CHAPTER 3

Main Results

The purpose of this chapter is to prove our main results and their applications. We

also give some examples to support them.

3.1 Fixed Point Theorems for Multivalued Nonself Kannan-Berinde

Contraction Mappings in Complete Metric Spaces

We first introduce and study a new type of nonself multivalued contraction, called
Kannan-Berinde contraction mapping, which is more general than that of Berinde’s con-

traction and prove its fixed point theorem under some conditions.

Definition 3.1.1. Let (X,d) be a metric space and K a nonempty subset of X. A
mapping 7' : K — CB(X) is said to be a multivalued Kannan-Berinde contraction if

there exist 4 € [0,1), a € [0, %) and L > 0 such that
H(Tz,Ty) < dd(z,y) + a[D(z, Tz) + D(y, Ty)] + L - D(y,Tz)

for any z,y € K.

Example 3.1.2. Let X = {0,1,2} and K = {0,1}. Define a map T': K — CB(X) by

| L eLdig ey
(0,2} if z=1.
Then we see that
H(T(0),T(1)) =1
=5 )+ 1+ + L (0)
_ %d[o, 1)+ %[D(O,T(O)) + DL, TQ))] + L- D(1,7(0),

and for any 0 < § < 1 and L > 0,
H(T(0), T(1))=1>6-(1)+ L-(0) =4d[0,1) + L - D(1,7(0)).
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Hence T is a multivalued Kannan-Berinde contraction for § = %, a= i and L > 0 arbitrary

but T is not a multivalued almost contraction.

Theorem 3.1.3. Let (X, d) be a complete convex metric space and K a nonempty closed
subset of X. Suppose that a map 7' : K — CB(X) is a multivalued mapping satisfying

the following properties:
(1) T satisfies Rothe’s type condition, that is, z € K implies Tx C K

(#4) T is a multivalued Kannan-Berinde contraction mapping with

d(l+a+L)+a3+L)<l.

Then T has a fixed point in K.

Proof. From the assumption (ii), 6(1+a+ L)+ a(3+ L) < 1, there exists k£ > 1 such that

1
d(l+a+L)+aB3+1L)< ﬁ<1'

Then we get

E6(1+a+L)+a(3+L)] < 1.

We note that ka,kd < 1 and

E*[5(1 +a+ L) +a(3+ L) = k*[0 + 3a + da + 6L + al)]

0+ 3a

> k2 +6a + 0L+ al)]

= k(6 + 3a) + k*(6a 4+ 6L + alL)

= kb + 3ka + k*6a + k*6L + k*aL.

So we have
ko + 3ka + k*6a + k*0L + k*al < 1,
k6 + ka + k%0a + k*0L + k%*aL + kK?a®> < 1 —2ka + k?a?,
k6(1+ka+ kL) + ka(l + ka+ kL) < (1—ka)?
(1+ka+kL)(k§ +ka) < (1—ka)?.
Hence
(1+ka+kL)(kd + ka) <1

(1 — ka)?
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Now, we construct two sequences {z,} and {y,} as the following. Let zyp € K and
y1 € T'xg. If yy € K, we denote z1 = y;. Consider in case y; ¢ K. By Proposition 2.2.1,

there exists x1 € P[zg, y1] such that
d(zo, y1) = d(zo, z1) + d(z1, y1).
So we have z1 € K, and, by Lemma 2.2.3, there exists yo € Tz such that
d(y1,y2) < kH(Txo, T'xy).

If yo € K, we denote xo = yo. Otherwise, yo ¢ K, then there exists x9 € Pz, ys2] such
that

d(z1,y2) = d(z1,22) + d(x2, y2).

Thus =2 € K, by Lemma 2.2.3, there exists y3 € Tx2 such that
d(yg, yg) < kH(TLEh TIEQ)
Continuing the arguments, we can construct two sequences {z,} and {y,} such that

(1) Yn+1 € Txy;
(2) d(yn,syn+1) < kH(Txp—1,Txy,), where

(a) xn =y, if and only if y, € K;

(b) xp € Plxp—1,yy] if and only if y, ¢ K, i.e., z, # y, and
xn € OK such that d(zp—1,yn) = d(Xn—1,2n) + d(Tpn, yn)-

Next, we show that the sequence {z,} is a Cauchy sequence.
Now, we put

Pl = {TZ € {-Tn} LTy = ,7,1277/ = 1727 "'};
P = {xz € {xn} P 7é yi, it = 1,2, }

Note that {z,} C K.

Now, we will show that we cannot have two consecutive terms of {x, } in the set P, that
is, if #; € P», then x;_1 and z;41 belong to the set P;. Let x; € P5. Then x; # y;.
Assume that ;1 € P». So ;1 € OK. By the assumption (i), we have T'z;_; C K. Since
y; € Tx;_q1, we get that y; € K. Then x; = y;. This is a contradiction. Thus z;_1 € P;.

On the other hand, since z; € P, we have z; € K. So, Tx; C K. Since y;4+1 € Tx; C K,
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we also get that z;11 = y;41. We conclude that z;,1 € P;. This is done. Now, for n > 2,
we consider the three possibilities as the following.
Case 1. If z,, 241 € Pi, then z, =y, and 11 = Yni1-

Then we obtain

d(@n, Tns1) = d(Yn, Yn+1)
<kH(Txp—1,Txy)
< kod(xp—1,zn) + ka|D(xp—1,Txn_1) + D(xp, Txy)]
+ kL - D(xy, Txp_1).
< kdd(zpn-1,%n) + kad(zp_1,yn) + kad(n, yni1)
= kéd(xn—1,Tn) + kad(xp_1,x,) + kad(xpn, Tp11),
which implies

kd + ka
& )
d(mnvxn-i-l) =< ( 1 — ka ) d("rn—laxn)

Case 2. If z,, € P, and z,,41 € Py, then z,, = y,, and x,, 11 € Plzy, yn+1), i€,

d(Zn, Yni1) = d(@Tns Tns1) + d(Tnp1; Yni1)-
From (ii), we have

Ad(YnyYnt1) < kH(Txp—1,Txy)
< kéd(xp—1,xn) + ka[D(xp—1, Txn—1) + D(xp, T2y)]
+ kL D(xp, Txn—1).
< kbd(xn—1,xn) + kad(zp—1,Yn) + kad(y, Yn+1)

= kéd(rp—_1, ) + kad(xp—1, zn) + kad(Yn, Ynt1),

which follows that

ko + ka
< :
d(ynvyn—H) > ( 1_ ka ) d(xn—lvwn)

So, we obtain

d(f]?n, $n+l) = d(fL’n, yn+l) - d($n+la yn+l)

IN

d(Tn, Yn+1)

d(ynn Yn+1
kd + ka
1—ka

IN

)
)t
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Case 3. If x,, € P, and Tpt1 € Py, then z,,_1 € Py, that is, z,,_1 = Yn—15 Tpt+l = Yn+1,

and x, € P[rp_1,yns), that is,
d(xnfla yn) = d(l'nfla xn) + d(xna yn)
Since y,, € Tx,—1 for all n € N and ké < 1, by (i7), we have

A(Yn, ynt+1) < kH(Txp—1,Txy)
< kod(xp—1, ) + kalD(xp—1,Txn_1) + D(xp, Txy)]
+ kL - D(xp, Txp—1).
< kéd(zp—1,2n) + kad(zp—1,yn) + kad(zy, yni+1) + kLd(p, yn)

