
CHAPTER 3

Main Results

Recall that a subsemigroup A of a semigroup S is said to be (m,n)-ideal [resp.

(m,n)-quasi-ideal] of S, m,n are nonnegtive integers, if AmSAn ⊆ A [resp. AmS∩SAn ⊆

A] where A0S = S = SA0. From the previous chapter, we see that if A is an (m,n)-quasi-

ideal of S, then A is an (m,n)-ideal of S. The following example shows that there is an

(m,n)-ideal which is not an (m,n)-quasi-ideal.

Example 3.0.1. Let X = {1, 2, 3, 4}, Y = {1, 2, 3}. Define a semigroup S(X,Y ) = {α :

X → X | Y α ⊆ Y } with the composition of function and β =

(
1 2 3 4
1 1 2 3

)
. Then one

can see that

(β)(2,1) =

{(
1 2 3 4
1 1 2 3

)
,

(
1 2 3 4
1 1 1 2

)
,

(
1 2 3 4
1 1 1 1

)
,

(
1 2 3 4
2 2 2 1

)
,

(
1 2 3 4
2 2 2 2

)}
is an (2, 1)-ideal of S, but not an (2, 1)-quasi-ideal of S.

In this research, we extend the concept of BQ-semigroups to that of (m,n)-BQ-

semigroups which is defined as follows.

Definition 3.0.2. Let m,n be nonnegative integers. A semigroup S is called an (m,n)-

BQ-semigroup if the set of (m,n)-ideals and (m,n)-quasi-ideals coincide.

In this thesis, we denote the class of all (m,n)-BQ-semigroups by BQn
m

3.1 (m,n)-BQ-semigroups

In 1969, Kapp [10] proved that a right [left] simple semigroup and a right [left]

0-simple semigroup are in BQ, see [3, p. 5] and [3, p. 67], respectively. Now, we obtain

an analogous result in (m,n)-BQ-semigroups.

Theorem 3.1.1. Let m,n be nonnegative integers. If S is a right [left] simple semigroup

or a right [left] 0-simple semigroup, then S ∈ BQn
m.

Proof. Assume that S is a right simple semigroup. We show that every (m,n)-ideal of

S is (m,n)-quasi-ideal of S. Indeed, let A be an (m,n)-ideal of S. Since AmS is a right

ideal of S, by assumption, we have AmS = S. Hence SAn = AmSAn ⊆ A, which implies

that AmS ∩ SAn = S ∩ SAn = SAn ⊆ A. Then A is an (m,n)-quasi-ideal of S.

8



In the case where S is a right 0-simple semigroup, let B be an (m,n)-ideal of

S. If B = {0}, we are done by definition. The case where B ̸= {0} can be shown as

above. Similarly, we can prove that if S is a left simple or a left 0-simple semigroup, then

S ∈ BQn
m.

Let m,n be nonnegative integers. In [4], an element x ∈ S is said to be an (m,n)-

regular element if x ∈ xmSxn where x0 is defined by x0y = yx0 = y for all y ∈ S. The set

of all (m,n)-regular elements of S is denoted by Regnm(S). In particular, S is said to be

(m,n)-regular if every element of S is an (m,n)-regular element. Obviously, if x ∈ xmSxn,

then x ∈ xSx, i.e. Regnm(S) ⊆ Reg(S), where Reg(S) is the set of all regular elements of

S. In fact, Lajos [13] has shown that every (m,n)-ideal of a regular semigroup S is an

(m,n)-quasi-ideal of S, which leads to the following theorem.

Theorem 3.1.2. Let m,n be nonnegative integers. Every regular semigroup is an (m,n)-

BQ-semigroup.

In [2], Calais characterized BQ-semigroups: S ∈ BQ if and only if for all x, y ∈ S,

({x, y})(1,1) = ({x, y})q(1,1). In this thesis, we generalize this result as follows.

Theorem 3.1.3. Let S be a semigroup and m,n nonnegative integers. Then the following

statements are equivalent:

(1) every (m,n)-ideal A of S is an (m,n)-quasi-ideal of S;

(2) for every nonempty subset D of S such that |D| ≤ m+n, the (m,n)-ideal generated

by D of S is an (m,n)-quasi-ideal of S.

Proof. Let A be an (m,n)-ideal of S. Assume that (2) holds. Let x ∈ AmS ∩ SAn.

Then x = (Πm
i=1ai)s1 = s2(Π

n
j=1bj) for some s1, s2 ∈ S and some ai, bj ∈ A. Let D =

{a1, a2, . . . , am}∪{b1, b2, . . . , bn}. Hence |D| ≤ m+n and (D)(m,n) is an (m,n)-quasi-ideal

of S by assumption. This implies that x ∈ (D)m(m,n)S ∩ S(D)n(m,n) ⊆ (D)(m,n) ⊆ A. Thus,

A is an (m,n)-quasi-ideal of S. Conversely, if (1) holds, it is easy to see that (2) holds.

To prove that a semigroup S belongs to BQn
m, we have to show that (A)(m,n) =

(A)q(m,n) for any nonempty subset A of S such that |A| ≤ m + n. By Proposition 2.2.9,

it suffices to show that (A)q(m,n) ⊆ (A)(m,n). It is obvious that
∪max{m,n}

i=1 Ai ⊆
∪m+n

i=1 Ai,

so we must show that AmS ∩ SAn ⊆ AmSAn. Thus if we want to show that S /∈ BQn
m,

we may show that there is an element x ∈ AmS ∩ SAn but x /∈ AmSAn. The following

theorems are tools for showing that S ∈ BQn
m.

9



Theorem 3.1.4. Let m,n be nonnegative integers. Every bi-ideal of a regular semigroup

is an (m,n)-BQ-semigroup.

Proof. Let T be a bi-ideal of a regular semigroup S and A an (m,n)-ideal of T . Let

x ∈ AmT ∩ TAn. By the regularity of S, there is s ∈ S such that x = xsx. Then

x = xsx ∈ AmTSTAn ⊆ AmTAn ⊆ A. Therefore, A is an (m,n)-quasi-ideal of T , that

is, T ∈ BQn
m.

Theorem 3.1.5. Let m,n be nonnegative integers. If S is a regular semigroup, then the

following statements hold:

(1) every right ideal of S is an (m,n)-BQ-semigroup,

(2) for any right ideal R of S and left ideal L of S, R ∩ L is an (m,n)-BQ-semigroup.

Proof. Assume that S is a regular semigroup.

(1) Let R be a right ideal of S and A an (m,n)-ideal of R. We show that AmR∩RAn ⊆

A. Let x ∈ AmR ∩ RAn. By assumption, x ∈ xSx ⊆ AmRSRAn ⊆ AmRAn ⊆ A.

So, R is an (m,n)-BQ-semigroup.

(2) Let R be a right ideal of S and L a left ideal of S. We have ∅ ̸= RL ⊆ R∩L. Let B

be an (m,n)-ideal of R ∩ L. For each y ∈ Bm(R ∩ L) ∩ (R ∩ L)Bn ⊆ BmR ∩ LBn,

we obtain by the regularity of S that

y ∈ ySy ⊆ BmRSLBn ⊆ BmRLBn ⊆ Bm(R ∩ L)Bn ⊆ B.

Therefore, R ∩ L is an (m,n)-BQ-semigroup.

Theorem 3.1.6. Let S be a semigroup and m,n nonnegative integers. If ∅ ̸= A ⊆

Regnm(S), then (A)q(m,n) = (A)(m,n).

Proof. It suffices to prove that (A)q(m,n) ⊆ (A)(m,n). Assume that ∅ ̸= A ⊆ Regnm(S). Let

x ∈ (A)q(m,n). If x ∈ Ai for some i ∈ {1, 2, . . . ,max{m,n}}, then x ∈ (A)(m,n). Suppose

x ∈ AmS ∩ SAn. If m = 0 or n = 0, it is clear that x ∈ AmSAn ⊆ (A)(m,n). We assume

that m,n ̸= 0. Then x = (Πm
i=1ai)s = t(Πn

j=1bj) for some s, t ∈ S and some ai, bj ∈ A. If

n = 1, we have x = (Πm
i=1ai)s = tb1. Since b1 ∈ A ⊆ Regnm(S) ⊆ Reg(S), there is v ∈ S

such that b1 = b1vb1 and hence x = tb1 = tb1vb1 = (Πm
i=1ai)svb1 ∈ AmSA = AmSAn ⊆

(A)(m,n). Now, we suppose that n > 1. Since a1 ∈ A, by assumption, there is u ∈ S such
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that a1 = am1 uan1 and hence x = (Πm
i=1ai)s = am1 uan1 (Π

m
i=2ai)s = am1 uan−1

1 (Πm
i=1ai)s =

am1 uan−1
1 t(Πn

j=1bj) ∈ AmSAn. So (A)q(m,n) ⊆ (A)(m,n) and by Proposition 2.2.9, the

theorem follows.

Some results that are true for BQ-semigroups need not be true in the case of (m,n)-

BQ-semigroups, see for example Theorem 2.2.4. See also the example given below.

Counter Example 3.1.7. LetX = {1, 2, 3, 4}, Y = {1, 2}. Define a semigroup S(X,Y ) =

{α : X → X | Y α ⊆ Y } with the composition of function and let A =

{(
1 2 3 4
1 1 1 3

)}
,

B =

{(
1 2 3 4
1 1 4 2

)}
. Since(

1 2 3 4
1 1 1 3

)
=

(
1 2 3 4
1 1 1 3

)(
1 2 3 4
1 1 4 3

)(
1 2 3 4
1 1 1 3

)
,

A ⊆ Reg(S(X,Y )). We see that

(B)(1,4) =

{(
1 2 3 4
1 1 4 2

)
,

(
1 2 3 4
1 1 2 1

)
,

(
1 2 3 4
1 1 1 1

)}
= (B)q(1,4).

However, (A ∪B)(1,4) ̸= (A ∪B)q(1,4) since(
1 2 3 4
1 1 2 2

)
=

(
1 2 3 4
1 1 4 2

)(
1 2 3 4
1 2 3 2

)
and(

1 2 3 4
1 1 2 2

)
=

(
1 2 3 4
1 1 3 3

)(
1 2 3 4
1 1 4 2

)(
1 2 3 4
1 1 1 3

)(
1 2 3 4
1 1 4 2

)(
1 2 3 4
1 1 4 2

)
,

so

(
1 2 3 4
1 1 2 2

)
∈ (A∪B)S(X,Y )∩S(X,Y )(A∪B)4 ⊆ (A∪B)q(1,4), but

(
1 2 3 4
1 1 2 2

)
/∈

(A∪B)(1,4). Indeed, we put α =

(
1 2 3 4
1 1 2 2

)
and suppose that α ∈ (A∪B)(1,4). Direct

computation shows

(A ∪B)2 =

{(
1 2 3 4
1 1 1 1

)
,

(
1 2 3 4
1 1 1 4

)
,

(
1 2 3 4
1 1 3 1

)
,

(
1 2 3 4
1 1 2 1

)}
(A ∪B)3 =

{(
1 2 3 4
1 1 1 1

)
,

(
1 2 3 4
1 1 1 3

)
,

(
1 2 3 4
1 1 1 2

)
,

(
1 2 3 4
1 1 4 1

)}
(A ∪B)4 =

{(
1 2 3 4
1 1 1 1

)
,

(
1 2 3 4
1 1 1 4

)
,

(
1 2 3 4
1 1 3 1

)
,

(
1 2 3 4
1 1 2 1

)}
(A ∪B)5 =

{(
1 2 3 4
1 1 1 1

)
,

(
1 2 3 4
1 1 1 3

)
,

(
1 2 3 4
1 1 1 2

)
,

(
1 2 3 4
1 1 4 1

)}
.

So α /∈
1+4∪
i=1

(A ∪ B)i and we must have α ∈ (A ∪ B)S(X,Y )(A ∪ B)4. That is α = λβγ

for some λ ∈ A ∪ B, β ∈ S(X,Y ), γ ∈ (A ∪ B)4. Since Xα = {1, 2}, so γ must be(
1 2 3 4
1 1 2 1

)
. If λ =

(
1 2 3 4
1 1 1 3

)
, then we have 2 = 3α = 3λβγ = 1βγ. Hence

1β = 3, a contradiction with β ∈ S(X,Y ). Similarly, if λ =

(
1 2 3 4
1 1 4 2

)
, then we have

2 = 4α = 4λβγ = 2βγ. Hence 2β = 3, a contradiction with β ∈ S(X,Y ). Therefore,

α /∈ (A ∪B)(1,4). That is (A ∪B)(1,4) ̸= (A ∪B)q(1,4).
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3.2 Some equivalence relations on (m,n)-BQ-semigroups

For elements a, b in a semigroup S, we write aBb if and only if (a)(1,1) = (b)(1,1) and

write aQb if and only if (a)q(1,1) = (b)q(1,1). In [10,18], the authors show that the relations

B,Q are equivalence relations on S. In [14], Mielke showed that if S ∈ BQ, then B = Q.

In [21], the equivalence relation Bn
m, where m,n are nonnegative integers, was introduced

by Tilidetzke. In this thesis, we define the relation Qn
m which is more general than the

relation Q and extend some results in [14] to (m,n)-BQ-semigroups as follows.

Definition 3.2.1. Let S be a semigroup and m,n nonnegative integers. For a, b ∈ S, we

write aQn
mb if and only if either

(i) a = b or

(ii) a = bmu, a = vbn and b = amx, b = yan for some u, v, x, y ∈ S.

Moreover, we denote the Qn
m-class containing a by Qn

m(a).

Theorem 3.2.2. The relation Qn
m is an equivalence relation. Moreover, Qn

m ⊆ Q.

Proof. The reflexive and symmetric properties are satisfied by definition. Next, we prove

that the relation Qn
m has transitivity. In case m = 0 or n = 0, it is easy to see that Qn

m

has transitivity. Now, we assume that m,n ̸= 0. Let a, b, c ∈ S be such that aQn
mb and

bQn
mc. If a = b or b = c, we are done. If a ̸= b and b ̸= c, there are s, t, u, v, w, x, y, z ∈ S

such that a = bms, a = tbn, b = amu, b = van, b = cmw, b = xcn, c = bmy and c = zbn.

Hence

a = bms = cmw(cmw)m−1s, a = tbn = t(xcn)n−1xcn,

c = bmy = amu(amu)m−1y, c = zbn = z(vbn)n−1vbn.

Therefore, aQn
mc. This proves the relation Qn

m is an equivalence relation. It is easy to see

that Qn
m ⊆ Q.

Proposition 3.2.3. Let a, b ∈ S and m,n nonnegative integers. Then aQn
mb if and only

if (a)q(m,n) = (b)q(m,n).

Proof. Assume that (a)q(m,n) = (b)q(m,n). If a = b, then aQn
mb. We now suppose that

a ̸= b and consider the following cases.

Case 1 : a ∈ bmS ∩ Sbn, b ∈ amS ∩ San. We are done by definition.
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Case 2 : a = bk, 2 ≤ k ≤ max{m,n} and b ∈ amS ∩ San. There exist s, s′ ∈ S such

that b = ams = s′an. Then

a = bk = (ams)k = (bmks)k = bmbm(k−1)s(bmks)k−1 = bmu,

where u = bm(k−1)s(bmks)k−1 ∈ S. Similarly, we obtain that a = vbn, where

v = (s′bnk)k−1s′bn(k−1) ∈ S. So aQn
mb.

Case 3 : a ∈ bmS ∩ Sbn and b = ak, 2 ≤ k ≤ max{m,n}. We can prove in a similar

fashion, as above.

Case 4 : a = bk, 2 ≤ k ≤ max{m,n} and b = al, 2 ≤ l ≤ max{m,n}. Then

a = bk = alk = blk
2
= al

2k2 = bl
2k3 = al

3k3 = . . . .

We can choose an integer r > 0 such that lrkr+1 > max{m,n} + 1. Hence a ∈

bmS ∩ Sbn. Similarly, we can show that b ∈ amS ∩ San. Therefore aQn
mb.

Conversely, we assume that aQn
mb. There exist u, v, x, y ∈ S such that

a = bmu = vbn, b = amx = yan.

Since a ∈ bmS ∩ Sbn ⊆ (b)q(m,n) and b ∈ amS ∩ San ⊆ (a)q(m,n), it follows that

(a)q(m,n) ⊆ (b)q(m,n) ⊆ (a)q(m,n).

Therefore, the condition holds.

Proposition 3.2.4. For any nonnegative integers m,n, Bn
m ⊆ Qn

m.

Proof. Let (x, y) ∈ Bn
m. Since y ∈ (y)(m,n) = (x)(m,n) ⊆ (x)q(m,n), we have (y)q(m,n) ⊆

(x)q(m,n). Similarly, we obtain that (x)q(m,n) ⊆ (y)q(m,n). Thus, (x)q(m,n) = (y)q(m,n), that

is, (x, y) ∈ Qn
m.

Lemma 3.2.5. Let S be a semigroup and m,n be nonnegative integers. For a ∈ S, the

following statements are true:

1. if a ∈ Regnm(S), then Bn
m(a) = Qn

m(a);

2. if a /∈ Regnm(S), then Bn
m(a) = {a}.

Proof. Let a ∈ S.
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1. If a ∈ Regnm(S), then a = amxan for some x ∈ S. Let b ∈ Qn
m(a) be such that b ̸= a.

In case m = 0 or n = 0, it is easy to see that b ∈ Bn
m(a). Thus, we assume that

m,n > 0. Hence, there are u, v, s, t ∈ S such that a = bmu = vbn, b = ams = tan.

Consider,

a = bmu

= b · bm−1u

= tanbm−1u

= tan−1 · abm−1u

= tan−1amxanbm−1u

= tanam−1xan−1abm−1u

= amsam−1xan−1vbn−1bmu

= bmuam−1sam−1xan−1vbn−1vbn

and

b = tan = tanam−1xan = amsam−1xan.

By definition, we obtain that b ∈ Bn
m(a), that is Qn

m(a) ⊆ Bn
m(a). By Proposition

3.2.4, we have Bn
m(a) ⊆ Qn

m(a). Thus, Bn
m(a) = Qn

m(a).

2. If a /∈ Regnm(S), we prove by contradiction. Suppose that there is b ̸= a and

b ∈ Bn
m(a). Then

a = bmsbn = amtanbm−1sbn−1amtan ∈ amSan

for some s, t ∈ S, which is a contradiction. Therefore, Bn
m(a) = {a}.

In particular, we can see that if a /∈ Reg(S), then B(a) = {a}.

Lemma 3.2.6. Let S be a semigroup and m,n nonnegative integers. If Reg(S) =

Regnm(S), then B = Bn
m

Proof. Assume that Reg(S) = Regnm(S). By Proposition 2.3.5, it suffices to show that B ⊆

Bn
m. Let (a, b) ∈ B. Then a = bub, b = ava for some u, v ∈ S. If a /∈ Regnm(S) = Reg(S) or

b /∈ Regnm(S) = Reg(S), then a = b by Lemma 3.2.5; hence (a, b) ∈ Bn
m. If a, b ∈ Regnm(S),

there are s, t ∈ S such that a = amsan and b = bmtbn. Hence a = bmtbnubmtbn and

b = amsanvamsan, that is (a, b) ∈ Bn
m. This means that B ⊆ Bn

m.

Theorem 3.2.7. Let m,n be nonnegative integers. If S ∈ BQn
m, then Bn

m = Qn
m.
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Proof. Assume that S ∈ BQn
m. Let (x, y) ∈ Qn

m. Then (x)q(m,n) = (y)q(m,n). By assump-

tion, we obtain

(x)(m,n) ⊆ (x)q(m,n) = (y)q(m,n) ⊆ (y)(m,n) ⊆ (y)q(m,n) = (x)q(m,n) ⊆ (x)(m,n).

Hence, (x, y) ∈ Bn
m and by proposition 3.2.4, we obtain Bn

m = Qn
m.

The next example show that the converse of Theorem 3.2.7 is not true.

Example 3.2.8. Let X,Y be nonempty sets such that Y ⊆ X, |X| = 4, |Y | = 3.

The semigroup of transformations with invariant set, denoted by S(X,Y ), is defined by

S(X,Y ) = {α : X → X | Y α ⊆ Y }. In [8, 16], we know that S(X,Y ) with composition

of functions is a nonregular semigroup. For convenience, let X = {1, 2, 3, 4}, Y = {1, 2, 3}

and β, γ, λ1, λ2 ∈ S(X,Y ) given by

β =

(
1 2 3 4
1 1 2 3

)
, γ =

(
1 2 3 4
1 1 1 3

)
, λ1 =

(
1 2 3 4
1 3 1 4

)
and λ2 =

(
1 2 3 4
1 2 1 4

)
.

Since γ = β2λ1 = λ2β ∈ β2S(X,Y ) ∩ S(X,Y )β ⊆ (β)q(2,1) and γ ̸= βi, i = 1, 2, 3. If

γ ∈ (β)(2,1), then γ = β2λ3β for some λ3 ∈ S(X,Y ). Since 3 = 4γ = 4β2λ3β = 2λ3β

and 4β = 3, so we must have 2λ3 = 4, a contradiction with λ3 ∈ S(X,Y ). Thus,

(β)(2,1) ̸= (β)q(2,1) and so by Theorem 3.1.3, S(X,Y ) /∈ BQ1
2. A direct computation

shows that B1
2 = Q1

2 as follows,

B1
2 =

{{(
1 2 3 4
1 1 1 1

)}
,

{(
1 2 3 4
1 1 1 2

)}
,

{(
1 2 3 4
1 1 1 3

)}
,

{(
1 2 3 4
1 1 1 4

)}
,{(

1 2 3 4
1 1 2 1

)}
,

{(
1 2 3 4
1 1 2 2

)}
,

{(
1 2 3 4
1 1 2 3

)}
,

{(
1 2 3 4
1 1 2 4

)}
,{(

1 2 3 4
1 1 3 1

)(
1 2 3 4
3 3 1 3

)}
,

{(
1 2 3 4
1 1 3 2

)}
,

{(
1 2 3 4
1 1 3 3

)(
1 2 3 4
3 3 1 1

)}
,{(

1 2 3 4
1 1 3 4

)(
1 2 3 4
3 3 1 4

)}
,

{(
1 2 3 4
1 2 1 1

)(
1 2 3 4
2 1 2 2

)}
,{(

1 2 3 4
1 2 1 2

)(
1 2 3 4
2 1 2 1

)}
,

{(
1 2 3 4
1 2 1 3

)}
,

{(
1 2 3 4
1 2 1 4

)(
1 2 3 4
2 1 2 4

)}
,{(

1 2 3 4
1 2 2 1

)(
1 2 3 4
2 1 1 2

)}
,

{(
1 2 3 4
1 2 2 2

)(
1 2 3 4
2 1 1 1

)}
,

{(
1 2 3 4
1 2 2 3

)}
,{(

1 2 3 4
1 2 2 4

)(
1 2 3 4
2 1 1 4

)}
,{(

1 2 3 4
1 2 3 1

)(
1 2 3 4
1 3 2 1

)(
1 2 3 4
2 1 3 2

)(
1 2 3 4
2 3 1 2

)(
1 2 3 4
3 1 2 3

)(
1 2 3 4
3 2 1 3

)}
,{(

1 2 3 4
1 2 3 2

)(
1 2 3 4
1 3 2 3

)(
1 2 3 4
2 1 3 1

)(
1 2 3 4
2 3 1 3

)(
1 2 3 4
3 1 2 1

)(
1 2 3 4
3 2 1 2

)}
,{(

1 2 3 4
1 2 3 3

)(
1 2 3 4
1 3 2 2

)(
1 2 3 4
2 1 3 3

)(
1 2 3 4
2 3 1 1

)(
1 2 3 4
3 1 2 2

)(
1 2 3 4
3 2 1 1

)}
,{(

1 2 3 4
1 2 3 4

)(
1 2 3 4
1 3 2 4

)(
1 2 3 4
2 1 3 4

)(
1 2 3 4
2 3 1 4

)(
1 2 3 4
3 1 2 4

)(
1 2 3 4
3 2 1 4

)}
,
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{(
1 2 3 4
1 3 1 1

)}
,

{(
1 2 3 4
1 3 1 2

)}
,

{(
1 2 3 4
1 3 1 3

)}
,

{(
1 2 3 4
1 3 1 4

)}
,{(

1 2 3 4
1 3 3 1

)(
1 2 3 4
3 1 1 3

)}
,

{(
1 2 3 4
1 3 3 2

)}
,

{(
1 2 3 4
1 3 3 3

)(
1 2 3 4
3 1 1 1

)}
,{(

1 2 3 4
1 3 3 4

)(
1 2 3 4
3 1 1 4

)}
,

{(
1 2 3 4
2 1 1 3

)}
,

{(
1 2 3 4
2 1 2 3

)}
,

{(
1 2 3 4
2 2 1 1

)}
,{(

1 2 3 4
2 2 1 2

)}
,

{(
1 2 3 4
2 2 1 3

)}
,

{(
1 2 3 4
2 2 1 4

)}
,

{(
1 2 3 4
2 2 2 1

)}
,{(

1 2 3 4
2 2 2 2

)}
,

{(
1 2 3 4
2 2 2 3

)}
,

{(
1 2 3 4
2 2 2 4

)}
,

{(
1 2 3 4
2 2 3 1

)}
,{(

1 2 3 4
2 2 3 2

)(
1 2 3 4
3 3 2 3

)}
,

{(
1 2 3 4
2 2 3 3

)(
1 2 3 4
3 3 2 2

)}
,{(

1 2 3 4
2 2 3 4

)(
1 2 3 4
3 3 2 4

)}
,

{(
1 2 3 4
2 3 2 1

)}
,{(

1 2 3 4
2 3 2 2

)(
1 2 3 4
3 2 3 3

)}
,

{(
1 2 3 4
2 3 2 3

)(
1 2 3 4
3 2 3 2

)}
,{(

1 2 3 4
2 3 2 4

)(
1 2 3 4
3 2 3 4

)}
,

{(
1 2 3 4
2 3 3 1

)}
,

{(
1 2 3 4
2 3 3 2

)}
,

{(
1 2 3 4
2 3 3 3

)}
,{(

1 2 3 4
2 3 3 4

)}
,

{(
1 2 3 4
3 1 1 2

)}
,

{(
1 2 3 4
3 1 3 1

)}
,

{(
1 2 3 4
3 1 3 2

)}
,{(

1 2 3 4
3 1 3 3

)}
,

{(
1 2 3 4
3 1 3 4

)}
,

{(
1 2 3 4
3 2 2 1

)}
,

{(
1 2 3 4
3 2 2 2

)}
,{(

1 2 3 4
3 2 2 3

)}
,

{(
1 2 3 4
3 2 2 4

)}
,

{(
1 2 3 4
3 2 3 1

)}
,

{(
1 2 3 4
3 3 1 2

)}
,{(

1 2 3 4
3 3 2 1

)}
,

{(
1 2 3 4
3 3 3 1

)}
,

{(
1 2 3 4
3 3 3 2

)}
,

{(
1 2 3 4
3 3 3 3

)}
,{(

1 2 3 4
3 3 3 4

)}}
= Q1

2.

Theorem 3.2.9. Let A be a nonempty subset of a semigroup S and let ∅ ̸= X ⊆ A

be such that |A ∩ Bn
m(x)| = 1 for all x ∈ X. Then (A)(m,n) = (A)q(m,n) if and only if

(X)(m,n) = (X)q(m,n).

Proof. We first prove that (X)(m,n) = (A)(m,n). Since

X =
∪
x∈X

{x} ⊆
∪
x∈X

(x)(m,n) =
∪
a∈A

(a)(m,n) ⊆ (A)(m,n),

(X)(m,n) ⊆ (A)(m,n) and since

(A)(m,n) = (
∪
a∈A

a)(m,n) ⊆ (
∪
a∈A

(a)(m,n))(m,n)

= (
∪
y∈X

(y)(m,n))(m,n) ⊆ ((X)(m,n))(m,n) = (X)(m,n),

(X)(m,n) = (A)(m,n). Then we asume that (A)(m,n) = (A)q(m,n), which implies that

X ⊆ (A)(m,n) ⊆ (A)q(m,n). Hence,

(X)(m,n) ⊆ (X)q(m,n) ⊆ (A)q(m,n) = (A)(m,n) = (X)(m,n).
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Thus, (X)(m,n) = (X)q(m,n).

Conversely, if (X)(m,n) = (X)q(m,n), then A ⊆ (A)(m,n) = (X)(m,n) = (X)q(m,n),

which implies that (A)q(m,n) ⊆ (X)q(m,n). So,

(A)(m,n) ⊆ (A)q(m,n) ⊆ (X)q(m,n) = (X)(m,n) = (A)(m,n)

and the proof is complete.

Corollary 3.2.10. Let S be a semigroup and a ∈ S. Then (a)(m,n) = (a)q(m,n) if and

only if for all C ⊆ Bn
m(a), (C)(m,n) = (C)q(m,n).

Proof. Assume that (a)(m,n) = (a)q(m,n). Let C ⊆ Bn
m(a). Since

C ⊆
∪
c∈C

(c)(m,n) = (a)(m,n),

(C)(m,n) ⊆ (a)(m,n). Since

(a)(m,n) =
∪
c∈C

(c)(m,n) ⊆ (C)(m,n),

(C)(m,n) = (a)(m,n). By assumption, we obtain that (C)q(m,n) ⊆ (C)(m,n). Thus (C)(m,n) =

(C)q(m,n). The proof for the converse is easy.

3.3 Some semigroups of transformations which are

(m,n)-BQ-semigroups

Let X,Y be nonempty sets such that Y ⊆ X and m,n nonnegative integers. In

previous chapter, the concept of full transformation semigroup on X, T (X), and its sub-

semigroups were introduced. In this section, we characterize these semigroups when they

belong to BQn
m.

Lemma 3.3.1. T (X) is an (m,n)-BQ-semigroup.

Proof. We obtain this Lemma by Theorem 2.4.1 and 3.1.2.

Theorem 3.3.2. T (X,Y ) is an (m,n)-BQ-semigroup.

Proof. We prove that T (X,Y ) is a left ideal of T (X). Let α ∈ T (X,Y ) and β ∈ T (X).

Since Xβα ⊆ Xα ⊆ Y , βα ∈ T (X,Y ). That is T (X,Y ) is a left ideal of T (X). By

Theorem 3.1.5 and Theorem 2.4.1, we see that T (X,Y ) = T (X) ∩ T (X,Y ) is an (m,n)-

BQ-semigroup.

By Theorem 2.4.2, we obtain the following theorem.
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Theorem 3.3.3. If one of the following statements holds:

(i) Y = X,

(ii) |Y | = 1,

then the semigroup S(X,Y ) ∈ BQn
m.

Theorem 3.3.4. If |X| = 3 and |Y | = 2, then S(X,Y ) ∈ BQn
m.

Proof. If m,n = 1, we are done by Theorem 2.4.4. Assume that m > 1 or n > 1. For

convenience, we let X = {1, 2, 3}, Y = {1, 2}. Then

S := S(X,Y ) =

{(
1 2 3
1 1 1

)
,

(
1 2 3
1 1 2

)
,

(
1 2 3
1 1 3

)
,

(
1 2 3
1 2 1

)
,

(
1 2 3
1 2 2

)
,

(
1 2 3
1 2 3

)
,(

1 2 3
2 1 1

)
,

(
1 2 3
2 1 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 2 1

)
,

(
1 2 3
2 2 2

)
,(

1 2 3
2 2 3

)}
.

In this proof, we want to show that (A)(m,n) = (A)q(m,n) for any nonempty subset A of

S. So we divide the proof into four parts as follows.

• Part I : To show that Regnm(S) = Reg(S). By Theorem 2.4.3, we have

Reg(S) =

{(
1 2 3
1 1 1

)
,

(
1 2 3
1 1 3

)
,

(
1 2 3
1 2 1

)
,

(
1 2 3
1 2 2

)
,

(
1 2 3
1 2 3

)
,(

1 2 3
2 1 1

)
,

(
1 2 3
2 1 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 2 2

)
,

(
1 2 3
2 2 3

)}
.

It suffices to show that Reg(S) ⊆ Regnm(S). We can see that

E(S) =

{(
1 2 3
1 1 1

)
,

(
1 2 3
1 1 3

)
,

(
1 2 3
1 2 1

)
,

(
1 2 3
1 2 2

)
,(

1 2 3
1 2 3

)
,

(
1 2 3
2 2 2

)
,

(
1 2 3
2 2 3

)}
.

By definition, we can see that every idempotent elements are (m,n)-regular elements.

Thus E(S) ⊆ Regnm(S). Since(
1 2 3
2 1 1

)2

=

(
1 2 3
1 2 2

)
,

(
1 2 3
2 1 2

)2

=

(
1 2 3
1 2 1

)
,

(
1 2 3
2 1 3

)2

=

(
1 2 3
1 2 3

)
are idempotent elements and(

1 2 3
2 1 1

)
=

(
1 2 3
1 2 2

)(
1 2 3
2 1 1

)
=

(
1 2 3
2 1 1

)(
1 2 3
1 2 2

)
(
1 2 3
2 1 2

)
=

(
1 2 3
1 2 1

)(
1 2 3
2 1 2

)
=

(
1 2 3
2 1 2

)(
1 2 3
1 2 1

)
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(
1 2 3
2 1 3

)
=

(
1 2 3
1 2 3

)(
1 2 3
2 1 3

)
=

(
1 2 3
2 1 3

)(
1 2 3
1 2 3

)
,

(
1 2 3
2 1 1

)k

=


(
1 2 3
2 1 1

)
if k is odd,(

1 2 3
1 2 2

)
if k is even,

(
1 2 3
2 1 2

)k

=


(
1 2 3
2 1 2

)
if k is odd,(

1 2 3
1 2 1

)
if k is even,

(
1 2 3
2 1 3

)k

=


(
1 2 3
2 1 3

)
if k is odd,(

1 2 3
1 2 3

)
if k is even,

which implies that for any m,n,(
1 2 3
2 1 1

)
=

(
1 2 3
2 1 1

)m

η1

(
1 2 3
2 1 1

)n

(
1 2 3
2 1 2

)
=

(
1 2 3
2 1 2

)m

η2

(
1 2 3
2 1 2

)n

(
1 2 3
2 1 3

)
=

(
1 2 3
2 1 3

)m

η3

(
1 2 3
2 1 3

)n

where

η1 =


(
1 2 3
2 1 1

)
if m+ n is even,(

1 2 3
1 2 2

)
if m+ n is odd,

η2 =


(
1 2 3
2 1 2

)
if m+ n is even,(

1 2 3
1 2 1

)
if m+ n is odd,

η3 =


(
1 2 3
2 1 3

)
if m+ n is even,(

1 2 3
1 2 3

)
if m+ n is odd.

Thus

(
1 2 3
2 1 1

)
,

(
1 2 3
2 1 2

)
,

(
1 2 3
2 1 3

)
are (m,n)-regular elements which implies

that

Reg(S) = E(S) ∪
{(

1 2 3
2 1 1

)
,

(
1 2 3
2 1 2

)
,

(
1 2 3
2 1 3

)}
⊆ Regnm(S).

Therefore, Reg(S) = Regnm(S).
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• Part II : To find Bn
m on S. By Lemma 3.2.6, we have Bn

m = B. By Lemma 3.2.5(2),

we can compute that

Bn
m = B =

{{(
1 2 3
1 1 1

)}
,

{(
1 2 3
1 1 2

)}
,

{(
1 2 3
1 1 3

)}
,{(

1 2 3
1 2 1

)
,

(
1 2 3
2 1 2

)}
,

{(
1 2 3
1 2 2

)
,

(
1 2 3
2 1 1

)}
,{(

1 2 3
1 2 3

)
,

(
1 2 3
2 1 3

)}
,

{(
1 2 3
2 2 1

)}
,{(

1 2 3
2 2 2

)}
,

{(
1 2 3
2 2 3

)}}
,

for any m,n. In the end of this part, we put

S∗ =

{(
1 2 3
1 1 1

)
,

(
1 2 3
1 1 2

)
,

(
1 2 3
1 1 3

)
,

(
1 2 3
1 2 1

)
,

(
1 2 3
1 2 2

)
,(

1 2 3
1 2 3

)
,

(
1 2 3
2 2 1

)
,

(
1 2 3
2 2 2

)
,

(
1 2 3
2 2 3

)}
= E(S) ∪ {α, β}

where α =

(
1 2 3
1 1 2

)
, β =

(
1 2 3
2 2 1

)
. Note that

α2 = βα =

(
1 2 3
1 1 1

)
, β2 = αβ =

(
1 2 3
2 2 2

)
.

• Part III : To claim that for any A ⊆ E(S) and ∅ ̸= B ⊆ {α, β},

(A ∪B)2 =


C if A ⊆

{(
1 2 3
1 1 1

)
,

(
1 2 3
2 2 2

)}
,

A ∪ C ∪D ; otherwise,

where C ⊆
{(

1 2 3
1 1 1

)
,

(
1 2 3
2 2 2

)}
such that

(
1 2 3
1 1 1

)
∈ C if Y η = {1}, for some η ∈ A ∪B,(

1 2 3
2 2 2

)
∈ C if Y η = {2}, for some η ∈ A ∪B,

and D ⊆ {α, β} such that

D =


B ∪ {α} if

(
1 2 3
1 1 3

)
,

(
1 2 3
1 2 2

)
∈ A,

B ∪ {β} if

(
1 2 3
2 2 3

)
,

(
1 2 3
1 2 1

)
∈ A,

B ; otherwise.

Indeed, let A ⊆ E(S) and ∅ ̸= B ⊆ {α, β}.
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In the case when A ⊆
{(

1 2 3
1 1 1

)
,

(
1 2 3
2 2 2

)}
, it is clear that (A∪B)2 = C.

In another case, we first show that A ∪D ∪ C ⊆ (A ∪B)2.

(i) A ⊆ A2 since A ⊆ E(S), i.e. θ = θ2 for all θ ∈ A.

(ii) D ⊆ A2 ∪AB ∪BA since

α = α

(
1 2 3
1 2 1

)
= α

(
1 2 3
1 2 2

)
= α

(
1 2 3
1 2 3

)
=

(
1 2 3
1 1 3

)
α

=

(
1 2 3
2 2 3

)
α

=

(
1 2 3
1 1 3

)(
1 2 3
1 2 2

)
and

β = β

(
1 2 3
1 2 1

)
= β

(
1 2 3
1 2 2

)
= β

(
1 2 3
1 2 3

)
=

(
1 2 3
1 1 3

)
β

=

(
1 2 3
2 2 3

)
β

=

(
1 2 3
2 2 3

)(
1 2 3
1 2 1

)
.

(iii) C ⊆ BA ∪B2 by the following:

· If B = {α, β}, then C =

{(
1 2 3
1 1 1

)
,

(
1 2 3
2 2 2

)}
⊆ B2

· If B = {α} and A contains θ such that Y θ = {2}, then

C =

{(
1 2 3
1 1 1

)
,

(
1 2 3
2 2 2

)}
.

Since Xαθ = Y θ = {2},
(
1 2 3
2 2 2

)
∈ BA which implies that

C =

{(
1 2 3
1 1 1

)
,

(
1 2 3
2 2 2

)}
⊆ BA ∪B2.
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· If B = {α} and A dose not contain θ such that Y θ = {2}, then

C =

{(
1 2 3
1 1 1

)}
⊆ B2.

· In case B = {β}, we can prove as two above cases that C ⊆ BA ∪B2.

Now, we have C ⊆ BA ∪B2.

From (i), (ii), (iii), we obtain that

A ∪ C ∪D ⊆ A2 ∪AB ∪BA ∪B2 = (A ∪B)2.

Next, we show that (A ∪ B)2 ⊆ A ∪ C ∪ D. It is easy to see that B2 ⊆ C,

A2 ⊆ A ∪ C ∪D. Since

αS∗ =

{(
1 2 3
1 1 1

)
,

(
1 2 3
1 1 2

)
,

(
1 2 3
2 2 2

)}
,

S∗α =

{(
1 2 3
1 1 1

)
,

(
1 2 3
1 1 2

)}
,

βS∗ =

{(
1 2 3
1 1 1

)
,

(
1 2 3
2 2 1

)
,

(
1 2 3
2 2 2

)}
,

S∗β =

{(
1 2 3
2 2 1

)
,

(
1 2 3
2 2 2

)}
,

AB ∪BA ⊆ C ∪D. Now, we obtain (A ∪B)2 = A ∪ C ∪D.

In the end of this part, we want to show that (A ∪ B)k = (A ∪ B)2 for all k > 1.

Since

(A ∪B)3 = (A ∪B)(A ∪B)2

=

(A ∪B)C = C

(A ∪B)(A ∪ C ∪D) = (A ∪B)2 ∪ [(D \B) ∪ C]

= (A ∪B)2,

the result is obtained by induction.

• Part IV : Now, we show that (H)(m,n) = (H)q(m,n) for any nonempty subset H of

S. According to Theorem 3.2.9, we can reduce to the case of S∗ instead of S, and,

by Theorem 3.1.6, we obtain that (F )(m,n) = (F )q(m,n) for any F ⊆ E(S). Thus we

need show that

(A ∪B)(m,n) = (A ∪B)q(m,n)

for any A ⊆ E(S) and ∅ ̸= B ⊆ {α, β}. To complete this proof, we consider the

following three cases.
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Case : m = 1, n > 1, we have (A∪B)S ∩S(A∪B)n = (A∪B)S ∩S(A∪B)2.

Then

(A∪B)S∩S(A∪B)2 =

(A ∪B)S ∩ SC ⊆ C = (A ∪B)SC = (A ∪B)S(A ∪B)2,

(A ∪B)S ∩ S(A ∪ C ∪D).

By a part of the proof of Theorem 2.4.4, see [15], we have (D)(1,1) = (D)q(1,1).

Since A ∪ C ⊆ Reg(S), by Theorem 2.2.4 we obtain that

(A ∪B)S ∩ S(A ∪B ∪ C) ⊆(A ∪ C ∪D)q(1,1)

=(A ∪ C ∪D)(1,1)

=(A ∪ C ∪D) ∪ (A ∪ C ∪D)2

∪ (A ∪ C ∪D)S(A ∪ C ∪D)

=(A ∪B)2 ∪ (A ∪B)4 ∪ (A ∪ C ∪D)S(A ∪ C ∪D)

=(A ∪B)2 ∪ (A ∪B)S(A ∪ C ∪D)

∪ CS(A ∪ C ∪D) ∪ (D \B)S(A ∪ C ∪D)

⊆(A ∪B)2 ∪ (A ∪B)S(A ∪ C ∪D)

∪ (A ∪B)2 ∪A2S(A ∪ C ∪D)

⊆(A ∪B)2 ∪ (A ∪B)S(A ∪ C ∪D)

∪AS(A ∪ C ∪D)

⊆(A ∪B)2 ∪ (A ∪B)S(A ∪ C ∪D)

=(A ∪B)2 ∪ (A ∪B)S(A ∪B)2

⊆(A ∪B) ∪ (A ∪B)2 ∪ (A ∪B)S(A ∪B)2

=(A ∪B) ∪ (A ∪B)2 ∪ (A ∪B)S(A ∪B)n

⊆(A ∪B)(1,n).

Therefore, (A ∪B)S ∩ S(A ∪B)n ⊆ (A ∪B)(1,n).

Case : m > 1, n = 1, we have (A∪B)mS ∩S(A∪B) = (A∪B)2S ∩S(A∪B).

Then

(A ∪B)2S ∩ S(A ∪B) =

CS ∩ S(A ∪B),

(A ∪ C ∪D)S ∩ S(A ∪B).

If A ⊆
{(

1 2 3
1 1 1

)
,

(
1 2 3
2 2 2

)}
, then (A∪B)2S∩S(A∪B) = CS∩S(A∪B) ⊆

CS ⊆ (A∪B)2 ⊆ (A∪B)(m,1). If (A∪B)2S∩S(A∪B) = (A∪C∪D)S∩S(A∪B),
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by a part of the proof of Theorem 2.4.4, see [15], we have (D)(1,1) = (D)q(1,1).

Since A ∪ C ⊆ Reg(S), by Theorem 2.2.4 we obtain that

(A ∪ C ∪D)S ∩ S(A ∪B) ⊆(A ∪ C ∪D)q(1,1)

=(A ∪ C ∪D)(1,1)

=(A ∪ C ∪D) ∪ (A ∪ C ∪D)2

∪ (A ∪ C ∪D)S(A ∪ C ∪D)

=(A ∪B)2 ∪ (A ∪B)4 ∪ (A ∪ C ∪D)S(A ∪ C ∪D)

=(A ∪B)2 ∪ (A ∪ C ∪D)S(A ∪B)

∪ (A ∪ C ∪D)S(C ∪ (D \B))

=(A ∪B)2 ∪ (A ∪B)2S(A ∪B)

∪ (A ∪B)2SC ∪ (A ∪B)2S(D \B)

⊆(A ∪B)2 ∪ (A ∪B)2S(A ∪B) ∪ C ∪ (A ∪B)2SA2

⊆(A ∪B)2 ∪ (A ∪B)2S(A ∪B) ∪ (A ∪B)2

∪ (A ∪B)2SA

⊆(A ∪B)2 ∪ (A ∪B)2S(A ∪B)

=(A ∪B)2 ∪ (A ∪B)mS(A ∪B)

⊆(A ∪B)(m,1).

Therefore, (A ∪B)mS ∩ S(A ∪B) ⊆ (A ∪B)(m,1).

Case : m,n > 1, we have (A ∪B)mS ∩ S(A ∪B)n = (A ∪B)2S ∩ S(A ∪B)2.

Then

(A ∪B)2S ∩ S(A ∪B)2 =

CS ∩ SC ⊆ C = CSC = (A ∪B)2S(A ∪B)2,

(A ∪ C ∪D)S ∩ S(A ∪ C ∪D).

By a part of the proof of Theorem 2.4.4, see [15], we have (D)(1,1) = (D)q(1,1).

Since A ∪ C ⊆ Reg(S), by Theorem 2.2.4 we obtain that

(A ∪ C ∪D)S ∩ S(A ∪ C ∪D) ⊆(A ∪ C ∪D)q(1,1)

=(A ∪ C ∪D)(1,1)

=(A ∪ C ∪D) ∪ (A ∪ C ∪D)2

∪ (A ∪ C ∪D)S(A ∪ C ∪D)

=(A ∪B)2 ∪ (A ∪B)4 ∪ (A ∪B)2S(A ∪B)2
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=(A ∪B)2 ∪ (A ∪B)mS(A ∪B)n

⊆(A ∪B)(m,n).

Therefore, (A ∪B)mS ∩ S(A ∪B)n ⊆ (A ∪B)(m,n).

From above cases, since

max{m,n}∪
i=1

(A∪B)i ⊆
m+n∪
i=1

(A∪B)i for all m,n, (A∪B)q(m,n) ⊆

(A ∪ B)(m,n). By Proposition 2.2.9, we now get (D)(m,n) = (D)q(m,n) for any

nonempty subset D of S∗.

Therefore, S(X,Y ) ∈ BQn
m and the proof is complete.

From the above two theorems, we obtain the analogous result on BQn
m with BQ,

see Theorem 2.4.4, as follows.

Corollary 3.3.5. If one of the following statements holds

(i) Y = X,

(ii) |Y | = 1,

(iii) |X| ≤ 3,

then S(X,Y ) ∈ BQn
m.

Since S(X,Y ) is a nonregular semigroup, see [8, 16], S(X,Y ) need not to be an

(m,n)-BQ-semigroup. The following theorems show that S(X,Y ) dose not belong to

BQn
m in some cases.

Theorem 3.3.6. Let X,Y be nonempty sets such that |X| > 3, |Y | > 1 and Y $ X. If

m = 1, then S(X,Y ) /∈ BQn
m.

Proof. If n = 1, we are done by Theorem 2.4.4. Suppose that n > 1.

• Case |Y | = 2. Let Y = {a, b}. Since |X| > 3, so we have |X \ Y | > 1 and let

c, d ∈ X \ Y . If n = 2, we define α1, β1, γ1 ∈ S(X,Y ) by

α1 =

(
a b c X \ {a, b, c}
a a b c

)
, β1 =

(
a b c X \ {a, b, c}
a b a d

)
and

γ1 =

(
a b c X \ {a, b, c}
a b d b

)
.

Then(
a b c X \ {a, b, c}
a a b a

)
= α1β1 = γ1α

2
1 ∈ α1S(X,Y ) ∩ S(X,Y )α2

1 ⊆ (α1)q(1,2).
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Suppose that α1β1 ∈ (α1)(1,2), then α1β1 ∈ α1S(X,Y )α2
1 because α1β1 /∈ {α1, α

2
1, α

3
1}.

Then there exists η1 ∈ S(X,Y ) such that α1β1 = α1η1α
2
1. Hence b = cα1β1 =

cα1η1α
2
1 = bη1α

2
1. Since α2

1 =

(
a b c X \ {a, b, c}
a a a b

)
, we have that bη1 /∈ Y

which is a contradiction with η1 ∈ S(X,Y ). Thus S(X,Y ) /∈ BQ2
1. If n > 2, we

define

α2 =

(
a b c X \ {a, b, c}
a a b d

)
, β2 =

(
a b c X \ {a, b, c}
a b a a

)
,

γ2 =

(
a b c X \ {a, b, c}
a a d a

)
and let D = {α1, α2}. Since

Dn = D3 =

{(
a b c X \ {a, b, c}
a a a a

)
,

(
a b c X \ {a, b, c}
a a a b

)
,(

a b c X \ {a, b, c}
a a a c

)
,

(
a b c X \ {a, b, c}
a a a d

)}
,

for any n > 2, we have

(
a b c X \ {a, b, c}
a a b a

)
= α1β2 = γ2α2α1α2 ∈ DS(X,Y )∩

S(X,Y )Dn ⊆ (D)q(1,n). Suppose that α1β2 ∈ (D)(1,n), then α1β2 ∈ DS(X,Y )Dn

because α1β2 /∈
∪1+n

i=1 Di; there exist η2 ∈ S(X,Y ), α ∈ D and λ∗ ∈ Dn such that

α1β2 = αη2λ
∗. Since cα1 = cα2 = b, so b = cα1β2 = cαη2λ

∗ = bη2λ
∗. Thus we

must have λ∗ =

(
a b c X \ {a, b, c}
a a a b

)
∈ D3, which implies that bη2 /∈ Y , a

contradiction to η2 ∈ S(X,Y ) Thus S(X,Y ) /∈ BQn
1 .

• Case |Y | > 2. Since X \Y ̸= ∅, we can assume that a, b, c ∈ Y and d ∈ X \Y . Now,

we define α1, α2, β1, β2 by

α1 =

(
a b Y \ {a, b} X \ Y
a a c d

)
, α2 =

(
a Y \ {a} X \ Y
a b c

)
,

β1 =

(
a b Y \ {a, b} x
b a c x

)
x∈X\Y

, β2 =

(
a Y \ {a} x
c a x

)
x∈X\Y

.

It easy to see that α2α1 = α1α2α1, α2
1 = α1 and α2α1α2 = α3

2 = α2
2. Define

D = {α1, α2}. Then we have D2 = {α1, α1α2, α2α1, α
2
2} and

D3 = {α1, α1α2, α2α1, α
2
2, α

2
2α1} = D4 = . . . = Dn.

Hence α2β1 = β2α1α2 ∈ DS(X,Y ) ∩ S(X,Y )Dn ⊆ (D)q(1,n). Suppose that α2β1 ∈

(D)(1,n). Since α2β1 /∈
∪n+1

i=1 Di, α2β1 ∈ DS(X,Y )Dn = DS(X,Y )D3 that is

α2β1 = αηλ for some α ∈ D, η ∈ S(X,Y ), λ ∈ D3. Since

α2β1 =

(
a Y \ {a} X \ Y
b a c

)
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and (Xα2)β1 ̸= Xα∗ for all α∗ ∈ D3 \ {α1α2}, we must have λ = α1α2 =(
a b Y \ {a, b} X \ Y
a a b c

)
. If α = α1, then b = aα2β1 = aα1ηλ = bα1ηλ =

bα2β1 = a which is a contradiction. If α = α2, then c = dα2β1 = dα2ηα1α2 =

cηα1α2 implies that cη ∈ X \ Y which is a contradiction to η ∈ S(X,Y ). Thus

α2β1 /∈ (D)(1,n), that is (D)(1,n) ̸= (D)q(1,n). Therefore, S(X,Y ) /∈ BQn
1

Theorem 3.3.7. Let X,Y be sets such that |X| = 4, |Y | = 2 and Y $ X. If one of the

following statements holds

(i) n = 1,

(ii) m = 2, n = 2,

then S(X,Y ) /∈ BQn
m.

Proof. Let X = {a, b, c, d} and Y = {a, b}. Define

µ1 =

(
a b c d
a a b c

)
, µ2 =

(
a b c d
a a b d

)
γ1 =

(
a b c d
a b b c

)
, γ2 =

(
a b c d
a b b d

)
ρ =

(
a b c d
b b d a

)
, β =

(
a b c d
a a c b

)
.

(i) Assume that n = 1. If m = 1, we are done by Theorem 2.4.4. Let m > 1 and

D = {µ1, γ2, ρ}. Then we have

D2 =

{(
a b c d
a a a b

)
,

(
a b c d
a a b b

)
,

(
a b c d
b b b d

)
,

(
a b c d
a a a c

)
,(

a b c d
a b b d

)
,

(
a b c d
b b b a

)
,

(
a b c d
a a c a

)
,

(
a b c d
b b d a

)
,

(
a b c d
b b a b

)}
,

D3 =D2 ∪
{(

a b c d
a a a a

)
,

(
a b c d
b b b b

)
,

(
a b c d
a a b a

)
,

(
a b c d
b b d b

)}
.

It’s easy to see that D2 ⊆ D3 = D4 = D5 = . . .. Since

β =

(
a b c d
b b d a

)(
a b c d
b a c c

)
=

(
a b c d
a a d c

)(
a b c d
a a b c

)
,

β ∈ D2S(X,Y ) ∩ S(X,Y )D ⊆ (D)q(2,1) ⊆ (D)q(3,1) ⊆ (D)q(m,1). Suppose that

S(X,Y ) ∈ BQ1
m. Then (D)q(m,1) = (D)(m,1). Since β /∈

∪
i∈NDi, β ∈ DmS(X,Y )D,

that is β = ληα for some λ ∈ Dm, η ∈ S(X,Y ), α ∈ D. Since c ∈ Xβ, we must have

α =

(
a b c d
a a b c

)
. If λ =

(
a b c d
a a c a

)
or

(
a b c d
b b d a

)
or

(
a b c d
b b d b

)
, then

dλ ∈ Y . Then we get a contradiction from b = dβ = dληα = a. In the other hand,

we have c = cβ = cληα = a which is a contradiction. Therefore, S(X,Y ) /∈ BQ1
m.
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(ii) Assume that m = n = 2. Let D = {µ2, γ1, ρ}. Then we have

D2 =

{(
a b c d
a a a d

)
,

(
a b c d
a a b c

)
,

(
a b c d
b b b a

)
,

(
a b c d
a a a b

)
,

(
a b c d
a b b b

)
,(

a b c d
b b b d

)
,

(
a b c d
a a d a

)
,

(
a b c d
b b c a

)
,

(
a b c d
b b a b

)}
,

D3 =D2 ∪
{(

a b c d
a a a c

)
,

(
a b c d
a a b b

)
,

(
a b c d
a a a a

)
,

(
a b c d
b b b b

)
,(

a b c d
b b b c

)
,

(
a b c d
a a c a

)
,

(
a b c d
a a b a

)
,

(
a b c d
b b d b

)}
,

D4 =D3 ∪
{(

a b c d
b b c b

)}
.

Suppose that S(X,Y ) ∈ BQ2
2. Since

β =

(
a b c d
b b c a

)(
a b c d
b a c d

)
=

(
a b c d
a b d c

)(
a b c d
a a b c

)
,

β ∈ D2S(X,Y ) ∩ S(X,Y )D2 ⊆ (D)q(2,2) = (D)(2,2). Since β /∈
∪4

i=1D
i, there are

λ, α ∈ D2, η ∈ S(X,Y ) such that β = ληα. Since c ∈ Xβ and a = Y β = Y ληα, we

must have α =

(
a b c d
a a b c

)
. If cλ ∈ Y , then c = cβ = cληα = a, a contradiction.

If cλ /∈ Y , then dλ = a for all λ ∈ D2. Consider b = dβ = dληα = aηα = a which is

a contradiction. Thus S(X,Y ) /∈ BQ2
2.

Theorem 3.3.8. Let X,Y be sets such that |X| = 4, |Y | = 3 and Y $ X. If one of the

following statements holds

(i) n = 1,

(ii) m = 2, n = 2,

then S(X,Y ) /∈ BQn
m.

Proof. Let X = {a, b, c, d} and Y = {a, b, c}. Suppose that S(X,Y ) ∈ BQn
m.

(i) Assume that n = 1. If m = 1, we are done by Theorem 2.4.4. Let m > 1 and

D =

{(
a b c d
c c c b

)
,

(
a b c d
c b c a

)}
. Then we can compute that

D2 =

{(
a b c d
c c c c

)
,

(
a b c d
c c c b

)
,

(
a b c d
c b c c

)}
.

Given β =

(
a b c d
c c c a

)
∈ S(X,Y ), since D2 = D3 = D4 = . . . and

β =

(
a b c d
c c c b

)(
a b c d
b a c d

)
=

(
a b c d
a c c d

)(
a b c d
c b c a

)
,
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β ∈ D2S(X,Y )∩S(X,Y )D ⊆ (D)q(2,1) = (D)q(m,1) = (D)(m,1). Since β /∈
∪m+1

i=1 Di,

β ∈ DmS(X,Y )D; that is β = ληα for some λ ∈ D2, η ∈ S(X,Y ), α ∈ D. Since

a ∈ Xβ, we must have α =

(
a b c d
c b c a

)
. Since a = dβ = dληα and dλ ∈ Y for all

λ ∈ D2, we obtain that dλη = d which is a contradiction to η ∈ S(X,Y ).

(ii) Assume that m = n = 2. Let D =

{(
a b c d
c b c a

)
,

(
a b c d
c b b d

)}
. It is easy to

compute that

D2 =

{(
a b c d
c b c c

)
,

(
a b c d
b b b c

)
,

(
a b c d
c b b a

)
,

(
a b c d
b b b d

)}
,

D3 =D2 ∪
{(

a b c d
b b b b

)
,

(
a b c d
c b b c

)
,

(
a b c d
b b b a

)}

and D2 ⊆ D3 = D4 = D5 = D6 = . . .. Define β =

(
a b c d
b c c a

)
. Since

β =

(
a b c d
c b b a

)(
a b c d
a c b d

)
=

(
a b c d
b a a d

)(
a b c d
c b b a

)
,

β ∈ D2S(X,Y ) ∩ S(X,Y )D2 ⊆ (D)q(2,2) = (D)(2,2). Since β /∈ D ∪ D2 ∪ D3 =

D ∪ D2 ∪ D3 ∪ . . . ∪ Dm+1, there are λ, α ∈ D2, η ∈ S(X,Y ) such that β = ληα.

Since a ∈ Xβ, we must have α =

(
a b c d
c b b a

)
. If λ =

(
a b c d
b b b d

)
, then b =

aβ = aληα = bηα = bληα = bβ = c which is a contradiction. If λ ̸=
(
a b c d
b b b d

)
,

then dλ ∈ Y for all λ and implies that dλη ∈ Y . Since a = dβ = dληα, dλη = d.

Hence dλη /∈ Y , a contradiction.

Therefore, S(X,Y ) /∈ BQn
m.

Theorem 3.3.9. Let X,Y be sets. If |X| > 4, |Y | > 1 and Y $ X, then S(X,Y ) /∈ BQn
m.

Proof. Let m,n ∈ N. The case where m = 1 and n ∈ N was proved in Theorem 3.3.6. We

assume that m > 1. Since Y $ X, so |X \ Y | ≥ 1.

• If |X \ Y | = 1, then |Y | > 3 because |X| > 4. Let a, b, c, d ∈ Y and X \ Y = {e}. If

n = 1, we define

α1 =

(
Y e
d b

)
, α2 =

(
{a, b} c Y \ {a, b, c} e
a c d b

)
,

and let D = {α1, α2}. Then we can easily compute that

Dk = D2 =

{(
X
d

)
,

(
Y e
d a

)
,

(
{a, b, e} c Y \ {a, b, c}

a c d

)}
,

for any k > 2. Since(
Y e
a b

)
=

(
Y e
d a

)(
d Y \ {d} e
a b a

)
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=

(
Y e
a e

)(
{a, b} c Y \ {a, b, c} e
a c d b

)
∈ D2S(X,Y ) ∩ S(X,Y )D = DmS(X,Y ) ∩ S(X,Y )D,

we have

(
Y e
a b

)
∈ (D)q(m,1). Suppose that

(
Y e
a b

)
∈ (D)(m,1). Since

(
Y e
a b

)
/∈

m+1∪
i=1

Di, there are λ ∈ Dm, η ∈ S(X,Y ), α ∈ D such that

(
Y e
a b

)
= ληα. Since

a ∈ X

(
Y e
a b

)
, α = α2. If λ =

(
X
d

)
, then

∣∣∣∣X(
Y e
a b

)∣∣∣∣ > |((Xλ)η)α|, which

is impossible. If λ ̸=
(
X
d

)
, then b = eληα2 = aηα2 implies aη = e which is a

contradiction. Thus (D)q(m,1) ̸= (D)(m,1), that is S(X,Y ) /∈ BQ1
m. In case n > 1,

we define

α3 =

(
{a, b, c} Y \ {a, b, c} e

b a c

)
, α4 =

(
a b Y \ {a, b} e
a b d e

)
,

and put E = {α3, α4}. A direct computation shows that

E2 =

{(
X
b

)
,

(
{a, b, c} Y \ {a, b, c} e

b a d

)
,

(
{a, b} Y \ {a, b} e
b a c

)
,(

a b Y \ {a, b} e
a b d e

)}
,

E3 =

{(
X
b

)
,

(
Y e
b a

)
,

(
{a, b, c} Y \ {a, b, c} e

b a d

)
,

(
{a, b} Y \ {a, b} e
b a d

)
,(

{a, b} Y \ {a, b} e
b a c

)
,

(
a b Y \ {a, b} e
a b d e

)}
.

