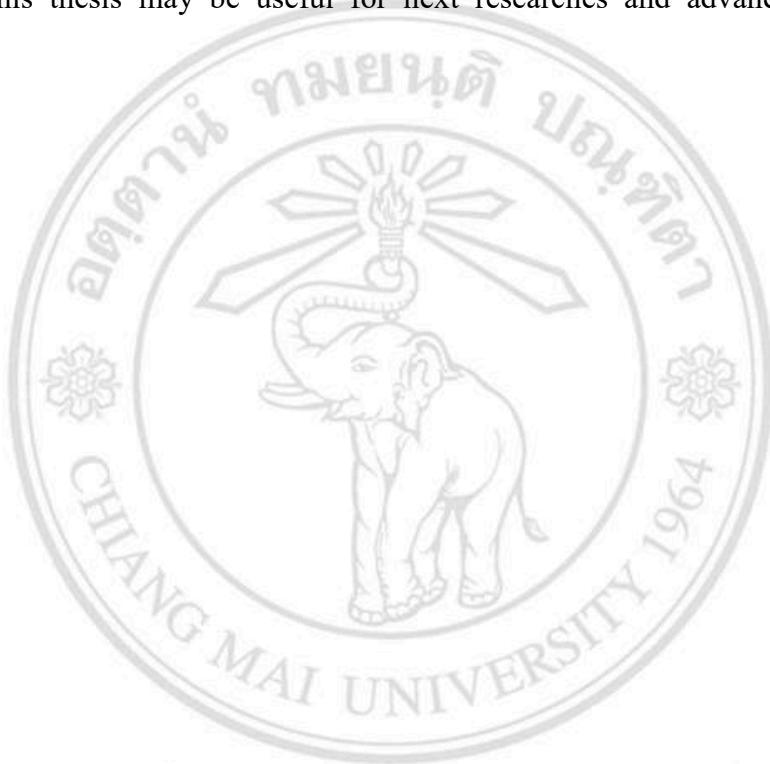


Dissertation Title	Effects of Microstructure Design on Properties of Barium Calcium Zirconate Titanate-Based Compound		
Author	Miss Piyaporn Jaimeewong		
Degree	Doctor of Philosophy (Materials Science)		
Advisory Committee	Asst. Prof. Dr. Anucha Watcharapasorn	Advisor	
	Dr. Manoch Naksaka	Co-advisor	
	Asst. Prof. Dr. Orawan Khamman	Co-advisor	

ABSTRACT

In this research, powder and ceramic fabrications of barium calcium zirconate titanate $\text{Ba}_{0.85}\text{Ca}_{0.15}\text{Zr}_{0.1}\text{Ti}_{0.9}\text{O}_3$ (BCZT) were carried out. Initially, BCZT powder was prepared by a sol-gel auto combustion method (SGA). The BCZT powder was obtained at different pH values (5, 7 and 9) and then all powders were characterized by thermal analysis. From the results, it was found that the powders can be calcined at 900°C. Therefore, all powders were calcined at 900°C for 2 h with heating/cooling rate of 5°C/min. After that, all powders were characterized in terms of phase and crystal structure by X-ray diffraction (XRD) technique and Powder Cell software. The results presented that all BCZT calcined powders presented a tetragonal perovskite structure while the finished BCZT powder as called as-burnt powder presented an amorphous. Raman peaks showed Ti-O bond which was presented in all calcined BCZT powders. The as-burnt powder had a D-band and G-band which indicated incompletely formation of BCZT powders. The Fourier transform infrared spectra confirmed the complete solid solution for BCZT calcined powder. Powder morphologies showed the BCZT calcined powder agglomerated. The optimum pH value was 7 at which homogeneous powders were obtained. The selected area diffraction patterns revealed that BCZT powders possessed a tetragonal perovskite structure. The BCZT ceramics were fabricated by a conventional solid-state sintering method at 1,200-1,450°C for 2 h with a heating/cooling rate of 5°C/min. X-ray diffraction


data revealed a tetragonal structure and Rietveld refinement confirmed a tetragonal structure with space P4mm group. It was found that densities of the BCZT ceramics increased porosities decreased with increasing sintering temperature. For dielectric properties measured at room temperature of BCZT ceramics, it was found that the dielectric permittivity increased with an increase in sintering temperature. Ferroelectric properties were improved due to fully developed microstructure obtained at higher sintering temperatures. Electrostrictive properties were enhanced with increasing sintering temperature.

For ceramic fabrication, Bi_2O_3 powder was added in the concentrations of 0.005, 0.01, 0.02 and 0.1 mole fraction. X-ray diffraction patterns revealed that all ceramics possessed a tetragonal structure. A secondary phase was observed in the ceramic with 0.1 mole fraction Bi_2O_3 . The secondary phase was found to be Bi-rich phase. A homogeneous grain characteristic was only observed in the ceramic with 0.02 mole fraction Bi_2O_3 which was consistent with the highest relative density (~ 95%). According to the wavelength-dispersive spectroscopy, the addition of 0.02 mole fraction Bi_2O_3 ceramic made the showing a good distribution of Ba, Ca, Zr, Ti, O and Bi elements. Dielectric properties of the ceramics were improved when Bi concentration was increased. This was due to their high densities and homogeneous grain size. For ferroelectric properties, the polarization-electric field hysteresis loops tended to be slimmer with increasing of Bi_2O_3 content.

For BCZT-0.02Bi- x (69Pb($\text{Mg}_{1/3}\text{Nb}_{2/3}$)O₃-31PbTiO₃) abbreviated as BCZT-0.02Bi- x PMNT ceramics where $x = 1, 3$ and 5 weight fraction, X-ray diffraction patterns presented a tetragonal structure for composition of 1 weight fraction, a mixed phase of tetragonal and rhombohedral structures for 3 and 5 weight fractions. Optical microscope and scanning electron microscopy images presented various orientations of PMNT crystals in the BCZT-0.02Bi- x PMNT ceramics. Energy dispersive X-ray analysis confirmed the existence of Pb, Mg, Nb, Ti and O elements in PMNT phase, whereas the BCZT-0.02Bi area presented Ba, Ca, Zr, Ti, Bi and O elements. Moreover, Mg and Nb were also observed in the BCZT-0.02Bi area because these elements could diffuse into the BCZT-0.02Bi area. For dielectric properties, the values of dielectric permittivity increased with increasing PMNT content. Relaxor behavior of the ceramics was with increasing PMNT content which was analyzed by mean of Curie Weiss, Quadratic and

Vogel-Fulcher laws. From ferroelectric properties measured of different temperatures at low temperature, P-E hysteresis loops opened up of which was caused by freezing of polar-nano regions.

In conclusion, BCZT-based ceramics could be successfully produced and their dielectric properties were improved by addition of Bi_2O_3 and PMNT crystal. BCZT-0.02Bi- x PMNT ceramic investigation has shown a new knowledge in fields of electroceramics. In the near future, this thesis may be useful for next researches and advanced electronic application.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved

หัวข้อคุณภูมิพนธ์

ผลของการออกแบบโครงสร้างจุลภาคต่อสมบัติของสารประกอบที่มีแบบเริ่มแรกเชิงเมชอร์ โคลนด์ ไทยแนตเป็นฐาน

ผู้เขียน

นางสาวปิยาพร ใจมีวงศ์

ปริญญา

ปรัชญาดุษฎีบัณฑิต (วัสดุศาสตร์)

คณะกรรมการที่ปรึกษา

พศ.ดร.อนุชา วัชระภาสร

อาจารย์ที่ปรึกษาหลัก

ดร. มาโนช นาคสาหา

อาจารย์ที่ปรึกษาร่วม

พศ.ดร. อรุวรรณ คำมั่น

อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

งานวิจัยนี้จัดทำขึ้นเพื่อศึกษาผลของการเตรียมผงและเซรามิกแบบเริ่มแรกเชิงเมชอร์ โคลนด์ ไทยแนต ($Ba_{0.85}Ca_{0.15}Zr_{0.1}Ti_{0.9}O_3$, หรือ BCZT) เริ่มจาก ผง BCZT ถูกเตรียมจากวิธี โซลเจล/o โคลอมบัสชั่น (SGA) โดยผง BCZT ที่ได้จากค่าความเป็นกรดด่างที่แตกต่างกัน (5, 7 และ 9) และจากนั้นนำผงทั้งหมดศึกษาด้วยการวิเคราะห์ทั้งความร้อน จากผลการทดลอง พบว่า ผง BCZT สามารถเผาแคลไชน์ที่ 900 องศาเซลเซียส ดังนั้น ผงทั้งหมดถูกเผาแคลไชน์ที่ 900 องศาเซลเซียส นาน 2 ชั่วโมง ด้วยอัตราบีบ/ลง 5 องศาเซลเซียสต่อนาที หลังจากนั้น ผงทั้งหมดถูกวิเคราะห์ในส่วนของเฟสและ โครงสร้างผลึก ด้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์และ โปรแกรม Powder Cell ผลการทดลองพบว่า ผง BCZT ที่แคลไชน์แล้วแสดงโครงสร้างผลึกเพอร์อปส์ไกเดอร์ เฟสเดตระ โภนอล ในขณะที่ผงหลังเสร็จสิ้นกระบวนการเรียกว่า ผงหลังการเผาไหม้ (as-burnt) และแสดงอัลตราโซนิก ผลการวิเคราะห์รามาน พบว่า พิคพันธะ Ti-O ถูกแสดงในผง BCZT ที่เผาแคลไชน์แล้วทั้งหมดแต่ผง as-burnt มีพิคของความไร้ระเบียบของแกรไฟต์ (D-band) และพิคพันธะของคาร์บอน (G-band) ซึ่งบ่งชี้ถึงการเผาไหม้ไม่สมบูรณ์ในการเปลี่ยนมาเป็นผง BCZT ผลการวิเคราะห์พิคด้วยเทคนิคฟูเรียร์ทรานส์ฟอร์มยืนยัน ผง BCZT ที่เผาแคลไชน์แล้วเป็นสารละลายของแข็งแบบสมบูรณ์ รูปร่างสัมฐานของผง BCZT ที่เผาแคลไชน์แล้ว และแสดง การเกาะกลุ่มกันของผง เนื่องจากที่เหมาะสมกับค่า pH เท่ากับ 7 และแสดงความเป็นเนื้อเดียวกัน ผลรูปแบบการเลี้ยวเบนอิเล็กตรอน พบว่า ผง BCZT ที่เผาแคลไชน์แล้วมีโครงสร้างผลึกแบบเพอร์อปส์ไกเดอร์ เฟสเดตระ โภนอล สำหรับเซรามิก BCZT ถูกเตรียมด้วยวิธีการเผาเซนเตอร์

แบบสถานะของแข็งดึงคิมที่อุณหภูมิ องค่าเซลเซียส นาน 2 ชั่วโมง ด้วยอัตราขึ้น/ลง 5 องศาเซลเซียส ต่อนาที ผลการเดี่ยวบนของรังสีเอกซ์ พบว่า เฟสเตตระ โภนอล และเรียทเวลวี ไฟน์เม้นท์ ยืนยัน เฟส เตตระ โภนอลมีสเปซกรุ๊ป P4mm ผลของความหนาแน่น พบว่า ความหนาแน่นของเซรามิก BCZT มี ค่าเพิ่มขึ้นแต่รูพรุนมีค่าลดลงเมื่ออุณหภูมิในการเผาชินเตอร์ ผลสมบัติไดอิเล็กทริกที่อุณหภูมิห้อง ของเซรามิก BCZT พบว่า ค่าคงที่ไดอิเล็กทริกเพิ่มขึ้นเมื่ออุณหภูมิเผาชินเตอร์เพิ่มขึ้น เนื่องจากผลของ ความหนาแน่น ผลการศึกษาสมบัติเฟร์ โรอิเล็กทริก พบว่า การเกิดโพลาไรเซชันเกิดง่ายขึ้น เนื่องมาจากโครงสร้างจุลภาคเมื่ออุณหภูมิการเผาชินเตอร์ที่สูงขึ้น สมบัติอิเล็กโทรสตติกที่ฟเพิ่มขึ้น เมื่ออุณหภูมิการเผาชินเตอร์ที่สูงขึ้น