< kéd(xp—1,2n) + kad(xn—1,yn) + kad(zp, xni1) + kLd(xp, yp).
Then, we obtain

d(xna xn-i-l) < (mna yn) + d(yn, xn-i-l)

d
d(xna yn) + d(@/na yn+1)
d

IA

(Tns Yn) + kdd(p_1, T0) + kad(xp—_1,yn) + kad(xy, i)
+ kELd(xp, yn)
= (1 + kL)d(xn, yn) + kdd(zp—1,2n) + kad(zn_1,yn) + kad(zn, Tpni1)
< (14 kL)d(zp,yn) + (1 + EL)d(zp—1,2n) + kad(zpn—1, yn)
+ kad(xp, 2pi1)
= (14 kL)[d(xn, yn) + d(xn_1,20)] + kad(zn_1,yn) + kad(xpn, ny1)

=1+ kL)d(xp-1,yn) + kad(xp—1,yn) + kad(xpn, Tpni1),

which implies that

1+ka+kL 1 +ka+kL
d(fnvwn—&-l) S (—) d(l‘n_l,yn) —3 <—

1—ka 1—ka ) AYn=1,yn)-

Since z,_1 € P, and z,, € I%, it follows from Case 2 that

ké + ka
d(?/n—hyn) < ( 1— ka > d(mn_z,flfn_l).

Thus

1+ ka+ kL ko + ka
<
d($n7$n+l) = ( 1— ka ) ( 1— ka ) d(xn—Q;wn—l)

_ (I+ka+kL)(ké+ ka) N
= (1 — /{7(1)2 (an—Qa an—l)-
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Since
1+ ka+kL)(kd + ka)

_
hi= (1 — ka)?

<1,

we obtain that
d(xna mn—&—l) < hd(xn—% «Tn—l)~
We note that

kS + ka < (1+ka+ kL)(kd + ka)
1—ka — (1 —ka)

(1 +ka+ kL)(kd + ka)

(1 — ka)? =h

<

From Case 1, Case 2 and Case 3, we can conclude that for n > 2,

hd(p—1, %) if xp,2p11 € Pyorx, € P,x,01 € Py
d(l’n,$n+1) =
hd(wn_g,l’n_l) if x, € P, Tpt1 € P

Following Assad and Kirk [20], we get that for n > 2,
d(il?n, mn-l—l) S r- hn/27

where 7 := h=Y2. max{d(z¢, z1), d(x1, 22)}.
In order to prove this by induction.

For n = 2. If x9, 23 € Py or 22 € P1,x3 € P>, then we get that

d(z2,x3) < hd(xy,12)
= Y2 B3 2d(xy, x0)
<r-h3?

<7r-h.
On the other hand, if o € P, x3 € P;, we also get that

d(SL’Q, LE3) S hd(x(), 5131)
= Y2 B3 2d(xg, 1)
<r- R3/2

<7r-h.

Now, we assume that d(xy,, zp41) < 7 - /2 for all 1 < n < N and for N > 2. We must

prove that

dZnt1,TNy2) <7 p(NFL/2,
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We consider in two cases as follows:

Ifxn,zns1 € Pyor zy € Pr,xny1 € Po, then we get that

d(xns1.TN12) < hd(zN, TN4+1)
< h(r- W2
— . h(N+2)/2

if xty € Po,zn41 € P1, then we also get that

d(xny1,TN42) < hd(zn_1,2N)
< h(r - hIN=1D/2)

Ud W h(N-Fl)/Q‘

This proves the assertion.

Next we consider for m > n, we get

d(l'na LL'm) S d(:l»n, il:n+1) + d(l'n—i-l, (L‘n+2) + ...+ d(ilfm_17 wm)
<p hVE e ptD/2 L 4 p(m-D)/2

— . (hn/Z + h(n+l)/2 Adu h(m_l)/2).

Since h < 1, it follows that {,,} is a Cauchy sequence in K. Since X is complete and K

is closed, there exists x € K such that

lim z, = x.
n—0o0

Further, from the construction of {z,}, there is a subsequence {z,;} of {z,} such that

{2, j} C P1. Then x; = yp; € T'wp;—1. Finally, we show that x is a fixed point. Since
0< D(x,Txn; 1) < d(x,70,)

for each j € N, it follows that D(x, Tz, 1) — 0 as j — oo.
For each j € N, we have
D(x,Tx) = inf d(z, z)
z€Tx

< Ziganx(d(x, Tp;) + d(Tn;, 2))

=d(r,7n;) + zlen’lfz d(7n;, 2)

30



=d(x, ;) + D(xp,, Tx)
< d(a:,a:nj) + H(Tzp,; 1, Tx)
< d(x, ;) +0d(wp, -1, %) + a[D(zn;—1, T2n;—1) + D(z, T2)]

+ L-D(x,Txn; 1)

<d(z,7p;) + 0d(7n;—1,7) + ad(n;—1,Ty;) + aD(z, Tx)

J

+L-D(x,Txn;—1)-
So, we obtain
(1=a)D(x,Tx) < d(x, xn;) + 0d(xn,—1,7) + ad(wy, 1, ;) + L - D(x, Ty, 1)

<d(z,mp;) + 0d(wn;—1,7) + ad(zn;—1,7) + ad(z, Ts,)

+L-D(z,Txn; 1)

Letting j — oo, we get

(1 —a)D(z,Tx) = 0.

Since 0 < a < %, we get that D(z,T'z) = 0, hence x € Tz, that is, T" has a fixed point in
K. This completes the proof. O

As a consequence of Theorem 3.1.3, when we put a = 0, we obtain Theorem 9 of

[29] as our special case as follows.

Corollary 3.1.4. (Theorem 9 of [29]) Let (X, d) be a complete convex metric space and
K a nonempty closed subset of X. Suppose that a map 7' : K — C'B(X) is a multivalued
mapping satisfying the following properties:

(i) T has the Rothe’s boundary condition;
(71) there exist § € [0,1) and L > 0 with 6(1 + L) < 1 such that
H(Tz,Ty) < dd(x,y)+ L-D(y,Tx),
for any =,y € K.
Then T has a fixed point in K.

If we put a = 0 and L = 0 in Theorem 3.1.3, then we also obtain Theorem 1 of [20].
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Corollary 3.1.5. (Theorem 1 of [20]) Let (X, d) be a complete convex metric space and
K a nonempty closed subset of X. Suppose that a map 7': K — C'B(X) is a multivalued
mapping satisfying the following properties:

(1) T has the Rothe’s boundary condition;
(7i) there exists d € [0,1) such that
H(Tx, Ty) < dd(x,y),
for any z,y € K.
Then T has a fixed point in K.
Next, we give an example to illustrate Theorem 3.1.3.

Example 3.1.6. Let X =R and K = [O, %] endowed with usual metric, that is, d(x,y) =

|x — y| for all x,y € X. Define a mapping 7' : K — CB(X) by

We see that
1 1
0K = {0, 5} =T(0) and T <§> are subset of K,

which implies 71" satisfies Roth’s boundary condition. Now we show that 7 is a multivalued
Kannan-Berinde contraction satisfying all conditions of Theorem 3.1.3. We consider the

following six cases:

Case 1. If z =y = % or z,y € (}1,%}, then
H(Tz,Ty) =0 < 0d(z,y) + a[D(z, Tx) + D(y,Ty)] + L - D(y, T'x)
for any § € [0,1),a € [O,%) and L > 0.
Case 2. If x € [0,%) U (%,ﬂ and y = %, we note that |%+l‘ < 3 and ‘l — £| > T

Then, we have



_ ;B+1
|10 8
3
< 2
=20
1 9 13 1z
<6lx— S o N
=0 ‘+“[10’3+40] ‘5 10

5
= dd(x,y) +a[D(z,Tz) + D(y,Ty)| + L - D(y, Tx),

when L>%,0<é§<1and0<a< 3suchthat 6(1+a+L)+aB3+L)<1.

