CHAPTER 4

Conclusion

In this chapter, we conclude all main results obtained in this thesis. We divide our

main results into three sections as the following:

4.1 Fixed Point Theorems

We start to talk about the fixed point theorems for multivalued generalized contrac-
tions. First of all, we extend a multivalued nonself almost contraction mapping to a new
class of multivalued nonself mappings, called a multivalued Kannan-Berinde contraction,
defined as follows:

Let (X, d) be a metric space and K a nonempty subset of X. A mapping T : K —
CB(X) is said to be a multivalued Kannan-Berinde contraction if there exist 6 € [0, 1),

a € [0, %) and L > 0 such that
H(Tz,Ty) < éd(z,y) +a[D(z,Tz) + D(y, Ty)] + L - D(y, T'z)

for any =,y € K.
Then we prove the existence of fixed points of this mapping in complete convex

metric spaces, as the following theorem.

1. Let (X,d) be a complete convex metric space and K a nonempty closed subset of X.
Suppose that a map 7' : K — C'B(X) is a multivalued mapping satisfying the following

properties:

(1) T satisfies Rothe’s type condition, that is, z € K implies Tax C K;

(7i) T is a multivalued Kannan-Berinde contraction mapping with
(l+a+L)+a3+L)<1.
Then T has a fixed point in K.

After that, we introduce a multivalued Kannan-Berinde G-contraction mapping and

prove the fixed point theorems for this mapping in complete convex metric spaces endowed
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with graphs which is more general than that of previous result.

Let (X,d) be a metric space, K a nonempty subset of X and G := (V(G), E(G))
be a directed graph such that V(G) = K. A mapping 7' : K — C'B(X) is said to be a
multivalued Kannan-Berinde G-contraction if there exist 6 € [0,1), a € [O, %) and L >0

such that
H(Tw, Ty) < 8d(x, y) + a[D(w, ) + D(y, Ty)] + L - D(y, Tx)
for all z,y € K with (z,y) € E(G).

2. Let (X,d) be a complete convex metric space and K a nonempty closed subset of X.
Let G := (V(G), E(G)) be a directed graph such that V(G) = K. Suppose that K
has Property A. If a map 7" : K — C'B(X) is a multivalued mapping satisfying the
following properties:

(i) there exists xp € K such that (zg,y) € E(G) for some y € T'x;

(#4) T is an edge-preserving mapping, that is, if (x,y) € E(G), then (u,v) € E(G) for

all w € T'r and v € Ty;
(ii7) for each x € K and y € Tx with y ¢ K,
(a) Plz,y] is dominated by x and
(b) for each z € Pz, y], z dominates T'z;
(iv) T has Rothe’s boundary condition;

(v) T is a multivalued Kannan-Berinde G-contraction mapping with
d(l4+a+L)+a(3+L)<1.

Then T has a fixed point in K.

4.2 Best Proximity Points

Next, we introduce a nonself (a, b)-mean nonexpansive mapping in a Banach space
which is more general that of a nonexpansive mapping, defined as follows:

Let A and B be nonempty subsets of a Banach space X and let a and b be non-
negative real numbers such that a + b < 1. A mapping T : A — B is said to be a nonself

(a,b)-mean nonexpansive on a subset C of A, if
| Tz — Tyl| < allz —yl[ + bl|[ Pz — Tyl|,
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for all z,y € C.
By using some strictly convexity properties of Banach spaces, we prove the existence

of best proximity points of this mapping.

1. Let X be a reflexive strictly convex Banach space which satisfies Opial’s condition and
A a nonempty closed bounded convex subset of X, and B a nonempty closed convex
subset of X. Suppose that T': A — B is a nonself (a, b)-mean nonexpansive mapping
on Ap for some nonnegative real numbers a and b such that a+b < 1 and T'(Ap) C By.

Then T has at least one best proximity point in A, i.e., there exists * € A such that
||z* — Tz*|| = D(A, B).
Moreover,

(i) If a +b < 1, then T has a unique best proximity point in Aj.

(74) If T is continuous and a < 1, then {(PT)"(z)} converges to a proximity point

for all x € Ayp.

2. Let X be a uniformly convex Banach space which satisfies Opial’s condition and A
a nonempty closed bounded convex subset of X, and B a nonempty closed convex
subset of X. Suppose that T : A — B is a nonself nonexpansive mapping on Ay and

T(Ap) C Bp. Then T has at least one best proximity point in A.

4.3 Applications

Finally, we apply all of obtained results for a coupled fixed point and fixed point

theorem for some cyclic mappings and mean nonexpansive mappings, as the followings.

1. Let (X,d) be a complete metric space, m a positive integer and {A4;}", nonempty

closed subsets of X. Suppose that W = U A; and an operator T : W — W. If U A;
=1 =1
is a cyclic representation of W with respect to T" and there exist 6 € [0,1), a € [0, %)

and L > 0 with 6(1+a+ L) + a(3 + L) < 1 such that
d(Tz,Ty) < dd(z,y) + ald(z, Tx) + d(y, Ty)] + Ld(y, Tx)

for any x € A;,y € Ajy1,i =1,2,...,m where A,,+1 = A1, then T has at least one fixed
m

point t € m A;.
i=1
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2. Let (X, d) be a complete convex metric space and K a nonempty closed subset of X. Let
G = (V(G), E(GQ)) a directed graph such that V(G) = K. Let F': Y = K x K — X be
an edge-preserving mapping such that F(0Y) C K. Suppose the following properties
hold:

(i) there exist xg,yp € K such that (zg, F(zo,y0)) € E(G) and (yo, F(yo,x0)) €
E(G™Y);

(ii) K has the following properties:

(a) if any sequence {z,} in K such that z, — 2 and (xp,2,+1) € E(Q) for
n € N, then (z,,x) € E(G) for all n € N;

(b) if any sequence {y,} in K such that y, — y and (y,,yn+1) € E(G™!) for
n € N, then (y,,y) € E(G™!) for all n € N.

(iii) there exist § € [0,1), a € [0,1) and some L >0 with 6(1+a+L)+a(3+L) <1
such that

d(F(z,y), F(u,v)) + d(F(y, z), F(v,u))
< 0ld(z,u) +d(y,v)]
+ald(z, F(x,y)) + d(y, F(y,x)) + d(u, F(u,v)) + d(v, F(v,u))]

+ Lld(u, F(z,y)) + d(v, F(y, z))]
for all x,y,u,v € X with (z,u) € E(G) and (y,v) € E(G™1).

If for each (z,y) € Y with Tr(z,y) ¢ Y such that Pr,(z,y) is dominated by (z,y) and

for each (u,v) € Pr.(z,y) dominates Tr(u,v), then F' has a coupled fixed point.

3. Let X be a reflexive strictly convex Banach space which satisfies Opial’s condition and
A a nonempty closed bounded convex subset of X. Suppose that T': A — A is a
nonself (a, b)-mean nonexpansive mapping on A for some nonnegative real numbers a

and b such that a + b < 1. Then T has at least fixed point in A.
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