 89–112.

[3] Chu, K., Guo, H., Jia, C., et al., "Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications," Nanoscale Research Letters, Vol. 5, No. 5, March 2010, pp. 868–874.

[4] Kundu, P.P., Biswas, J., Kim, H., et al., "Influence of film preparation procedures on the crystallinity, morphology and mechanical properties of LLDPE films," European Polymer Journal, Vol. 39, No. 8, August 2003, pp.1585–1593.

[5] Ning, Y., "Determination of the crystallinity in different type poly (oxyethylenestyrene) block copolymers by X-ray diffraction method," Chinese Journal Polymer Science, Vol. 7, No. 4, April 1989, pp. 315–321.

[6] Kuila, T., Bose, S., Mishra, A.K., et al., "Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites," Polymer Testing, Vol. 31, No. 1, Febuary 2012, pp. 31-38.

ลิขสิทธิมหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved