CHAPTER 1

Introduction

This chapter is organized two sections as the following: Section 1.1 presents a brief
history of fixed point theory of some generalized contraction mappings in complete metric
spaces endowed with graphs and recalls some important results of them. In Section 1.2,
we introduce best proximity point theorems for nonexpansive mappings in a Banach space

and review some well-known results for mean nonexpansive mappings.

1.1 Fixed Points of Some Generalized Contraction Mappings in Com-

plete Metric Spaces Endowed with Graphs

Fixed point theory plays an important role in the study of theory of equations
in nonlinear analysis. They can be applied widely to solve importantly the existence
of solutions of various equations. Further, it has various applications in many fields
such as optimization, control theory and economics. A fundamental and well-known
result is the Banach’s contraction principle [1] that has been extended and generalized in
many directions both single valued self-map version and multivalued self-map version, for
instance, see [2, 3, 4, 5, 6, 7, 8] and for other associated results, see [9, 10, 11, 12, 13, 14,
15, 16].

Theorem 1.1.1. (Banach’s Contraction Principle) Let (X, d) be a complete metric

space and let T : X — X be a contraction mapping, i.e., there exists k € [0, 1) such that
d(Tz,Ty) < kd(x,y) for all z,y € X.
Then T has a unique fixed point in X.

In 1968, Kannan [17] extended the notions of Banach’s contraction principle to a
new type of mappings which is different from that of contraction as the following;:
Let (X,d) be a metric space. A mapping T : X — X is called a Kannan mapping

if there exists a € [0, ) such that

d(Tz,Ty) < ald(x,Tz) + d(y, Ty)] for all z,y € X.
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It is noted that a contraction mapping is continuous but a Kannan mapping is not.
We can found the results as the following in [17].
On the other hand, Chatterjea [2] introduced a new concept of contraction mappings

known as Chatterjea contraction mapping as follows:
d(Tz,Ty) < a[d(z,Ty) + d(y, Tx)] for all z,y € X,

where a € [0, %) .
Zamlfirescu [3] proved a fixed point theorem for a new type of contraction mapping by
combining the concept of Banach’s contraction mapping, Kannan mapping and Chatterjea

mapping. This mapping is known as Zamfirescu operator.

Theorem 1.1.2. ([3]) Let (X, d) be a complete metric space and 7' : X — X a map for
which there exist the real numbers a, b and c satisfying 0 < a <1, 0<b,c < % such that

for each pair x,y € X, at least one of the following is true:
(21) d(T'z, Ty) < ad(z, y);

(22) d(Tx, Ty) < bld(z,Tx) + d(y, Ty));

(23) d(T'x,Ty) < cld(z, Ty) + d(y, Tz)].

Then T is a Picard operator, that is, 1" has a unique fixed point x¢g € X and for each

re X, Ty — x.

In 2004, Berinde [7] introduced and studied the fixed point theorems for weak con-
traction mapping or almost contraction mapping on a complete metric space which is

more general than that of Kannan and Chatterjea mapping and Zamfirescu operator.

Definition 1.1.3. ([7]) Let (X, d) be a metric space. A map T : X — X is called weak

contraction or almost contraction if there exist a constant § € (0,1) and L > 0 such that
d(Tz,Ty) < dd(x,y) + Ld(y, Tx) for all z,y € X.

Moreover, the Banach’s contraction principle was extended to multivalued mappings
in a complete metric space. The first well-known fixed point theorem for multivalued
contraction mappings using the Pompeiu-Hausdorff metric was studied by Nadler [18].

Let (X, d) be a metric space and CB(X) be the set of all nonempty closed bounded
subsets of X. Let A be a subset of X. The distance from x to A is defined by

D(z,A) :=inf{d(x,y) : y € A}.



For A, B € CB(X), we define
H(A, B) := max {sup D(a, B),sup D(b, A)} .
acA beB
It is called a Pompeiu-Hausdorff distance from A to B.
Let T : X — 2% (collection of all nonempty subsets of X) be a multivalued mapping.
A point € X is said to be a fixed point of T if x € Tx. We denote the set of all fixed
points of T' by F(T'), that is,

F(T)={ze X :zeTz}.

In 1969, Nadler [18] extended the Banach’s contraction principle for a multivalued
mapping and proved the Banach’s contraction principle in a complete metric space for

multivalued version. He proved the following fixed point theorem.

Theorem 1.1.4. (Nadler’s fixed point theorem) Let (X,d) be a complete metric
space and let T' be a map from X into C B(X). Suppose that 7" is a multivalued contraction
mapping, i.e., there exists k& € [0, 1) such that

H(Tz,Ty) < kd(x,y) for all z,y € X.

Then there exists z € X such that z € T'z.

Nadler’s fixed point theorem was extended and generalized in many directions. One
of the well-known extensions is a fixed point theorem of multivalued almost contractions
introduced by M. Berinde and V. Berinde [19]. They extended Nadler’s fixed point theo-
rem to a new class of multivalued self mappings, called multivalued almost contractions,
defined as follows:

Let (X,d) be a metric space and let T : X — C'B(X) be a multivalued mapping.
Then T is said to be a multivalued almost contraction or multivalued (0, L)-almost con-

traction if there exist two constants 6 € (0,1) and L > 0 such that
H(Txz,Ty) <0d(z,y)+ L-D(y,Tz) forall z,y € X.

They proved that in a complete metric space, every multivalued almost contraction
T :X — CB(X) has a fixed point.
In many real applicable existence problems, fixed point theorems of self-mappings

may not be applied, but those of nonself mappings will be very useful and applicable.



Now, we will focus on the existence of fixed points for nonself multivalued contraction
mappings which extended many important results, see [20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30], for example. In 1972, Assad and Kirk [20] obtained a new fixed point theorem for

nonself multivalued mappings.

Theorem 1.1.5. (Assad and Kirk’s fixed point theorem) Let (X, d) be a complete
and metrically convex metric space, K a nonempty closed subset of X, and let T": K —
CB(X) a multivalued contraction mapping. If T" satisfies Rothe’s type condition, that is,
r € 0K implies Tx C K, then T has a fixed point in K.

Recently, Alghamdi et al. [29] considered multivalued nonself almost contractions

on a convex metric space and proved the existence theorem of this mapping.

Theorem 1.1.6. ([29]) Let (X, d) be a complete convex metric space and K a nonempty
closed subset of X. Suppose that 7': K — CB(X) is a multivalued almost contraction,
that is,

H(Tz,Ty) <dd(z,y)+ L-D(y,Tz) forall z.y € K,

with 6 € (0,1) and some L > 0 such that 6(1 + L) < 1. If T satisfies Rothe’s type

condition, then there exists z € K such that z € T'z.

Let G = (V(G), E(G)) be a directed graph such that V(G) a set of vertices of a
graph and E(G) a set of its edges. Let A := {(z,z) : = € V(G)}, say that the diagonal
of V(G) x V(G), be a set of all loops in G. Assume that G has no parallel edges, thus
one can identify G with the pair (V(G), E(G)). We denote by G~! the directed graph

obtained from G by reversing the direction of edges, that is,
B(G™) = {(x,y) € V(G) x V(G) : (y,x) € BE(G)}.

In 2008, Jachymski [31] combined the concept of fixed point theory and graph
theory to study fixed point theory in a metric space endowed with a directed graph. He
also introduced a concept of G-contraction self mapping which generalized the regular

contraction mapping.

Definition 1.1.7. ([31]) Let (X, d) be a metric space, and G = (V(G), E(G)) a directed
graph where V(G) = X and E(G) contains all loops, that is, A C E(G). We say that a

mapping 1" : X — X is a Banach G-contraction or simply G-contraction if T preserves



edges of G, i.e.,
for any z,y € X such that (z,y) € E(G) implies (T'z,T'y) € E(G),
and there exists k € (0, 1) such that
d(Tz,Ty) < kd(z,y) for all x,y € X with (z,y) € E(Q).
By using this concept and some conditions, he proved the following theorem.

Theorem 1.1.8. ([31]) Let (X, d) be a complete metric space, and let the triple (X, d, G)
have the following property:

for any {xptneny in X, if 2,, = 2 € X and (zp, 2p41) € E(G) for all n € N,

then there exists a subsequence {zy, } with (z,,,z) € E(G) for all k € N.
Let T': X — X be a G-contraction mapping, and X7 := {z € X : (z,Tz) € E(G)}. Then
T has a fixed point if and only if X7 # 0.

In 2011, Nicolae et al. [32] introduced the concept of G-contraction for a multivalued
mapping 7" from X into C'B(X) and proved the fixed point results about this mapping in

a metric space endowed with a graph G.

Definition 1.1.9. ([32]) Let (X, d) be a metric space. Suppose that G = (V(G), E(G))
is a directed graph such that V(G) = X and E(G) contains all loops. A multivalued
mapping 7" : X — C'B(X) is said to be G-contraction if there exists k € (0,1) such that

H(Tz,Ty) < kd(z,y) for all (z,y) € E(G),
and for each (z,y) € E(G), each u € Tx and v € Ty satisfying the condition
d(u,v) < ad(x,y), for some a € (0,1),
we have (u,v) € E(Q).

Theorem 1.1.10. ([32]) Let (X,d) be a complete metric space, and G be a directed
graph. Let the triple (X, d, G) have the following property:

for any {zp tneny in X, if 2, —» 2 € X and (zy,, 2p41) € F(G) for all n € N,

then there exists a subsequence {zy, } with (z,,,z) € E(G) for all k € N.
Let T : X — CB(X) be a multivalued G-contraction mapping. Then F(T') # 0 if and
only if X7 # (.



In 2013, Dinevari and Frigon [33] introduced the new concept of G-contraction that

is weaker than definition of Nicolae.

Definition 1.1.11. ([33]) Let 7 : X — 2% be a map with nonempty values. We say
that 7" is a multivalued G-contraction (in the sense of Dinevari and Frigon) if there exists

a € (0,1) such that for all (z,y) € E(G) and all u € Tz, there exists v € Ty such that
(u,v) € E(G) and d(u,v) < ad(z,y).

They proved that under some properties on a metric space, a multivalued G-
contraction with closed values has a fixed point (see [33], Theorem 2.10 and Corollary
2.11).

One year later, Tiammee and Suantai [10] introduced the concepts of edge-preserving
multivalued mapping and a new type of multivalued almost G-contraction and then they
proved the existence fixed point theorem on a metric space with a directed graph. From
their main result (see [10], Theorem 3.3), if we put g(x) = x and «a(z) = § for some
nonnegative real number § such that 0 < § < 1 for all x € X, we obtain the following

result.

Corollary 1.1.12. ([10]) Let (X, d) be a complete metric space and let G = (V(G), E(GQ))
be a directed graph such that V(G) = X and let T': X — CB(X) be a multivalued

mapping. Suppose that

(1) T' is a edge-preserving mapping , i.e., if (xz,y) € E(G), then (u,v) € E(G) for all

u €Tz and v € Ty;
(2) there exists g € X such that (x¢,y) € E(G) for some y € Tx;
(3) X has Property A;
(4) there exist § € [0,1) and L > 0 such that

H(Txz,Ty) < éd(z,y) + L- D(y,Tx) for all (x,y) € E(G).

Then there exists v € X such that v € Tu.

Recently, Tiammee et al. [34] introduced and proved the fixed point theorems for
multivalued nonself G-almost contractions in Banach spaces endowed with graphs, for

more details on this, see [34].



Many existence theorems of fixed points can be applied to obtain fixed point theo-
rems for cyclic mappings and coupled fixed point theorems.

In 2003, Kirk et al. [6] introduced the definition of cyclic representations as the
following;:

Let X be a nonempty set, m a positive integer, {A;}!",; nonempty closed subsets of
m

X and T : X — X an operator. We call that X = U A; is a cyclic representation of X
i=1
with respect to T if

T(Al) C AQ, ...,T(Am_l) - Am,T(Am) C Al,

and operator 1" is known as a cyclic operator.
A partial ordering is a binary relation < over the set X which satisfies the following

conditions:

1. z =2z (reflexivity);

2. x <y and y <X z, then z = y (antisymmetry);
3. x Xy and y <X z, then z < z (transitivity),

for all z,y,z € X. A set with a partial ordering < is called a partially ordered set. We

write x < y if x <y and = # y.

Definition 1.1.13. ([35]) Let (X, <) be a partially ordered set and F' : X x X — X
be a given mapping. The mapping F' is said to have mixed monotone property if it is

monotone nondecreasing in z and monotone nonincreasing in ¥, that is,
T1,x2 € Xa r =12 = F(‘ley) | F(w%y)v

y1,y2 € X,y 2 yp = Fx,y1) = F(x,y2).

The Fixed point theorems for monotone single valued mappings have been investi-
gated and studied in partially ordered metric spaces by many authors, see [35, 36, 37, 38|,
for examples. They can apply to study an existence problem of ordinary differential
equations.

In 2006, Bhasker and Lakshmikantham [35] introduced the concept of coupled fixed
points for mixed monotone mappings in partially ordered metric spaces. Coupled fixed
point theorems and their applications were investigated many directions by several au-

thors, see [11, 15, 39, 40, 41, 42], for examples.



1.2 Best Proximity Point Theorems and Mean Nonexpansive Mappings

Let (X,d) be a metric space, A a nonempty subset of X and let T': A — X be a
mapping. 7" is said to have a fixed point in A if the fixed point equation T'x = = has at
least one solution, that is, there exists z € A such that d(xz,Tx) = 0. Some parts of this
thesis, we consider in case that the equation does not have a solution, i.e., d(z, T'z) > 0 for
all z € A. Our aim is to find an element x € A such that the error d(z, T'z) is minimum.
The point x is said to be the best approximation of the fixed point of 1'. This is the idea
behind best approximation theory.

In 1961, Fan [43] proved the following well-known best approximation theorem.

