CONTENTS

Acknowledgement	c
Abstract in Thai	d
Abstract in English	f
List of Tables	k
List of Figures	1
List of Schemes	q
List of Abbreviation and Symbols	r
Statement of Originality in Thai	S
Statement of Originality in English	t
Chapter 1 Introduction	1
1.1 Background	1
1.2 Why carbon nanotube composites	2
1.3 Overview	2
1.4 Objectives of this work	3
1.5 References to by Chiang Mai University	5
Chapter 2 Theory	9
2.1 Types of carbon nanotubes (CNTs)	9
2.2 Growth mechanism of CNTs	12
2.2.1 Tip growth model	12
2.2.2 Base-growth/ Root-growth model	13
2.3 Composite materials	13
2.4 Processing of composite materials	15

CONTENTS (Continued)

2.4.1 Polymer-Matrix Composites (PMC)	15
2.4.2 Metal-Matrix Composites (MMC)	
2.4.3 Ceramic-Matrix Composites (CMC)	
2.4.4 Carbon-Matrix Composites	19
2.5 Theory of hybrid composite materials	20
2.5.1 Mechanism of heat transfer	21
2.6 Solar heat collector	24
2.6.1 Solar Energy	24
2.6.2 Conduction	26
2.6.3 Convection	28
2.6.4 Radiation	28
2.7 Types of solar heat collectors	29
2.7.1 Flat-Plate Collectors (FPC)	30
2.7.2 Evacuated-Tube Collectors	31
2.7.3 Concentrating Collectors	31
2.8 References	33
Chapter 3 Experimental Procedures	
3.1 MWNTs preparation	37
3.1.1 Synthesis and preparation of MWNTs	37
3.2 Preparation of copper and aluminium surfaces for adhesive bonding	38
3.2.1 Preparation of copper surfaces	38
3.2.2 Preparation of aluminium surfaces	38
3.3 Preparation MWNTs-LLDPE sheet and MWNTs-PVB sheet before	40
coated on metal sheet	
3.4 Sample characterization	41

CONTENTS (Continued)

3.4.1 Scanning electron microscopy (SEM)	41
3.4.2 Density test	41
3.4.3 X-ray diffraction (XRD)	41
3.5 Mechanical properties test	42
3.5.1 Tensile tests	42
3.5.2 Impact strength tests	43
3.6 Thermal properties test	44
3.6.1 The reflectance of the coating	44
3.6.2 Heat absorbing test	44
3.6.3 The energy conversion efficiency was measured using	45
a home-made method	
3.7 References	46
Chapter 4 Results and Discussions	47
4.1 Synthesis of Carbon Nanostructures by CVD Method	47
4.2 Melt-mixing the composite materials, and properties measurements	50
4.3 MWNTs/polymer composites coated on copper and aluminum sheet	57
4.4 Mechanical property of adhesive bonding	61
4.5 Heat absorb of the MWNTs/LLDPE composite coated on Cu sheet	62
4.6 The reflectance spectra of MWNTs/LLDPE composites	64
4.7 Water heat absorbs of solar radiation	66
4.8 References	70
Chapter 5 Conclusions and Suggesions for Future Work	72
5.1 MWNTs/LLDPE composites prepared via melt mixing process	72
5.2 Solar heat absorbing coating from MWNTs/ LLDPE coated	72
on the copper sheet	

CONTENTS (Continued)

List of Publications

86

Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 2.1 Thermal conductivity of some materials	27
Table 2.2 Black body radiation	29
Table 4.1 Comparison of solar absorbance of various absorbed materials and coating methods	66
Table 4.2 Thermal conductivity of MWNTs/LLDPE composite	68
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Convright [©] by Chiang Mai University	

All rights reserved

LIST OF FIGURES

Figure 2.1 (a) Flat hexagon lattices of a graphene sheet and	10
(b) Structure of SWNTs	
Figure 2.2 Schematic diagrams of SWNTs and MWNTs	10
Figure 2.3 Tip growth model of CNT	12
Figure 2.4 Base-growth/root growth model	13
Figure 2.5 Interface composite/metal: (a) schematic of a boron/epoxy	21
bonded to aluminum substrate to form a hybrid composite structure;	
(b) SEM image showing the interface debonding feature	
Figure 2.6 Diagram of conduction through a plane wall	22
Figure 2.7 Diagram of conduction through a cylindrical wall	23
Figure 2.8 Flat-plate collector	30
Figure 2.9 Evacuated-tube collectors	31
Figure 2.10 Concentrating collectors	32
Figure 3.1 Photograph of CVD apparatus	37
Figure 3.2 Flow charts showing the process of (a) MWNTs/PVB coated on	40
a Cu and Al sheet and (b) MWNTs/LLDPE film on MWNTs/PVB	
coated on a Cu and Al sheet	

LIST OF FIGURES (Continued)

Figure 3.3 X-ray diffractometer (XRD)	42
Figure 3.4 Tensile testing machine	43
Figure 3.5 An impact tester (charpy) machine	43
Figure 3.6 An ultraviolet visible spectroscopy (VARIAN Cary 50 Conc)	44
Figure 4.1 Process for synthesis MWNTs by using CVD method	47
Figure 4.2 TEM image of MWNTs	48
Figure 4.3 MWNTs milled with a mortar and pestle, shown at different magnifications; (a) ×300 and (b) ×5000	48
Figure 4.4 SEM image of MWNT solutions with Dispex A40 (a) milled 24 h, (b) milled 72 h, (c) milled 120 h at × 500 magnifications	49
Figure 4.5 SEM image of (a) sample prepared using single-step heating, and (b) sample prepared using four-step heating at 5 vol.% MWNT	51
Figure 4.6 Density of samples prepared using four-step heating, single-step heating shown with the theoretically predicted density	g, 52
Figure 4.7 XRD peaks for the LLDPE powder, four-step heating LLDPE, and single-step heating LLDPE samples	53
Figure 4.8 Tensile strength of samples prepared using single-step heating and four-step heating	54
Figure 4.9 Elastic modulus of samples prepared using single-step heating and four-step heating	54

LIST OF FIGURES (Continued)

Figure 4.10 Elongation of samples prepared using single-step heating and four-step heating	55
Figure 4.11 Impact strength of samples prepared using single-step heating and four-step heating	55
Figure 4.12 Surface of Al plate (a) before and (b) after chemical treatment	57
Figure 4.13 Surface of Cu plate (a) before and (b) after chemical treatment	58
Figure 4.14 SEM image of MWNTs/polymer composite on metal sheet	59
Figure 4.15 SEM images of MWNTs/LLDPE composites prepared with (a) 0 vol.%, (b) 1 vol.%, (c) 3 vol%, and (d) 5 vol.% of MWNTs	60
Figure 4.16 Joint test results of pure PVB, 10, 20, 30, and 40 vol.% MWNTs/PVB composites coated on Cu sheets	61
Figure 4.17 Joint test results of pure PVB, 10, 20, 30, and 40 vol%. MWNTs/PVB composites coated on Al sheets	62
Figure 4.18 Heat absorption of the sample 5cLLDPE/(10–40) vol.% MWNTs/PVB composites coated Cu sheet, the distance between light source and specimen 15 cm	63
Figure 4.19 Heat absorption of the sample 5cLLDPE/(10–40) vol.% MWNTs/PVB composites coated Al sheet, the distance between light source and specimen 15 cm	64
Figure 4.20 The reflectance spectra of MWNTs/LLDPE composites at 0, 1, 3, and	65

5 vol.% of MWNTs and black color spray on Cu sheets

LIST OF FIGURES (Continued)

- Figure 4.21 Energy and temperature of the water absorbed heat versus the 67 testing time of black color spray and 1, 3, and 5 vol.% MWNT/LLDPE composites
- Figure 4.22 Temperature profile of the water as it flowed from the inlet across 69 the surface of the solar heater to the outlet

LIST OF SCHEMES

Scheme 2.1 Diagram of CVD method	11
Scheme 3.1 Diagram for preparation MWNTs/polymer composites coated	40
on copper and aluminium sheet	
Scheme 3.2 Diagram of heat absorbing test	44
Scheme 3.3 Diagram of the home-made test system	45
Scheme 4.1 Diagram of (a) single-step heating and (b) four-step heating for	51
MWNT-LLDPE melt mixing	
Scheme 4.2 Diagram for preparation MWNTs/polymer composites	58
coated on copper and aluminum sheet	
Scheme 4.3 Diagram of heat absorbing test	62
MAI UNIVERSI	

LIST OF ABBREVIATIONS AND SYMBOLS

°C	Degree Celsius
Κ	Degree Kelvin
h	Hour
MWNTs	Multi-walled carbon nanotubes
LLDPE	Linear low density polyethylene
Cu	Copper
Al	Aluinium
PVB	Polyvinyl butyral
SEM	Scanning electron microscopy
CNTs	Carbon nanotubes
SWNTs	Single-walled carbon nanotubes
PMC	Polymer-matrix composites
MMC	Metal-matrix composite
СМС	Ceramic-matrix composite
XRD	X-ray diffraction
α	Absorptance
R	Reflectance
T	Transmittance
e adar	Solar energy collected
P Copyrig	Power by Chiang Mai University
k _C	Thermal conductivity of the composite
k_p	Thermal conductivity of the particle
k_m	Thermal conductivity of the matrix
$arPsi_p$	Volume fraction of particle
$arPhi_m$	Volume fraction of matrix
vol.	Volume
wt.	Weight

ข้อความแห่งการริเริ่ม

- เป็นการเตรียมชิ้นงานที่ง่ายและรวคเร็ว โดยการใช้วิธีบดผสมแล้วให้ความร้อนพร้อมการอัดเพื่อ เคลือบติด อีกทั้งยังให้ก่ากวามแข็งแรงในการยึดเกาะแผ่นอะลูมิเนียมและแผ่นทองแดงที่สูง
- การเตรียมชิ้นงานด้วยวิธีนี้ ให้ค่าการดูดซับความร้อน 0.95 ซึ่งก่อนข้างสูงเมื่อเทียบกับงานวิจัย อื่นๆ เช่น โรโรและคณะ เชนและบอสตรอม ได้รายงานผลก่าการดูดซับความร้อนที่ 0.84 และ 0.79-0.90 ตามลำดับ ส่วน เช็งและคณะ บีราและคณะ และ เฟ็งและคณะทดลองชิ้นงานที่เตรียม ได้ก่าการดูดซับความร้อนที่ 0.949 0.975 และ 0.95 ตามลำดับ

STATEMENT OF ORIGINALITY

- 1) The ball mill mixing process and the hot press method were used for prepare the coating. This is a quick and easy technique for the preparation of the coating.
- 2) For this work, the results of the coating achieved a solar absorption rating of 0.95. It can be seen that this achieved a similar or higher absorption rate when compared with the work of others. For examples, Roro et al. and Chen and Bostrom reported the absorption rate of 0.84 and 0.79-0.90, respectively. Cheng et al., Bera et al., and Feng et al. reported results of 0.949, 0.975, and 0.95, respectively.