Case 3. If x = % and y € [O,%)U(%,}l], then ‘%—I—%’ < 23—0 and |y—|—%’ > %. So,

we have
H(Tw, Ty) = | & 4+~
R ET
3
< =
=20
1 13 9 1
6 | = ot 25 N L- =
< ‘5 3/+a[40+10y]+ y+8‘,

when L >3,0<é§<1and0<a< %suchthat 6(1+a+L)+aB3+L)<1.

Case 4. If z € [0,%)U(%,i] and y € (i,%], then |%—%‘ < % and |y—%‘ > %.

So, we have

when L > 20 0<§<1and0<a<3$suchthat §(1+a+L)+a(3+L) <1

Case 5. If z € (}1%] and y € [O,l) U (%H—ﬂ, then ‘l—i’ < 1 and ‘y—l| >

So, we have

Y
H(Tz,Ty) ‘§_E
1
< —
-2
9 1
<d|lr—yl+a RAETL + L y=3l|

when L > 2,0 <6< 1and 0 <a < & such that 6(1+a+ L) +a(3+L) < 1.
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Case 6. If 2,y € [0, %) U (%, %1], then we have
_ z Y
H(Tz,Ty)=H <[0’ 10] ’ [0’ 10])

< dd(z,y) +a[D(x,Tz) + D(y,Ty)| + L - D(y, T'x).

We choose that a = §, 0 < § < 1 and L > 0 such that 6(1+a+ L) +a(3+ L) < 1.

Now, by summarizing all cases, we conclude that T is a multivalued Kannan-Berinde

contraction with a = %, L= % and

1-58+3) 17

0<d< —2— D2~
1+3+2 135

which the condition §(1+a+L)+a(3+L) < 1 is also satisfied. Therefore, T is a multivalued

Kannan-Berinde contraction that all assumptions in Theorem 3.1.3, and there exist z € K

F(T) = {o%}
1

However, we see that 7" is not multivalued contraction mapping. If we put z = 3

such that z € T'z. Notice that

and y = %, then

()7 G)) - (e Ash) 5 >0 w2 (as)

forall 0 < k < 1.

S

3.2 Fixed Point Theorems for Multivalued Nonself Kannan-Berinde G-
contraction Mappings in Complete Metric Spaces Endowed with

Graphs

In this section, we introduce a multivalued Kannan-Berinde G-contraction mapping

in a metric space endowed with a directed graph and prove some fixed point theorems.
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Definition 3.2.1. Let (X, d) be a metric space, K a nonempty subset of X and G :=
(V(G), E(G)) be a directed graph such that V(G) = K. A mapping 7' : K — CB(X) is
said to be a multivalued Kannan-Berinde G-contraction if there exist § € [0,1), a € [0, %)

and L > 0 such that
H(T'z,Ty) < éd(z,y) +alD(z,Tz) + D(y, Ty)] + L - D(y, T'x)
for all z,y € K with (z,y) € E(G).

Remark 3.2.2. Let (X, d) be a metric space. Consider the graph G defined by G; = X x
X. Then any multivalued Kannan-Berinde contraction mapping is multivalued Kannan-

Berinde G-contraction mapping.

Theorem 3.2.3. Let (X, d) be a complete convex metric space and K a nonempty closed
subset of X. Let G := (V(Q), E(G)) be a directed graph such that V(G) = K. Suppose
that K has Property A. If a map 7' : K — C'B(X) is a multivalued mapping satisfying

the following properties:
(7) there exists zg € K such that (zg,y) € E(G) for some y € T'xo;

(7i) T is an edge-preserving mapping, that is, if (z,y) € E(G), then (u,v) € E(G) for

all u € Tx and v € Ty;
(ii7) for each x € K and y € Tx with y ¢ K,

(a) Plx,y] is dominated by x and

(b) for each z € P[z,y|, z dominates T'z;
(iv) T has Rothe’s boundary condition;

(v) T is a multivalued Kannan-Berinde G-contraction mapping with

d(l+a+L)+a3+L)<l.

Then T has a fixed point in K.

Proof. From the assumption (v), as in Theorem 3.1.3, there exists k£ > 1 such that

(1+ka+ EkL)(kd + ka)

1.
(1 — ka)? <
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Now, we construct two sequences {x,} and {y,} as follows: Let xyp € K be such that
(r0,y1) € E(G) for some y; € Txg. If y1 € K, we denote x; = y;. Consider in case

y1 ¢ K. By Proposition 2.2.1, there exists x1 € P[zg,y1] such that

d(zo,y1) = d(zo, x1) + d(x1,y1)-

By (iii) — (a), that is, Plxo, y1] is dominated by x¢, we obtain (zg,z1) € E(G). Moreover,

we have 1 € K, and, by Lemma 2.2.3, there exists yo € T'zq such that
d(y1,y2) < kH(Txo,Tx1).

If yo € K, we denote x5 = ys5. When y; € K, that is, 1 = y1 € Txg and zo = yo € Txq,
using T is edge-preserving, we get that (x1,x2) € E(G). When y; ¢ K, that is, 1 €
Plxo,y1], by (iti) — (b), we also get (z1,22) € E(G). Otherwise, if yo ¢ K, then there

exists xo € P[x1,ys2] such that
d(z1,y2) = d(z1, 22) + d(z2, y2).
Thus (x1,72) € E(G) and z2 € K, by Lemma 2.2.3, there exists y3 € Txs such that
d(y2,y3) < kH(Tx1,Txs).
Continuing the arguments, we can construct two sequences {z,} and {y,} such that

(1) Ynt1 € Top;
(2) d(yn,yn+1) < kH(Txp—1,Txy,), where

e 1, =y, if and only if y, € K;

e 1, € Plx,_1,y,] if and only if y, ¢ K, i.e., x,, # y, and
x, € 0K such that d(z,—1,yn) = d(Tn—1,Tn) + d(Tn, yn).
Now we show that the sequence {x,} is a Cauchy sequence. Suppose that
Pi=A{x; €{xp} i xi=yi,i=1,2,...};

P2 = {xl S {I’n} LI 7£ yul = 1727 }

Note that {x,} C K and (zn,zn+1) € E(G) for all n € N. Moreover, if x; € Py, then z;

and x;11 belong to the set P;. By virtue of (iv), we cannot have two consecutive terms
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of {x,} in the set P». Now, for n > 2, we consider the distance d(zy,, 2,+1). The three
possibilities as follows.
Case 1. z, € P, and x,11 € Py
Case 2. 2, € Py and 211 € P
Case 3. z, € P and z,41 € P

Since (zn, Tn+1) € E(G) for all n € N, using the same proof as in Theorem 3.1.3, we
obtain that {z,} is a Cauchy sequence in K. Since X is complete and K is closed, there
exists x € K such that nlg]go z, = x. Moreover, from (z,,zn11) € E(G) for all n € N and
by Property A, we have (z,,z) € E(G) for all n € N. From the construction of {x,}, there
is an infinite subsequence {x,,} of {zy,} such that {z,;} C P1. Then z,, = yn, € Trp, 1.
Now, we show that x € T'z. Since lim x,, = 2, we have 0 < D(z,T2y;-1) < d(z,7y,).

]—)OO

So, D(x, Ty, 1) — 0 as j — oo. Then for each j € N,

D(x,Tx) < d(w,xp;) + D(xp,, T'x)
<d(x,xp;) + H(Twp; 1, Tx)
< d(x, ;) + 0d(wn;—1,7) + a[D(vp; 1, Tan; 1) + D(x, Tx)]

Hence

(1 —=a)D(z,Tx) < d(z,xn;) + 0d(xn;—1,2) + ad(Tn;—1,2n;) + L - D(x, Txpn, 1)
< d(x, ;) +0d(wp; -1, %) + ad(wp, 1, 2) + ad(x, Tn,;)
+ L-D(z,Txp;—1)-

Letting j — oo, we obtain (1—a)D(z,Tz) = 0. Since a € [0, %), we get that D(z,Tz) = 0.
Hence x € Tz, that is, T has a fixed point in K. This completes the proof. O

Remark 3.2.4. As a consequence of Theorem 3.2.3, we can conclude the following results

as our special cases:

(1) If we put E(G) = K x K, i.e., G is a complete graph, in Theorem 3.2.3, we obtain
Theorem 3.1.3.

(74) If we put a = 0 in Theorem 3.2.3, we obtain Theorem 5 of [34].
(#i7) If we put a =0 and E(G) = K x K in Theorem 3.2.3, we obtain Theorem 9 of [29].
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() If we put a = L =0 and F(G) = K x K in Theorem 3.2.3, we also obtain Theorem
1 of [20].

Next, we give an example to illustrate Theorem 3.2.3.

Example 3.2.5. Let X = R and K = [0,1] U {2} endowed with usual metric d(z,y) =
|z —y|. Let G = (V(G), E(G)) be a graph consisting of V(G) := K and

B(G) = {(0,0), <%o)} U { (0, 3in> , <3ino> , <3im 3%) R N\{Q}} .

Notice that K has Property A. Define a mapping 7' : K — CB(X) by

T 24 Vb o 2;

Tr=q{-2%} if z=

1.
27 9

{O, %} otherwise.

We see that
0K ={0,1,2} = T(0),7(1) and T7'(2) are subset of K,

which implies T satisfies Roth’s boundary condition. We choose 29 =0 € K and 3y =0 €
{0} = Tz, and so (z9,y’) = (0,0) € E(G). Since the only z € K and y € Tz with y ¢ K
are T = % and y = —2—17, we get that P [%,—%] = {0}. Further, we have (%,0) ,(0,0) €
E(G). Hence P[xz,y] is dominated by = and 0 dominates T'(0). Next, we prove that T is
edge-preserving. Let (x,y) € E(G). Then we get that x,y € {0} U {Sik ke N\{Z}} We
obtain that Tz, Ty C {0} U {3% :k € N\{1,2,4}}. Then for all u € Tz and v € Ty, we
get that (u,v) € E(G), which show that T is edge-preserving. Now we claim that 7" is a
multivalued Kannan-Berinde G-contraction mapping. Let (x,y) € E(G). We will discuss
the following three possible cases.

Case 1. If (z,y) = (0,0), then H(7(0),7(0)) = 0.

Case 2. If (z,y) = (%,0), we have

H(Tz,Ty) = H <{—2—17} ,{0}>

[

—o|g-0[+a[p (5.{-5}) +p0.t0n] + 2D (0.{-5})

= dd(z,y) +a[D(z, Tx) + D(y, Ty)] + L - D(y, Tz),
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where L >1,0< 6 <1 and 0 < a < § such that §(1+a+ L) +a(3+ L) < 1.
Case 3. If (z,y) = (O, 3%) or (3%,0) or (%, 3%) for all m,n € N\{2}, we have

e =1 ({0.5).fo2)
-l5-3

<

where a = ¢, 0< 6 <1 and L > 0 such that (1 +a+ L) +a(3+L) < 1.
Now, by summarizing all cases, we can conclude that T is a multivalued Kannan-Berinde

G-contraction with a = %, L =1 and

1-13+1 4
1< 1lzBBFD _ 4
1+1+1 17

which the condition d(1+a+L)+a(3+L) < 11is also satisfied. Therefore, T is a multivalued
Kannan-Berinde G-contraction mapping that satisfies all assumptions in Theorem 3.2.3.
Then there exist z € K such that z € T'z. Notice that F(T") = {0, 2}.

However, T' is not multivalued Kannan-Berinde contraction mapping because if we

take 2 =2¢€ K and y =1 € K, then

H(T(2),T(1)) = H ({172}’ {0’ %})

il
9
>6-(1)+a-(§)—|—L-(0)

—5.2-1]4a [D(2,{1,2}) +D <1, {o%})] + LD, {1,2})

=4dd(2,1) +a[D(2,T(2)) + D(1,T(1))]+ L - D(1,T(2))
fora110§5<1,0§a<%andL20.

The following results are obtained directly from Theorem 3.2.3 in case that T is a

single valued mapping.
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Corollary 3.2.6. Let (X, d) be a complete convex metric space and K a nonempty closed
subset of X. Let G := (V(G), E(G)) be a directed graph such that V(G) = K. Suppose
that K has Property A. If a map T : K — X is a single valued mapping satisfying the

following properties:

(i) there exists xy € K such that (xg, T'zg) € E(G);

(73) T is edge-preserving, that is, (z,y) € E(G) implies (T'xz,Ty) € E(G);
(zii) for each z € K with Tz ¢ K,

(a) Plz,Tz]is dominated by z and

(b) (2,Tz) € E(G) for all z € Plx,Tz];
(7v) T has Rothe’s boundary condition, i.e., T(0K) C K

(v) there exist § € [0,1), a € [0, %) and L > 0 with (1 +a+ L)+ a(3+ L) < 1 such
that for any =,y € K with (z,y) € E(G), we have

d(Tz, Ty) < dd(z,y) + ald(z, Tx) + d(y, Ty)] + Ld(y, Tx).

Then T has a fixed point in K.
If we put K = X in Corollary 3.2.6, we have the following Corollary.

Corollary 3.2.7. Let (X, d) be a complete convex metric space and let G := (V(G), E(G))
be a directed graph such that V(G) = X. Suppose that X has Property A. If a self-map

T : X — X is a single valued mapping satisfying the following properties:
(i) there exists xg € X such that (zg,Tz¢) € E(G);
(i) T is edge-preserving;

(iii) there exist § € [0,1), a € [0,4) and L > 0 with (1 4+ a+ L) +a(3 + L) < 1 such
that for any =,y € X with (z,y) € E(G), we have

d(Tx, Ty) < 0d(z,y) + ald(z, Tx) + d(y, Ty)] + Ld(y, T'r).

Then T has a fixed point.

40



3.3 Applications for Single Valued Nonself Kannan-Berinde G-contrac-
tion Mappings in Complete Metric Spaces Endowed with Graphs

We apply our main results to obtain a fixed point theorem for some cyclic mappings
and prove the existence of a coupled fixed point for a single valued nonself Kannan-Berinde

G-contraction mapping in a complete metric space endowed with graphs.

Theorem 3.3.1. Let (X, d) be a complete metric space, m a positive integer and {A4;}7",

m
nonempty closed subsets of X. Suppose that W = U A; and an operator T : W — W. If
. i=1
U A; is a cyclic representation of W with respect to 1" and there exist 6 € [0,1), a € [0, %)

i=1
and L > 0 with 6(1 +a+ L)+ a(3+ L) < 1 such that

d(Tx, Ty) < dd(z,y) + a[d(xz, Tx) + d(y, Ty)] + Ld(y, Tx)

for any z € A;,y € Ajy1,i = 1,2, ...,m where A,,+1 = Aj, then T has at least one fixed
m

point t € m A;.
i=1

m
Proof. Since for each A; where ¢ = 1,2,...,m are closed, we obtain that W = U A;

=1
is closed. Then (W.d) is a complete metric space. Defined a directed graph G =
(V(G), E(G)) by V(G) := W and

EG) =AU{(z,y) e Wx W :z € Aj,y€ Aiy1,i=1,...,m where A1 = A1 }.

We show that T' is edge-preserving. Let (z,y) € E(G). If (z,y) € A, then (Tz, Ty) € A.
If (z,y) ¢ A, then z € A;,y € Aj4q for each i = 1,2,...,m. Since GAZ- is a cyclic
representation of W with respect to T', we obtain that Tx € A;14 andi?ly € Ajio, that
is, (Tx,Ty) € E(G). So T is edge-preserving. By definition of the graph G, we have T is
a Kannan-Berinde G-contraction mapping for all (z,y) € E(G) and there exists xg € W
such that (xg,Tz¢) € E(G). Finally, we claim that W has a Property A. Let {z,,} be a
sequence in W such that z, — 2* € W and (xy, x41) € E(G) for all n > 1. Now we will
consider two cases as the following;:

Case 1. If {z,, : n € N} is a finite set. Since x, — z*, there exists ngp € N such that
xy, = a* for all n > ng. Since (xy,2n+1) € E(G) for all n > 1, ie., if z, € A; for some
J €N, then x,11 € Ajy1, so that 2* € A; for all i = 1,2,...,m. So, (zy,2*) € E(G) for
all n € N. Then W has a Property A.
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Case 2. If {2z, : n € N} is an infinite set. We will show that the sequence {z,} has
infinitely many terms in each A; where i = 1,2,...,m. Assume that {z,} has finite terms
in Aj, for some jo € N. Since (2, 2n11) € E(G) for all n > 1, we have A; has the
finite terms of {x,} for all ¢ = 1,2,...,m. So the set {x,, : n € N} is finite, which is a
contradiction. Then the sequence {z,} has infinitely many terms in each A;. So that for
each A;, there exists a subsequence of {x,} such that converge to some x* € W. Since A;
is closed, we obtain that x* € A; for all i = 1,2,...,m. Then x* € ﬁ A;. Moreover, by
the defined graph G, we get that (z,,2*) € E(G) for all n € N. So IZ/;Ihas a Property A.

Thus, by Corollary 3.2.7, we can conclude that 1" has a fixed point t € ﬂ A;. O
i=1

Now, we move on the next topic that we prove the existence for a coupled fixed
point for a single valued mapping in a complete metric space endowed with a directed

graph.

Theorem 3.3.2. Let (X, d) be a complete convex metric space and /' a nonempty closed
subset of X. Let G = (V(G), E(G)) a directed graph such that V(G) = K. Let F: Y =
K x K — X be an edge-preserving mapping such that £'(0Y) C K. Suppose the following
properties hold:

(i) there exist zg, yo € K such that (zq, F'(x0,%0)) € E(G) and (yo, F'(yo, o)) € E(G™1);
(7i) K has the following properties:

(a) if any sequence {z,} in K such that z,, — = and (zp,zn41) € E(G) for n € N,
then (z,,z) € E(G) for all n € N;

(b) if any sequence {y,} in K such that y, — y and (yn, Yni1) € E(G™1) for n € N,
then (y,,y) € E(G™!) for all n € N.

(iii) there exist 6 € [0,1), a € [0,%) and some L > 0 with §(1 +a+ L) +a(3+ L) <1
such that
d(F(x,y), F(u,v)) +d(F(y, ), F(v, u))
< dld(x, u) +d(y, v)]
+ald(z, F(x,y)) + d(y, F(y,z)) + d(u, F(u,v)) + d(v, F(v,u))]
+ Lld(u, F(z,y)) + d(v, F(y,z))]

for all z,y,u,v € X with (z,u) € E(G) and (y,v) € E(G™1).
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If for each (z,y) € Y with Tr(z,y) ¢ Y such that Pr,(x,y) is dominated by (x,y) and

for each (u,v) € Pp.(x,y) dominates Tr(u,v), then F' has a coupled fixed point.

Proof. Now, we shall show that the mapping 17 satisfies all conditions of Corollary
3.2.6. Since there exists (zg,y0) € Y such that (xg, F(x0,y0)) € E(G) and (yo, F(yo, z0))
€ BE(G™Y), we obtain that ((zo,v0), (F(x0,%0), F(y0,70))) € E(Gy). So we get that
((xo,90), Tr(xo,y0)) € E(Gy). Let {(xn,yn)}nen C Y such that (zp,yn) — (z,y) and
((TnyYn), (Tnt1,Ynt1)) € E(Gy) for all n € N. Then z,, = x,yn — Y, (Tn, Tnt+1) € E(G),
and (Yn, ynt1) € E(G™1). Using (i), we get that (z,,,2) € E(G) and (yn,y) € E(G™1).
Thus ((zn,yn), (z,y)) € E(Gy) for all n € N. This shows that Y has the property
A. Let (z,y),(u,v) € Y such that ((z,y),(u,v)) € E(Gy). We have (z,u) € E(QG)
and (y,v) € E(G™!). Since F is edge-preserving, we have (F(z,y), F(u,v)) € E(G)
and (F(y, ), F(v,u)) € B(G™Y), which implies ((F(x,y), F(y,z)), (F(u,v), F(v,u))) €
E(Gy). Hence (Tp(z,y),Tr(u,v)) € E(Gy). So TF is edge-preserving. Next, we will
prove that Tr is a Kannan-Berinde G-contraction mapping. Let ((x,y), (u,v)) € E(Gy).
Then (x,u) € E(G) and (y,v) € BE(G™'). By condition (iii), we consider as the following:

TI(TF(Q% y)v TF(uv U))
n((F(z,y), Fy, z)). (F(u,v), F(v,u)))

d(F(z,y), F(u,v)) + d(F(y,z), F(v,u))

< 6ld(x, u) + d(y, v)]
+ald(z, F(z,y)) + d(y, F(y. 2)) + d(u, F(u,v)) + d(v, F(v,u))]
+ Lld(u, F(z,y)) + d(v, F(y, z))]

= on((z,y), (u,v))
+aln((@,y), (F(z,y), F(y, ©))) + n((u, v), (F(u, v), F(v, u)))]
+ Ln((u,v), (F(z, y), F(y, ©)))

= on((z,y), (u,v)) + aln((z,y), Tr(z,y)) + n((u,v), Tr(y, v))]

+ LU((% U)v TF(xv y))v

it is satisfied. For each (x,y) € 0Y = (K xK) = (0K x K)U(K x0K). Then (y,z) € dY.
Since F(9Y) C K, we get that F(z,y), F(y,z) € K. Thus (F(z,y), F(y,x)) € Y, that
is, Tr(z,y) € Y. We obtain that Tr(0Y) C Y. By condition of Tr, assumption (iii)

of Corollary 3.2.6 is satisfied. Thus all conditions of Corollary 3.2.6 are satisfied. Hence
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there exists (x,y) € Y such that (x,y) = Tp(x,y) which implies that F' has a coupled
fixed point. O