การเตรียมเซรามิกที่เติมด้วยผง Bi_2O_3 ในปริมาณ 0.005, 0.01, 0.02, 0.1 ร้อยละ โดยโนล ผลการ เดี่ยวบนของรังสีเอกซ์ พบว่า เป็นเฟสเตตระ โภนอล ในขณะที่เกิดเฟสแผลกปломเมื่อปริมาณผง Bi_2O_3 เพิ่มขึ้นที่ 0.1 ร้อยละ โดยโนล แต่เกรนที่มีขนาดเท่ากันถูกพบในการเติมผง Bi_2O_3 เท่ากับ 0.02 ร้อยละ โดยโนล และมีความหนาแน่นสัมพัทธ์สูงสุด (~ 95%) ผลการศึกษาองค์ประกอบทางเคมีด้วย เทคนิคการกระจายความยาวคลื่นของรังสีเอกซ์ พบว่า การเติมผง Bi_2O_3 เท่ากับ 0.02 ร้อยละ โดยโนล แสดงการกระจายของตัวของธาตุ Ba, Ca, Zr, Ti, O และ Bi ผลการศึกษาสมบัติไดอิเล็กทริก พบว่า ค่าคงที่ไดอิเล็กทริกเพิ่มขึ้นเนื่องมาจากความหนาแน่นและขนาดของเกรนที่เพิ่มขึ้น ผลการวิเคราะห์ สมบัติเฟร์ โรอิเล็กทริก พบว่า วัสดุชีสเทอเรชีสเปลี่ยนขนาดแคบลง เมื่อปริมาณของผง Bi_2O_3 เพิ่มขึ้น กรณีเซรามิก BCZT-0.02Bi- x (69Pb($\text{Mg}_{1/3}\text{Nb}_{2/3}$)O₃-31PbTiO₃) หรือ BCZT-0.02Bi- x PMNT เมื่อ $x = 1$, 3 และ 5 ร้อยละ โดยน้ำหนัก ผลการศึกษาการเดี่ยวบนของรังสีเอกซ์ พบว่า เฟสเตตระ โภนอลที่การ เติมผลึก PMNT เท่ากับ 1 ร้อยละ โดยน้ำหนัก และเกิดการผสมกันของเฟสเตตระ โภนอลและรอมโนอี ครออลเมื่อการเติมผลึก PMNT เท่ากับ 3 และ 5 ร้อยละ โดยน้ำหนัก ผลการศึกษาการเรียงตัวของผลึก PMNT ด้วยกล้องจุลทรรศน์แสงและกล้องจุลทรรศน์อิเล็กตรอนแบบส่องการดู พบว่า การเรียงตัวของ ผลึกมีหลายทิศทางในเซรามิก BCZT-0.02Bi ผลการศึกษาองค์ประกอบทางเคมีด้วยเทคนิคการ กระจายความยาวคลื่นของรังสีเอกซ์ แสดงการกระจายของตัวของธาตุ Pb, Mg, Nb, Ti และ O ในผลึก PMNT ในขณะที่ บริเวณ BCZT-0.02Bi แสดง Ba, Ca, Zr, Ti, Bi และ O อย่างไรก็ตาม Mg และ Nb ถูกพบในบริเวณ BCZT-0.02Bi เนื่องจาก ธาตุเหล่านี้แพร่เข้าสู่บริเวณ BCZT-0.02Bi ผลการศึกษา สมบัติไดอิเล็กทริก พบว่า ค่าคงที่ไดอิเล็กทริกเพิ่มขึ้นเมื่อเพิ่มปริมาณผลึก PMNT ผลการศึกษา พฤติกรรมของรีแลกเชอร์ พบว่า พฤติกรรมเพิ่มขึ้นตามปริมาณผลึก PMNT ซึ่งยืนยันจาก Curie Weiss law, Quadratic law และ Vogel-Fulcher law การศึกษาสมบัติเฟร์ โรอิเล็กทริกตามอุณหภูมิ พบว่า ที่ อุณหภูมิต่ำเกิดวงวนชีสเทอเรชีส เนื่องจาก บริเวณที่มีขั้วนานาโนถูกแซวที่อุณหภูมิดังกล่าว

สรุปผลการทดลอง เซรามิก BCZT สามารถเตรียมได้ และสมบูรณ์ได้อิเกทริกสามารถปรับปรุงได้โดย การเพิ่มปริมาณผง Bi_2O_3 และผลึก PMNT การศึกษาเซรามิก BCZT-0.02Bi- x PMNT มีองค์ความรู้ ใหม่ทางด้านอิเล็กโทรเซรามิก ซึ่งในอนาคตอันใกล้ งานวิจัยนี้อาจจะมีประโยชน์ต่องานวิจัยใน อนาคตและสามารถประยุกต์ใช้ในด้านอิเล็กทรอนิกส์ขั้นสูงต่อไป

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved