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STATEMENT OF ORIGINALITY 

1.  A new method, so-called sol-gel auto combustion, for the synthesis of barium 

calcium zirconate titanate ceramics based on the concepts of reducing energy use 

and production of high-quality nano-sized powder is proposed in this thesis. 

2. The improvement in physical and dielectric properties of barium calcium 

zirconate titanate based-ceramics by the addition of bismuth oxide powder is 

proposed in this thesis. 

3. In order to improve the dielectric properties of barium calcium zirconate titanate 

based-ceramics, the addition of lead magnesium niobate titanate crystals is 

proposed in this thesis. 

4. The microstructure design of the new composite material is proposed in this thesis 

and its properties are compared to those of commercial products in order to assess 

the possibility of its use in real applications. 
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