CHAPTER 2

Basic Concepts and Preliminaries

In this chapter, we recall some basic and important definitions, lemmas, theorems

and known results that are useful for the main results in the later chapter.

2.1 Metric Spaces

Definition 2.1.1. Let X be a nonempty set and d : X x X — [0,00) a function. Then d

is called a distance function or metric on X if the following conditions hold:
1. d(z,y) = 0 if and only if 2 = y for some z,y € X;
2. d(z,y) = d(y,x) for each z,y € X;
3. d(z,y) < d(z,z) +d(z,y) for each z,y, z € X.

The valued of d(x,y) is called a distance between x and y, and X together with d is called
a metric space which will be denoted by (X, d).

Example 2.1.2.

1. The real line R with d(z,y) = |« — y| for all 2,y € R is a metric space. The metric

d is called the usual metric for R.

2. The Euclidian space R™ with

d(z,y) =/ (z1 — y1)® + - + (Tn — Yn)?,

for each z = (z1,22,...,2n), ¥y = (Y1, Y2, - - ., Yn) € R™, is a metric space. The metric

d is called the Fuclidian metric for R™. Moreover, the Euclidean space R™ with
n
o(w,y) =Y | — yel,
k=1

for each @ = (21, 29,...,20), ¥ = (Y1,Y2,...,Yn) € R"™ is also an example of metric

spaces.
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3. Let X be a nonempty set and let d : X x X — {0, 1} be defined by for z,y € X

0 ifx=y
d(z,y) =
1 if x #y.

Then (X, d) is a metric space, called a discrete space.
4. Let X be the set of all continuous scalar-valued functions on [a, b]. Define a metric

d by
d(f,9) = max |f(t) — g(t)]

te(a,b]

for all f,g € X. Then (X,d) is a metric space and usually denoted by Cla, b].

Definition 2.1.3. Let C be a subset of a metric space (X,d). The diameter of set C,
which is denoted by diam(C), is defined

diam(C') := sup{d(z,y) : z,y € C}.
If diam(C') < oo, then C is said to be bounded, and if not, then C' is said to be unbounded.

Definition 2.1.4. Let (X, d) be a metric space. A sequence {x,} converges to x € X if

li_)rn d(zp,x) =0, i.e., for each € > 0, there exists an integer ng € N such that
n [ee]

d(zp, x) < e, forall n> ng.
We usually symbolize this by writing x,, — z or lim xz, = x.

n—oo

Definition 2.1.5. Let {x,,} be a sequence in a metric space (X,d). It is said to be a

Cauchy sequence if for each ¢ > 0, there exists an integer ng € N such that
d(Tpm, xy) < €, for all m,n > ny.

The metric space (X, d) is said to be complete if every Cauchy sequence in X converges,

that is, has a limit which is an element of X.

Theorem 2.1.6. A subspace C of a complete metric space (X, d) is itself complete if and
only if the set C' is closed in X.

Observations

e In a metric space, every convergent sequence is Cauchy, but the converse need not

be true in general.

12



e Euclidean space R” with the Euclidean metric is complete.

e Let X be the space of ordered n-tuples x = (a1, ...,2,) and y = (y1, ..., yn) of real
numbers and

d(z,y) = max |2k — Ykl

Then (X, d) is complete.

Theorem 2.1.7. Let C be a nonempty subset of a metric space (X, d). Then C is closed

if and only if for any sequence {x,} in C, if {z,,} — =, then x € C.
Theorem 2.1.8. Let (X, d) be a metric space. Then
1. 0 and X are closed in X.
2. If C1,C,, ..., C, are closed in X, then O C} is also closed in X.
k=1

3. Let A be an arbitrary set. If C,, is closed in X for each o € A, then m C, is also

acA
closed in X.

Theorem 2.1.9. Let {x,} be a sequence in a metric space (X, d) and x € X. Then {z,}

converges to z if and only if any subsequence {z,, } of {z,} converges to .

Definition 2.1.10. Let X and Y be metric spaces and 1" a mapping of X into Y. Then
T is said to be continuous at a in X if x,, — a, then Tz,, — Ta. A mapping T of X into

Y is continuous if it is continuous at each z in X.

2.2 Some Useful Propositions and Lemmas in Metric Spaces

Let (X,d) be a metric space and CB(X) the set of all nonempty closed bounded
subsets of X. Let A be a subset of X and any z € X. The distance from x to A is defined
by

D(z,A) :=inf{d(x,y) : y € A}.

For A, B € CB(X), we define

H(A, B) := max {sup D(a, B),sup D(b, A)} :
acA beB
It is known that H is called a Pompeiu-Hausdorff metric on CB(X) induced by d on X. It

is also known that (C'B(X), H) is a complete metric space whenever (X, d) is a complete

metric space.
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A metric space (X, d) is called metrically convez or convez if for each x,y € X with

x # y there exists z € X, x # z # y, such that
d(z,y) = d(z,z) + d(z,y).

We known that in a convex metric space each two points are the endpoint of at
least one metric segment, see [20]. The following proposition and lemmas are useful for

our main results.

Proposition 2.2.1. ([20]) Let (X,d) be a complete and convex metric space, K a
nonempty closed subset of X. If z € K and y ¢ K, then there exists a point z in
the boundary of K, denote by K, such that

d(z,y) = d(z,z) + d(z,y).
For convenience, we denote
Plz,y] :={z € 0K : d(z,y) = d(z,2) + d(z,y)}.

The following lemmas are direct consequences of the definition of Pompeiu-Hausdroff

metric.
Lemma 2.2.2. For A, B € CB(X) and a € A, then
D(a,B) < H(A, B).

Lemma 2.2.3. Let A, B € CB(X) and k > 1 be given. Then for a € A, there exists
b € B such that
d(a,b) < kH(A, B).

2.3 Normed Spaces and Banach Spaces

The aim of this section is to give definitions and some geometrics properties in

Normed spaces and Banach spaces.

Definition 2.3.1. A linear space or vector space X over the field F (the real field R or
the complex field C) is a set X together with an internal binary operation “+” called
addition and a scalar multiplication carrying (a,z) in F x X to ax in X satisfying the

following for all z,y,z € X and «a, 5 € F:
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La+ty=y+ux
22+ (y+z2)=@+y) +z
3. there exists a zero element in X, denoted by 0, such that z + 0 = x for all z € X;

4. for each element x € X, there exists an element —x, called the additive inverse or

the negative of x, such that = + (—x) = 0;
5. a(r+vy) = ax + ay;
6. (a+ B)r = ax + Bux;
7. (aB)x = a(fx);
8 1.-xz=u;

The element of a vector space X are called vectors, and the elements of F are called scalars.

X denotes a linear space over filed F.

Definition 2.3.2. Let X be a vector space. A norm on X is a real-valued function || - ||
on X such that the following conditions are satisfied by all elements x,y € X and each

scalar a:
1. ||z|]| > 0 and ||z|| = 0 if and only if x = 0;
2. x| = lafflz[;
3. Nz +yll < llll + llyll-

The ordered pair (X, || - ||) is called a normed space or normed vector space. It is easy to
verify that the normed space X is a metric space with respect to the metric d defined by
d(z,y) = ||z — y||. A Banach space is a complete metric space with respected by normed

space.

Definition 2.3.3. Let X be a linear space over field F (R or C). An inner product on X

is a function (-,-) : X x X — F with the following three properties:

1. (z,z) >0 for all z € X and (x,z) = 0 if and only if = 0;

2. (z,y) = (y,x), where the bar denotes filed conjugation;
3. (ax + By, z) = alx,2) + By, z) for all z,y,2 € X and a, 8 € F.
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The ordered pair (X, (-,-)) is called an inner product space. (x,y) is call inner product of
two elements. An inner product on X defines a norm on X given by ||z|| = /(z,x). A

Hilbert space is a complete inner product space.

Example 2.3.4. Let X = R", n > 1 be a linear space. The R" is a normed space with

the following norms:

(i) ||zl = Z |z | for all x = (1, x2, ..., 2p) € R™;
k=1

n 3
(1) ||z||2 = Z \a:k]2] = /|z1]2 + ... + |z,|? for all & = (21,22, ..., ) € R™, which is

k=1
called that Fuclidean norm;

(701) ||z||oo = axy |zg| for all x = (x1,z9, ..., xy) € R™

Definition 2.3.5. A sequence {z,} in a normed space X is said to be strongly convergent
or convergent in the norm if there exists a point z in X such that lim ||z, —z| =0. In
n— oo

this case, we write either a,, — x or lim xz, = x.
n— oo

Definition 2.3.6. A nonempty subset C' of a normed space X is said to be convex if

Ax+ (1= ANy e C for all z,y € C and X € [0, 1].

Definition 2.3.7. A Banach space X is said to be strictly convez if for z,y € X with
[lz|| = ||ly|| = 1 and = # y, one has

||z + yll
— < 1.
2

Definition 2.3.8. A Banach space X is said to be uniformly convez if for any ¢ € (0, 2],

there exists § > 0 (depending only on ¢) such that

le+ull s
2

for all x,y € X with ||z|]| = ||y|| =1 and ||z — y|| > «.

Observations
e X is a strictly convex space if and only if for z,y € S(F) = {x € X : ||z|| = 1} with

[l + yl|

th =1q.
5 o thenz =y

[zl = [lyll =
e Any Hilbert space is uniformly convex.

e Every uniformly convex Banach space is strictly convex.
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e The Euclidean plane R? is uniformly convex. But R? with || - ||o is not uniformly

convex.
e The Euclidean plane R™ for n > 2 with norm || - ||1 is not strictly convex.

Proposition 2.3.9. ([57]) Let A be a nonempty closed convex subset of a reflexive strictly
convex Banach space X. Then for x € X, there exists a unique point z, € C such that

2 = 2| = D(x, 4).

Let (X, || -||) be a normed space. We denoted by X* the dual space of X, i.e., the
space of all bounded linear functionals on a normed space X, and by X** the second dual

space of X. For each x € X, we define a functional g, : X* — F by

9z(f) = f(x) for all f e X*. (2.1)

Theorem 2.3.10. For each © € X, the functional g, defined by (2.1) is a bounded linear

functional on X*, so that g, € X** and has the norm ||g,|| = ||z]|.

Now we define a mapping C' : X — X** by x — ¢, and call it the canonical mapping

of X into X™**.

Definition 2.3.11. A normed space X is said to be reflezive if C(X) = X** where

C : X — X™ is the canonical mapping.

Observations
e Every uniformly convex Banach space is reflexive.
e Every finite-dimensional Banach space is reflexive.

Definition 2.3.12. A sequence {z,,} in a normed space X is said to be weakly convergent

if there exists a point x in X such that li_)m f(zp) = f(x) for all f e X*.

Definition 2.3.13. Let X be a Banach space. We say that X satisfies Opial’s condition

if for each x € X and each sequence {z,,} weakly converging to x, then for all y # x,
liminf ||z,, — z|| < liminf ||z, — y||.
n—oo n—oo

Example 2.3.14. Every Hilbert space satisfies the Opial’s condition.
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2.4 Graph Theory and Some Multivalued Nonself Generalized G-con-
traction Mappings

We now move on some basic and definitions in graph theory. Let G = (V(G), E(Q))
be a directed graph such that V(G) a set of vertices of a graph and E(G) a set of its
edges. Let A := {(x,z) : x € V(G)}, say that the diagonal of V(G) x V(G), be a set of
all loops in G. Assume that G has no parallel edges, thus one can identify G with the
pair (V(G), E(G)). We denote by G~! the directed graph obtained from G by reversing

the direction of edges, that is,
E(G™Y) = {(r,y) € V(G) x V(G) : (y, ) € B(G)}.

Property A. ([63]) For any sequence {z, }pen in X, if x,, = z € X and (zy,, zp41) € E(G)
for all n € N, then (z,,z) € F(G) for any n € N.

In order to obtain our main results, we need to know the following definition of
domination in a graph, see [64, 65]:

Let G = (V(G),E(G)) be a directed graph. A set X C V(G) is said to be a
dominating set if for all v € V(G) \ X, there exists x € X such that (z,v) € E(G) and
we say that @ dominates v or v is dominated by x. For each v € V(G), a set X C V(G)
is dominated by v if (v,z) € E(G) for all x € X and we call that v dominates X if
(v,z) € E(G) for all x € X.

Definition 2.4.1. ([10]) Let X be a nonempty set and G = (V(G), E(G)) be a graph
such that V(G) = X, and let T': X — CB(X). Then T is said to be edge-preserving if
for any z,y € X,

(r,y) € E(G) implies (u,v) € E(G),

for all w € Tz and v € Ty.

Definition 2.4.2. Let (X,d) be a metric space, K a nonempty subset of X and G =
(V(G), E(G)) be a directed graph such that V(G) = K.

(1) A mapping T': K — C'B(X) is said to be a multivalued almost G-contraction if
there exist § € (0,1) and L > 0 such that, for any z,y € K,

whenever (z,y) € E(G).
(2) A mapping T : K — CB(X) is said to be a multivalued G-contraction if there
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exists k € (0,1) such that, for any =,y € K,
H(Ts, Ty) < kd(z, )

whenever (z,y) € E(G).

2.5 Fixed Point Theorem for Mean Nonexpansive Mappings

Definition 2.5.1. Let X be a Banach space. A mapping 7" : X — X is said to be

nonezrpansive if for x,y € X,
[Tz — Tyl < [z =yl
Example 2.5.2. Let X =R and C' = [0, 1]. Define T': C — C by
Tx=1—z, forall zel0,1].
Then T is a nonexpansive mapping.

Definition 2.5.3. ([61]) Let A be a nonempty subset of Banach space X and T' a mapping
from A into A. A map T is called mean nonexpansive if there exist two nonnegative real

numbers a and b with a + b < 1 such that
[Tz — Ty[| < allz =y + bllz — Ty||, for each z,y € A.
Example 2.5.4. ([62]) Let T be the unit interval defined by
£ ifme [0,%)

Tr =
if z€[3,1].

S

and the norm is the usual norm on the line. Here, 1" is a mean nonexpansive mapping on

unit interval by taking a = % and b= % but it is not nonexpansive.

Theorem 2.5.5. ([62]) Let X be a real reflexive Banach space which satisfies Opial’s
condition, A a nonempty bounded closed convex subset of X, and T : A — A a mean

nonexpansive mapping. Then T has a fixed point.

2.6 A Characterization of Strictly Convex Spaces and Useful Properties

Now, we recall the d-property in a normed linear space and its characterization

related to strictly convexity of Banach spaces which was introduced and studied by Raj

and Eldred [56].
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Definition 2.6.1. ([56]) A pair (4, B) of nonempty subsets of a normed linear space X
is said to have the d-property if and only if

l[z1 —v1|| = D(A, B)
= [|z1 — 22| = [[y1 — w2l
l|z2 — y2|| = D(A, B)

whenever x1, 29 € A and y1,y2 € B.

Definition 2.6.2. ([56]) A normed linear space X is said to have the d-property if and
only if every pair (A, B) of nonempty closed convex subsets of X has the d-property.

Theorem 2.6.3. ([56]) X is strictly convex if and only if X has the d-property.

The following result is obtained by Theorem 2.6.3 which is useful for our main

results.

Corollary 2.6.4. ([56]) Let A and B be nonempty closed convex subsets of a strictly
convex space X such that Ag is nonempty. Then the restriction of the metric projection

mapping P, to By is an isometry, i.e., P4, : By — Ap is an isometry, that is,
[|Pag () = Pag (y)[| = |l =y for all 2,y € By.
Notice that, from Corollary 2.6.4, we also have that
1Py () — Py (y)l| = ||z — | for all z,y € Ay.
Let A and B be nonempty closed convex subsets of a strictly convex space X such

that Ag is nonempty. Consider the mapping P: AU B — AU B defined by

Pp(z) if z € A
Pr =
PA(:B) if z € B.

We give some properties of the mapping P as in the following propositions.

Proposition 2.6.5. Let X be a reflexive strictly convex Banach space and A a nonempty
closed bounded convex subset of X, and B a nonempty closed convex subset of X. Then

Pz = Pp(z) = Pp,(x) and Py = P4(y) = Pa,(y) for all x € Ay and y € By, respectively.

Proof. By Theorem 1.2.2, we have that Ag is nonempty. Let x € Ay be given. From
Pp(Ag) C By, we get

||z = Pp(2)|| = D(x, Bo) = ||z — Ppy()]]-
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By Proposition 2.3.9, we obtain that Px = Pp(z) = Pp,(z) for all « € Ay.

Similarly, for each y € By, by Pa(Bo) C Ap, we get

ly = Pa(y)ll = D(y, Ao) = lly — Pao(y)]]-
Again, by Proposition 2.3.9, we obtain that Py = P4(y) = Pa,(y) for all y € By. O

Proposition 2.6.6. Let A and B be two nonempty subsets of a normed linear space X
such that Ag is nonempty. Let 7' : A — B be a nonself mapping such that T'(Ag) C By.
Then, a point @ € Ay is the fixed point of PT if and only if ||z — Tz|| = D(A, B).

Proof. Suppose that = € Ag. Since T'(Ag) C By, we get that Tax € By. We also note that
x=(PT)(x) = P(Tz) < ||z — Tx|| = ||P(Tx) — Tx||

& ||z = Ta|| = [|Pao(T'x) — Tal|

& ||z — Tal| = D(Tz, A)

& ||z = Tx|| = inf ||[Tz — 2||

zE€Ap

& ||l — Tx|| = D(A, B).
Hence the result is obtained. O
Lemma 2.6.7. ([60]) Let A and B be nonempty closed convex subsets of a strictly convex

space X such that Ay is nonempty. Then P?(x) = x for all z € Ay U By.

2.7 Cyclic Mappings and Couple Fixed Points

Definition 2.7.1. ([6]) Let X be a nonempty set, m a positive integer, {A; }!"; nonempty
m

closed subsets of X and 7' : X — X an operator. We call that X = U A; is a cyclic
i=1
representation of X with respect to T if

T(A1) C Az, ..., T(Ap1) C Ay, T(Ay) C Ay,
and operator T is known as a cyclic operator.