As a consequence of Theorem 3.3.2, we consider on a partially ordered set, the

obtained result as the following:

Corollary 3.3.3. Let (X, d) be a complete metric space endowed with a partial order <
and K a nonempty closed subset of X. Suppose that F': K x K — X is a mapping such
that F(O(K x K)) C K and satisfies the following properties:

(1) for z,y,u,v € K, if x Rwand y = v imply F(z,y) < F(u,v) and F(y,z) = F(v,u);
(7i) there exist xg,yo € K such that z¢g < F(xg,y0) and yo = F(yo, z0);
(ii7) K has the following properties:

(a) if a nondecreasing sequence x,, — x, then z, < z for all n € N,
(b) if a nonincreasing sequence y, — vy, then y, = y for all n € N,

(iv) there exist § € [0,1), a € [0, %) and some L > 0 with §(1+a+ L)+ a(3+L) <1
such that

d(F(x,y), F(u,v)) +d(F(y, ), F(v,u))
< Old(z,u) + d(y,v)]
+ald(z, F(z,y)) + d(y, F(y, x)) + d(u, F(u,v)) + d(v, F(v,u))]

+ Lld(u, F(z,y)) + d(v, F(y, ))]
for all z,y,u,v € X with z <wu and y = v.

Suppose that for each (u,v) € Pr,(x,y), we have z < u,u < F(u,v),y = vand v > F(v,u)
for all (z,y) € K x K with Tp(x,y) ¢ K x K. Then F has a coupled fixed point.

Proof. Define a directed graph G = (V(G), E(G)) where V(G) := K, E(G) := {(z,y) |z <
y}. First, we show that F' is edge-preserving. Let x,y,u,v € K such that (z,u) € E(G)
and (y,v) € E(G™'). Then < w and y = v. From (i), we get that F(x,y) < F(u,v)
and F(y,x) = F(v,u). So (F(x,y),F(u,v)) € E(G) and (F(y, ), F(v,u)) € E(G™).
Thus F is edge-preserving. From (i7), we see that there exists (xg,yo) € K x K such that
(20, F(x0,40)) € E(G) and (yo, F(yo, z0)) € E(G™1Y). Let {z,,} and {y,} be sequence in K

such that z, — z, Yn — Y, (xn»xn-i-l) € E(G) and (yn» yn-i—l) € E(G_l)' Then z, = Tn+1
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and yy, = yn41 for all n € N. So {2, } is nondecreasing and {y,} is nonincreasing, by (7i),
we have 7, < = and y, = y. Thus (v,,7) € E(G) and (y,,y) € E(G™1) for all n € N.
From (iv), there exist § € [0,1), a € [0, %) and some L > 0 with §(1+a+L)+a(3+L) < 1
such that

d(F(x,y), F(u.v)) + d(F(y,x), F(v,u))
< 8ld(, u) + d(y, v)
+ ald(x, F(x,y)) + d(y, F(y,x)) + d(u, F(u,v)) + d(v, F(v, )]

+ Lld(u, F(z,y)) + d(v, F(y, z))]

for all z,y,u,v € X with (7,u) € E(G) and (y,v) € E(G™!). Moreover, for each (z,y) €
K x K with Tr(z,y) ¢ K € K, by our assumption, we have (z,u), (u, F(u,v)) € E(G) and
(y,v), (v, F(v,u)) € E(G™!). We obtain that ((x,v), (u,v)), ((u,v), (F(u,v), F(v,u)) €
E(Gy). Therefore all conditions of Theorem 3.3.2 are satisfied, so that F' has a coupled
fixed point. O

Example 3.3.4. Let X = R, K = [0,1] and d(z,y) = |x — y| for all z,y € X. Let
G = (V(G), E(Q)) be a directed graph such that V(G) = K and

1
B@) = (1.0} u{ @ saye o.g] ).
Define the mapping F': K x K — X by

1 if e=y=1;

§ if otherwise.

Notice that F is edge-preserving. Let (v,u) € E(G) and (y,v) € E(G™'). Then
F(z,y) = F(u,v) = F(y,x) = F(v,u) = 1 if (z,u) = (y,v) = (1,1), otherwise we
have F(z,y), F(u,v), F(y,z), F(v,u) € [0,1] . So we get that (F(z,y), F(u,v)) € E(G)

and (F(y, ), F(v,u)) € E(G™'). Hence F is edge-preserving. Moreover, we also see that
8((0,1] x [0,1]) = {(0,), (2,0), (1, ), (,1) : = € [0, 1]},

which implies F(([0,1] x [0,1])) = [0, 5] U{1} C [0,1]. Since there is only (1,1) € K x K
and (1, F(1,1)) = (1,1) € E(G)N E(G™1). So (i) of Theorem 3.3.2 is satisfied. From the

definition of the graph G, we obtain that K satisfies properties (ii) — (a) and (i7) — (b)
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of Theorem 3.3.2. Now, we will show that F' satisfies condition of inequality in (¢i7). Let
(z,u) € E(G) and (y,v) € B(G™!). We want to show that there exist 6 € [0,1), a € [0, 3)
and some L > 0 with 6(1 +a+ L) + a(3+ L) < 1 such that

d(F(z,y), F(u,v)) + d(F(y,x), F(v,u))
< dld(z, u) +d(y, v)]
+ ald(x, F(z,y)) + d(y, F(y, 2)) + d(u, F(u,v)) + d(v, F(0,u))]
+ Lld(u, F(z,y)) + d(v, F(y, 7))]

which considers six possible cases depending on the valued of z,u,y and v.

Case 1. If (:Ev ’LL) = (y: U) = (1 1) or ( ) = (y,U) T (%’%) or (J?,u) = (%7%) ) (y7 U) =
(1,1), then d(F(z,y), F(u,v)) + d(F(y,z), F(v,u)) = 0. So that it satisfied with 0 < ¢§ <
1,0<a<gand L>0withd(l4+a+L)+aB+L)<1

Case 2. If (z,u) = (1,1) and (y,v) € [0, %] x [0, 1], then

1

gly—vl§5-|y—v|+a[£+gy+gv]+L[g+ v—%”.
Since y,v € [0,%], we have %\y—v| < é and§+|v— %| > %. Then we take L > %,O <
5<1and0§a<%suchthat5(1+a+L)+a(3+L)<1.
Case 3. If(x,u):(%,%) and (y,v) € {£} x [0, 3), then

9 1 39 7 1 1

1<6-|=— L|-
64 |v+| 5‘8 v—l—a[64+8v]+ [4+v+8H

Since v € [0,%) we have 6% +%|v—|—1| < 3% and l+ ‘1)4—%‘ > % Then we take
L>20<d<1land0<a< 3 suchthat §(1+a+L)+a(3+L)<1.
Case 4. If (z,u) = (3,3) and (y,v) € [0,%) x {3}, then
1 39 7 %Al
v+ 1< fy—gl e S+ go] v g+ gh-].

64 8 64 8 64

Since y € [0,3), we have & + &|ly + 1| < 55 and & + £[1 —y| > 2. Then we take
L>2%0<d<1land0<a< 3 suchthat §(1+a+L)+a3+L)<1.

Case 5. If (z,u) = (%, %) and (y,v) € [0, %) X [O, %), then

7 Yy
vl ‘«——‘.
[64+U 8]

Since y, v € [0, ) we have £ |y—v|< 7 and = —I—‘v 8‘ > g1- Then we take L > %,OS

1 7 7 7
Sly—ol <68y —+ !
8|y v <6y U|+a{32+8y+8v]

§<1and0<a< % such that (5(1+a+L)+a(3+L) <L
Case 6. If (z,u) € [0,5) x [0,3) and (y,v) € [0, 5] x [0, 5] U{(1,1)}, then
d(F(x,y), F(u,v)) +d(F(y,z), F(v,u))
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(A, 0) + d(y, )]
+ald(z, F(x,y)) + d(y, F'(y, x)) + d(u, F(u,v)) + d(v, F(v,u))]

+ Lld(u, F(z,y)) + d(v, F(y,x))].

Then we take a =1, L > 0 and 0 < 6 < 1 such that §(1 +a+ L) +a(3+ L) < 1.
Hence we conclude that condition is satisfied with L = g, a= % and

1=2(3+9%)

7
0<0< = —,
1+%+g 41

which is 6(1+a+ L)+ a(3+ L) < L.
Finally, we consider that there is only (%, %) € K x K such that F(3, %) ¢ K. Notice that

e (L) = [ 2])

and Tr(0,2) = (O, %) ,Tr(z,0) = (%,O) for all z € [O, %] Then, we see that (0,0), (%,aj),
(%2,2) € E(G) N E(G™!) for all z € [0, ], by definition of Gy, we can conclude that

((5:5)-09) ((5:3) @0). (00, (0.)) (@2.0. (5.0)) € B

Therefore all conditions of Theorem 3.3.2 are satisfied, so F' has a coupled fixed point and

we see that CFixz(F) = {(0,0),(1,1)}.

3.4 Best Proximity Point Theorems for Mean Nonexpansive mappings

in Banach Spaces

In this section, we introduce a nonself (a,b)-mean nonexpansive mapping in a Ba-
nach space and prove some best proximity point theorems by using strictly convexity

property of a Banach space.
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Definition 3.4.1. Let A and B be nonempty subsets of a Banach space X and let a and
b be nonnegative real numbers such that a +b < 1. A mapping T': A — B is said to be a

nonself (a,b)-mean nonexpansive on a subset C' of A, if
|Tz = Ty|| < allz — y[| + b||[ Pz — Tyl|,
for all z,y € C.

Notice that a nonexpansive mapping 7' : A — B is a nonself (1,0)-mean nonexpan-
sive mapping.

Now, we prove our main result.

Theorem 3.4.2. Let X be a reflexive strictly convex Banach space which satisfies Opial’s
condition and A a nonempty closed bounded convex subset of X, and B a nonempty
closed convex subset of X. Suppose that 7': A — B is a nonself (a, b)-mean nonexpansive
mapping on Ay for some nonnegative real numbers a and b such that a + b < 1 and
T(Ap) C By. Then T has at least one best proximity point in A, i.e., there exists z* € A
such that

||z* — Tz*|| = D(A, B).

Moreover,

(1) If a4+ b < 1, then T has a unique best proximity point in Ap.

(74) If T is continuous and a < 1, then {(PT)"(x)} converges to a proximity point for

all z € Ap.

Proof. We know from Lemma 1.2.2 that Ay is nonempty. Since T'(Ag) C By, by Propo-
sition 2.6.5, we also see that Ps,T'(Ap) C Ap. Now, we will show that P4, T : Ag — Ao
is an (a, b)-mean nonexpansive mapping. Let z,y € Ay. By Corollary 2.6.4, Proposition

2.6.5, and Lemma 2.6.7, we have

|(PapT) (@) = (PagT)(y)l| = [|Pao (Tx) = Pay(Ty)]]
= [Tz =Tyl
< allz —y|| +bl[ Pz — Tyl
= allz — y|| + bl| Pz — P*(Ty)||
= allx —yl| + bl|Pp, (x) — Py (Pa, T (y))ll

= al|lz —y|| + b||x — Pa,T(y)||-
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So Ps,T : A9y — Ao is (a,b)-mean nonexpansive. Since X has Opial’s property, by
Theorem 2.5.5, we obtain that PT has a fixed point, say that =* € Ag. This implies by
Proposition 2.6.6 that z* is a best proximity point of 7" in A.

(i) Now suppose a + b < 1. Assume that 2,y € Aj are best proximity points of 7.

Then x and y are fixed points of PT. So we have

|z —yll = [[(PT)(x) = (PT)(y)]l
= [[(PagT) () = (PayT)(y)|
< allz — yl[ + bl|z = (Pa, T)(y)l
< allz = yll +bllz = yl| + blly — (Pa, ) ()l
= (a+b)[|z = yl| + blly = (PT)(y)]l

= (a+b)[[z = yl|-

Since a + b < 1, we obtain that ||« — y|| = 0, that is, = y. Hence T has a unique best
proximity point in Ag.

(74) Suppose that T is continuous and a < 1. Let x € Ag. For each n € N, we have

|(PT)" () = (PT)" ()|
= |[(PayT)" () — (Pa,T)" ()]
= ||PagT(Pa, T)"(x) = PayT(Pa,T)" ()|
= |IT(Pa,T)"(x) = T(Pa,T)" ()]
< al|(PagT)" (&) = (PagT)" " ()| + ]| P(Pa, T)" (x) = T(Pa, T)" ! ()]
= al|(Pa,T)" (x) — (Pa,T)" ()]
+ b||P(Pa,T)(Pa,T)" ! (z) — T(Pa, T)" " ()]
al|(Pa,T)"(x) = (Pa,T)" " ()|
+ || PPT(Pag T)" () = T(Pa )" ()]
al|(PagT)" () = (PagT)" ()| + bl T (PagT)" () = T(Pa, T)" ()]
a|(Pa,T)" () = (Pa, )" ()]

= af|(PT)"(z) = (PT)" ()|

IN

a®[|(PT)" " (z) — (PT)" ()|

< a[|(PT)"*(2) — (PT)" 3 (a)]|
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< a"||(PT)(x) — =].
For m > n, we get

I(PT)"(x) — (PT)" ()|l
< |I(PT)™(2) — (PT)™ )|l + [[(PT)"H(z) — (PT)™*(2)|
+ o+ [(PT) () — (PT)" (2)|
< a"H|(PT)(x) = | + a™ 2[(PT)(2) — || + ... + a"[|(PT)(x) — ]|
= (@" +a"™ + ... + ™ V)| (PT)(z) — 2|
<a"(14+a+...+a™ "1+ )|(PT)(z) — ||
Because a < 1, it follows that {(PT")"(z)} is a Cauchy sequence in Ay. Hence, there exists

y* € Ap such that (PT)"(z) — y*. Since T is continuous, we have T(PT)"(x) — Ty*.
Further, we note that (PT)"*(x) € Ay for n € N and

3
.

S

x
8

|
Y
pae
3
=
=
-

Thus
ly" = Ty*|| = lim |(PT)"*!(z) — T(PT)"(x)|| = D(A, B).

Therefore, we can conclude that {(P7T)"(z)} converges to a proximity point y* for all

x € Ap. This proof is now completed. O

If we take A = B in Theorem 3.4.2, then we obtain similarly the fixed point theorem
of Zuo (see [62], Theorem 9) as the following Corollary:

Corollary 3.4.3. Let X be a reflexive strictly convex Banach space which satisfies Opial’s
condition and A a nonempty closed bounded convex subset of X. Suppose that T : A — A
is a nonself (a, b)-mean nonexpansive mapping on A for some nonnegative real numbers a

and b such that a + b < 1. Then T has at least fixed point in A.
As a consequence of Theorem 3.4.2, we obtain the following results.

Theorem 3.4.4. Let X be a uniformly convex Banach space which satisfies Opial’s

condition and A a nonempty closed bounded convex subset of X, and B a nonempty
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closed convex subset of X. Suppose that T': A — B is a nonself (a, b)-mean nonexpansive
mapping on Ay for some nonnegative real numbers a and b such that a + b < 1 and

T(Ap) C Bp. Then T has at least one best proximity point in A.

Corollary 3.4.5. Let X be a uniformly convex Banach space which satisfies Opial’s
condition and A a nonempty closed bounded convex subset of X, and B a nonempty
closed convex subset of X. Suppose that T': A — B is a nonself nonexpansive mapping

on Ap and T'(Ag) C Bp. Then T has at least one best proximity point in A.
Next, we give an example to illustrate Theorem 3.4.2.

Example 3.4.6. Consider the uniformly convex Banach space (R?, ||-||2) where ||(x,y)||2 =

Va2 + 2. Let

Then A and B are nonempty closed bounded convex subsets of R? with D(A, B) = 1.
We see that Ag = {(1,y) : 0 <y < 1}, and By = {(2,y) : 0 < y < 1}. Define a map
T:A— Bby

(z+1,%) if (z,y) € Apand y > 3

T(x,y) = (3 — x,%) if (z,y) € Ap and y < %;

(+2,y) if (z,y) € A\Ao.
Note that T'(4g) = {(2,y) : 0 < y < £} C By. Next, we will show that 7" is a (£, 2)-mean
nonexpansive mapping on Ag. Let (1,u), (1,v) € Ag. Then u,v € [0,1]. We consider the
following four cases.

Case 1. If u,v € [0, %], then

T (1, u) = T (1L, 0)]]

=[I(5) - (3)]

1

:?|U_'U|

116 6

“6l7t 7"

1 Uu v

Tt 7Ty

1 vov U

:EU—? ?—?—U"‘U—U"‘?



~ 6 7 6 T T
= tlu—ol+ ]| \
=5 U — v 3 U
1 1
= —|[(Lu) — (L,0)[| + 5 H(2 u) (Lv)ll+5HT(1,u)—T(17v)H~
So
5 1 1
ST (L) = T(1L, )] < 2l w) = (Lu)l]+ 5112 0) - (1)
1 1
=gll(lj'U)—(1,'v)||+§||P(1,U)—T(l,v)ll-
Hence
1 2
IIT(Lu)—T(Lv)IISgll(l,U)—(l,v)llJrgIIP(l,u)—T(Lv)II'
Case 2. If u,v € (%, 1], then we get
|7(1,u) = T(1,v)]
U v
=[|(23) - (25)|
:§|U—U|
R
T 7gYTRY
7 8 8
—lu—g—k——ﬁ—v—k —u+ = ’
7Y T8TReTR < 8
<1l_v +1‘v u’—i—l]u—vH— ‘u— ‘
-7 8 718 8 (4
—1|u—v|+2 N
—7 71" T8I T 7IR TR
1 1
= ;II(1 u) — (1, v)||+—||(2 u) = T(1,v)]| +;|IT(1,u)—T(1,v)II-
So
6 1 2
2T (1Lw) = T(L )] < 2|1 w) = (Lo)l|+ 2|2 0) - T(1L,0)]
1 2
= 2lI(Lw) = (L)l + Z[1P(L,w) = (1)
Hence
1 1
[T(1, ) = T(1,0)]| gll(l,U)—(Lv)ll+§|IP(1,u)—T(1>v)|I
1 2
S5||(1,U)—(1,v)||+5||P(1,u)—T(Lv)ll-
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Case 3. If u € [0 —] and v € (% ],then

I7(1,0) = 7(1,0)]
=[|(7)- 5l
:;_%+%_7 8+7L8_g‘
<|z-ml+lm -l s
S;‘%‘*‘ﬁ_ﬁ‘ 1\7— 7
:?‘ 7‘+ ‘7 8‘ ?g_‘
-l - @)D 22 - el
= 2l@.w) ~ T il + 3T, w) = T + 21T, 0) = @,
< Zl@w - T<1,v>r|+§uT<1,v>—T<1,u>||+;HT<1,u>—T<1,v>u
2T 0) - 2wl + 212w = (2,0)]
= 2@ = T )l + 2IT(0) = T, wll + 21(L) = (1, )]
This implies
1701, u) = T )l < £, ) = (L o)l| + 212 w) = T(1,0)]
= 2110w — (Lo)ll + 2P, W) = T, 0]l

Case 4. If u € (%, 1] and v € [0, %], then

T (1, w)

I

La

L,
5)
u

ol

-3l

+u
7.

|+
_|_

Nl ®

v
8 T2
u

U
8
u
8
U
8

-8

u

s
[
7-8 T2

\\1\
b 7

L

uou
7

53l
8
u
= 11(2
7|0 (23
1
?H(Zu) - T(la

72‘+‘72_

- >H+7H( )0 )HuH( 7))

=||7'(1
Wl + =1,

-

v

ﬁ

(%

7

u) = T(L,0)[ + ;HT(LU) - 2,9)l|
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< @) = T + 2T, v) = Tl + 21T, w) T, 0]
2T, 0) = 2wl + 2112w — 2,0)]
2 2 1

= 2l@.w) ~ (1L, )| + 2T, 0) ~ T ]| + 2110 w) - (1,0

This implies
1 2
17, w) =T, 0)|l < 211, w) = @)l + 2112, u) = T(1, )]

1 2
= £l w) = (@)l + £lIP(L,w) = T(1, ).

Now, by summarizing all cases, we conclude that 71" is a (%, %)—mean nonexpansive mapping

on Ag. By Theorem 3.4.2, there exists * € A such that
||z* — Tz*|| = D(A, B).
Note that a +b = % < 1,s0 z* = (1,0) € A is a unique best proximity point of T, i.e.,
1(1,0) = T(1,0)[| = [[(1,0) = (2,0)[ = 1 = D(4, B).

However, if we put (1,u) = (1, %) and (1,v) = (1, %), we note that

1 127 1 127
I (o2) =7 ()= (250) - (o)
17

~ 2016
8

~ 2016

-{(-2)- (25)

Example 3.4.7. Consider the uniformly convex Banach space (R2,|| - ||2), let

9y

so 1" is not nonexpansive on Ag.

A={(r,y):0<2<1,0<y <1},
Bi={(r,y):2<2<3,0<y< 1}
Define a map 7': A — B by

(z+1,%) if (z,y) € Apand y > 3
T(x,y) = (3—1’#) if (x,y)EAoandyS%;

(x+2,y) if (z,y) € A\Ap.
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1 2

Using the same proof as in Example 3.4.6, we can show that T is a (5, 3)—mean non-

expansive mapping on Ag. By Theorem 3.4.2, there exists at least * € A such that

||z* — T'z*|| = D(A, B). We see that (1,0) € A is a unique best proximity point of 7'.
Example 3.4.8. Consider the uniformly convex Banach space (R2,|| - [|2), let
A={(z,y):0<2<1,0<y <1},

B:={(z,y):2<2<3,0<y<1}.

Define amap T': A — B by T'(z,y) := (z+2,y) for all (x,y) € A. It is easy to prove that
T is a (1,0)-mean nonexpansive mapping on Ag. By Theorem 3.4.2, there exists at least
x* € A such that ||z* — Tx*|| = D(A, B). We see that any (1,y) € A is a best proximity

point of 7.
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