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STATEMENT OF ORIGINALITY

A new method, so-called sol-gel auto combustion, for the synthesis of barium
calcium zirconate titanate ceramics based on the concepts of reducing energy use
and production of high-quality nano-sized powder is proposed in this thesis.

The improvement in physical and dielectric properties of barium calcium
zirconate titanate based-ceramics by the addition of bismuth oxide powder is
proposed in this thesis.

In order to improve the dielectric properties of barium calcium zirconate titanate
based-ceramics, the addition of lead magnesium niobate titanate crystals is
proposed in this thesis.

The microstructure design of the new composite material is proposed in this thesis
and its properties are compared to those of commercial products in order to assess

the possibility of its use in real applications.
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