Theorem 1.2.1. ([43]) Let A be a nonempty compact convex set in a normed linear
space X. If T' is a continuous map from A into X, then there exists a point x in A such

that ||z — Tz|| = D(Tz, A).

An element x in the previous theorem is called a best approximation point of 1" in
A. Note that if x € A is a best approximation point, then ||z — T'z|| need not be the
optimum. Best proximity point theorems have been explored to find sufficient conditions
so that, the minimization problem I;‘éig ||z — Tz|| has at least one solution.

To have a concrete lower bound, let A and B be two nonempty subsets of a metric
space (X,d) and T': A — B be a mapping. The natural problem is whether we can find
an element xg € A such that

d(zo,Txo) = mind(z, Tx).
z€A

Now, we denote that D(A, B) := inf{d(a,b) : a € A,b € B}. Since d(z,Tx) >
D(A, B) for any x € A, the interesting problem is to find a point # € A such that

d(z,Tx) = D(A, B).

It is called a best proximity point of T. In particular case, if D(A, B) = 0, then best
proximity points of 1" are exactly fixed points of T. Many interesting results about best
proximity points can be found in the following works [44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55|, for examples.

In 2014, Raj and Eldred [56] established some geometric properties on a strictly

convex Banach space.



We will recall some notations for convenience. Let A, B be two nonempty subsets

of a normed linear space X. Let
Ap:={z € A: ||z —y|| = D(A, B), for some y € B},

By:={y € B:|z—vy|=D(A,B), forsomezx¢c A}.

The metric projection operator P4 : X — A is defined by
Pa(z) ={ye A:|lr—y| =D(z,A)} for all z € X,

where D(z, A) := inf{d(x,a) : a € A}. It is known that if A is assumed to be a closed and
convex subset of a strictly convex and reflexive Banach space X, then P4(z) is nonempty
and single valued for all z € X, see [57].

In 2003, Kirk et al. [58] proved the following lemma to guarantee that Ay and By

are nonempty.

Lemma 1.2.2. ([58]) Let X be a reflexive Banach space and A a nonempty closed bounded
convex subset of X, and B a nonempty closed convex subset of X. Then Ay and By are

nonempty and satisfy Pp(Ap) C By and P4(By) C Ayp.

Moreover, in 2000, Basha and Veeramani [59] showed that Ay C dA and By C 0B
where OF denotes the boundary of I for any £ C X. It is easy to see that Ay and By
are closed convex subsets of A and B, respectively, if A and B are closed and convex.

Recently, Kong et al. [60] proved the following best proximity point theorem of
some mappings by using the results of Raj and Eldred [56].

Let A and B be two nonempty closed convex subsets of a strictly convex space X

such that Ag is nonempty. Let us define a mapping P: AU B — AU B as the following:

Pp(x) if x € A
Py(x) ifx € B.

Pz =

Corollary 1.2.3. ([60]) Let X be a uniformly convex Banach space and A, B be nonempty
closed convex subsets of X such that Ay is nonempty. Suppose that T'(Ap) C By and
T : A — B is a nonexpansive mapping on Ay, i.e., [Tz — Ty|| < ||z — y|| for all z,y € Ay.
Then T has at least one best proximity point if and only if there exists x € Ay such that
{(PT)™(x)} is bounded.



In 1975, Zhang [61] introduced a new mapping which is more general than that of
nonexpansive mappings and proved the existence of a fixed point of this mapping in a
Banach space, defined as follows:

Let A be a nonempty subset of Banach space X and 1" a mapping from A into A.
A map T is called mean nonexpansive if there exist two nonnegative real numbers a and

b with a + b < 1 such that
| Tz — Ty| < allz —y|| + bl|lz —Ty||, for each z,y € A.

In 2014, Zuo [62] proved the following existence theorem for mean nonexpansive

mappings in a reflexive Banach space which satisfies Opial’s condition.

Motivated and inspired by all of these works mentioned above. First of all, we
aim to study and prove the existence theorems for multivalued nonself Kannan-Berinde
contraction mappings, which is a new class of multivalued nonself contractions and more
general than that of Alghamdi, Berinde and Shahzad [29], in a complete metric space.
Secondly, we will introduce multivalued nonself Kannan-Berinde G-contractions mappings
and prove the existence theorems for this mapping in complete metric spaces with directed
graphs, which extended those results in Assad and Kirk’s fixed point theorem [20] and
Tiammee, Charoensawan and Suantai [34]. Finally, by using the idea given by Sanker and
Anthony [56] and Kong, Liu and Mu [60], we also aim to study and find some sufficient
conditions for the existence of a best proximity point for mean nonexpansive mappings in a
strictly convex Banach space. Moreover, we will apply all of obtained results for a coupled
fixed point and fixed point theorem for some cyclic mappings and mean nonexpansive

mappings. We also give some examples to illustrate all our main results.
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