Example 2.7.2. ([66]) Let X = R with the usual metric. Consider the closed nonempty

subset of X as follows:

1 2 4 5!
Al - [07 2]7142 - |:§»1:| 7A3 - |:§71:| 7A4 — |:17 §:| ’AS — |:17 §:| and AG - [172]
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6

Then W = J A; = [0,2] = 4
i=1

Let f: W — W be defined by

1 1 5 .1 2
s 0<x <3 2 e <xr<s3
fAy=9¢ % 70 0 fAg)=q © 777 8
1 ;otherwise, 1 ;otherwise,
T 2<p<s 3 1<l
f(AS): 6 3 — 6 f(A4): 2 07 = 6
1 ;otherwise, 1 ;otherwise,
11 .4 3 5 11
e K T 2 ;2 <r<F
fAs)=4 ° 7° i f(4g) = N "
1 ;otherwise, 1 ;otherwise.

Then ngl) C Az, f(A2) C As, f(As3) C As, f(A4) C As, f(As) C Ag and f(Ag) C Ar.

Thus, U A; is a cyclic representation of W with respect to f.
i=1

Let K be a nonempty subset of X and F': K x K — X a single valued mapping.
An element (z,y) € K x K is said to be a coupled fized point of F if x = F(x,y) and
y = F(y,x). We denote CFiz(F) is the set of all coupled fixed points of the mapping F,
that is,
CFiz(F)={(x,y) e K x K : F(z,y) =z and F(y,x) =y}.

Definition 2.7.3. We say that F': K x K — X is edge-preserving if for each x,y, u,v €
K with (z,u) € E(G) and (y,v) € E(G™!'), then we have that (F(z,y),F(u,v)) €
E(G) and (F(y, x), F(u,u) € B(G™Y).

Let (X, d) be a metric space, K a nonempty closed subset of X and let Z = X x X
and Y = K x K. Then the mapping n: Z x Z — [0, 00) defined by

n((z,y), (u,v)) = d(z,u) + d(y,v) for all (z,y), (u,v) € Z.

It is easy to show that 7 is a metric on Z and (X, d) is complete if and only if (Z, n)

is complete.

Proposition 2.7.4. If (X, d) is convex, then (Z,7n) is convex.
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Proof. Let (X,d) be convex and (z,y), (u,v) € Z such that (z,y) # (u,v). If =« and

y # v, using X is convex, then there exists b € X such that y # b # v and
d(y,v) = d(y,b) +d(b,v).
Since d(x,u) = d(z, x) + d(x,u), there exists (x,b) € Z such that

77((337 y)? (u7v)) = 77((337 y): (‘r7 b)) + 77((3:, b)v (uv U))

Similarly in case x # u and y = v. There exists (a,y) € Z such that

n((z,y), (u,v)) = n((x, ), (@, y)) + n((a,y), (v, v))-

Now, we consider that if £ # u and y # v. Since X is convex, there exist ¢,d € X such
that © # ¢ # v and y # d # v and d(z,u) = d(x, ¢) + d(c,u), d(y,v) = d(y,d) + d(d, v).
Then 5((z, y), (u,0)) = (2, y), (e, d)) + (e, d), (u, v)). Hence, Z is convex. 0

Let Gy be a directed graph defined by Gy = (V(Gy), E(Gy)) where V(Gy) :=Y
and

E(Gy) = {((z,y), (u.v)) : (z,u) € E(G) and (y,v) € B(G™)}.
For a mapping F' : Y — X, we define the mapping Tr : Y — Z by
Tr(z,y) = (F(z,y), Fy,z)) for all (z,y) €Y.

If (x,y) € Y with Tr(z,y) ¢ Y, by Proposition 2.2.1, then we can always choose an
(u,v) € 9Y such that

(@, ), Tr (2, y)) = n((x, ), (u,0)) +n((w, 0), Tr(x, y)),

we denote that

Pry(z,y) := {(u,v) € Y : n((z,y), Tr(z,y)) = n((z,y), (u,v)) +n((u,v), Tr(z,y))}.

Let us recall the definition of domination, a set ¥ C Z is dominated by (u,v)
if ((u,v),(z,y)) € E(Gy) for any (z,y) € Y and we say that ¥ dominates (u,v) if
((z,y), (u,v)) € E(Gy) for all (z,y) € Y.

Note that an element (x,y) € Y is a coupled fixed point of F' if and only if (x,y) is
a fixed point of Tp.
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