It is easy to see that E2 ⊆ E3 = E4 = E5 = . . . and we define

β =

(
{a, b, c} Y \ {a, b, c} e

a b c

)
.

Since

β =

(
{a, b, c} Y \ {a, b, c} e

b a d

)(
a {b, c} Y \ {a, b, c} e
b a c e

)
=

(
{a, b} c Y \ {a, b, c} e
c d a e

)(
{a, b} Y \ {a, b} e
b a c

)
∈E2S(X,Y ) ∩ S(X,Y )E2 ∩ E3S(X,Y ) ∩ S(X,Y )E3,

we obtain that β ∈
∩

i,j∈{2,3}

(E)q(i,j) ⊆ (E)q(m,n). Suppose that S(X,Y ) ∈ BQn
m.

Then (E)q(m,n) = (E)(m,n). Since β /∈
m+n∪
i=1

Ei, β = ληα for some λ ∈ Em, η ∈

S(X,Y ), α ∈ En. Since c ∈ Xβ, we must have α =

(
{a, b} Y \ {a, b} e
b a c

)
. Since

|Xβ| = 3, λ can be one of the possible cases:
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If λ =

(
{a, b, c} Y \ {a, b, c} e

b a d

)
, then c = eβ = eληα = dηα implies that

dη = e which is a conradiction.

If λ =

(
{a, b} Y \ {a, b} e
b a c

)
, then c = eβ = eληα = cηα implies that cη = e

which is a contradiction.

If λ =

(
a b Y \ {a, b} e
a b d e

)
, then a = cβ = cληα = dληα = dβ = b which is

a contradiction.

If λ =

(
{a, b} Y \ {a, b} e
b a d

)
, then a = cβ = cληα = dληα = dβ = b which

is a contradiction.

Hence β /∈ (E)(m,n), that is (E)q(m,n) ̸= (E)(m,n). Therefore, S(X,Y ) /∈ BQn
m.

• If |X \ Y | = 2. Since |X| > 4, we have |Y | > 2. Let a, b, c ∈ Y and X \ Y = {d, e}.

In this case, we define

D =

{(
b Y \ {b} {d, e}
b a d

)
,

(
Y d e
a c b

)}
and compute that

D2 =

{(
b Y \ {b} {d, e}
b a d

)
,

(
Y {d, e}
a c

)
,

(
Y ∪ {d} e

a b

)
,

(
X
a

)}
.

It is clear that D2 = D3 = D4 = . . .. So we let β =

(
Y ∪ {d} e

a c

)
and since

β =

(
Y ∪ {d} e

a d

)(
Y d e
a c b

)
=

(
Y ∪ {d} e

a b

)(
a b x
a c x

)
x∈X\{a,b}

=

(
Y ∪ {d} e

a e

)(
Y {d, e}
a c

)
∈S(X,Y )D ∩D2S(X,Y ) ∩ S(X,Y )D2,

we get that β ∈ (D)q(m,n) for n ≥ 1. If S(X,Y ) ∈ BQn
m, then β ∈ (D)(m,n). Since

β /∈
∪
i∈N

Di, β must belong to (D)(m,n); that is β = ληα for some λ ∈ Dm = D2, η ∈

S(X,Y ), α ∈ Dn = D ∪D2. From c ∈ Xβ, if n = 1, we must have α =

(
Y d e
a c b

)
.

Since |Xβ| = 2, λ ̸=
(
X
a

)
. If λ =

(
b Y \ {b} {d, e}
b a d

)
or

(
Y {d, e}
a c

)
, then a =

dβ = dληα = eληα = eβ = c which is a contradiction. If λ =

(
Y ∪ {d} e

a b

)
, then

c = eβ = eληα = bηα = a because Y α = a, a contradiction. Thus S(X,Y ) /∈ BQ1
m.

Now, we assume that n > 1. Then we also have α =

(
Y {d, e}
a c

)
. With the same

reason in case n = 1, we get a contradiction. Therefore, S(X,Y ) /∈ BQn
m.
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• If |X \ Y | > 2, then there are c, d, e ∈ X \ Y . Since |Y | > 1, we can let a, b ∈ Y . In

case m = 2, we define

α1 =

(
c d X \ {c, d}
e d b

)
, α2 =

(
Y {c, d} x
b e a

)
x∈X\(Y ∪{c,d})

and let D = {α1, α2}. It is easy to compute the following sets:

D2 =

{(
d X \ {d}
d b

)
,

(
c d X \ {c, d}
a e b

)
,

(
X
b

)
,

(
{c, d} X \ {c, d}
a b

)}
,

D3 =

{(
d X \ {d}
d b

)
,

(
d X \ {d}
e b

)
,

(
X
b

)
,

(
d X \ {d}
a b

)}
and we can see that D3 = D4 = D5 = . . .. Given β =

(
c X \ {c}
a b

)
, we see that

β /∈
∪
i∈N

Di. Since

β =

(
c X \ {c}
e b

)
α2

=

(
c d X \ {c, d}
a e b

)(
a X \ {a}
a b

)
=

(
c X \ {c}
c b

)(
{c, d} X \ {c, d}
a b

)
=

(
c X \ {c}
d b

)(
d X \ {d}
a b

)
∈S(X,Y )D ∩D2S(X,Y ) ∩ S(X,Y )D2 ∩ S(X,Y )D3,

we have β ∈ (D)q(2,1) ∩ (D)q(2,2) ∩ (D)q(2,3). Suppose that S(X,Y ) ∈ BQn
2 for some

n ∈ N. From D3 = D4 = D5 = . . ., we can consider n in 3 cases as follows.

Case n = 1, we have β ∈ (D)(2,1). Then β = ληα for some λ ∈ D2, η ∈

S(X,Y ), α ∈ D. Since cλ ∈ Y for all λ ∈ D2, cλη ∈ Y and we must have α = α2

because a ∈ Xβ. Since a = cβ = cληα2, cλη /∈ Y which is a contradiction.

Case n = 2, we have β ∈ (D)(2,2). Then there are λ, α ∈ D2, η ∈ S(X,Y ) such

that β = ληα. Since a ∈ Xβ, we must have

α =

(
c d X \ {c, d}
a e b

)
or

(
{c, d} X \ {c, d}
a b

)
.

Since cλ ∈ Y for all λ ∈ D2, cλη ∈ Y . Hence b = cληα = cβ = a which is a

contradiction.

Case n ≥ 3, we have β ∈ (D)(2,n). Similarly, we also obtain that β = ληα

for some λ ∈ D2, η ∈ S(X,Y ), α ∈ Dn. Since a ∈ Xβ, we must have α =(
d X \ {d}
a b

)
. Since cλ ∈ Y for all λ ∈ D2, cλη ∈ Y implies that a = cβ =

cληα = b which is a contradiction.
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Therefore, S(X,Y ) /∈ BQn
2 . Now, we assume that m > 2. If n = 1 or n = 2, we

define

D =

{(
Y c d x
b e d a

)
x∈X\(Y ∪{c,d})

,

(
a Y \ {a} c d x
a b e b x

)
x∈X\(Y ∪{c,d})

}
.

We see that

D2 =

{(
c d X \ {c, d}
a d b

)
,

(
Y c d x
b e b a

)
x∈X\(Y ∪{c,d})

,

(
Y ∪ {d} x

b a

)
x∈X\(Y ∪{d})(

a Y \ {a} c d x
a b e b x

)
x∈X\(Y ∪{c,d})

}
,

D3 =

{(
d X \ {d}
d b

)
,

(
c X \ {c}
a b

)
,

(
Y c d x
b e b a

)
x∈X\(Y ∪{c,d})

,

(
X
b

)
,(

Y ∪ {d} x
b a

)
x∈X\(Y ∪{d})

,

(
a Y \ {a} c d x
a b e b x

)
x∈X\(Y ∪{c,d})

}

and D3 = D4 = D5 = . . .. Let β =

(
Y c d x
b d b a

)
x∈X\(Y ∪{c,d})

. Then we have

β =

(
Y c d x
b e b a

)
x∈X\(Y ∪{c,d})

(
a Y \ {a} x
a b d

)
x∈X\Y

=

(
Y ∪ {d} c x

b d x

)
x∈X\(Y ∪{c,d})

(
Y c d x
b e d a

)
x∈X\(Y ∪{c,d})

=

(
Y c d x
b d b c

)
x∈X\(Y ∪{c,d})

(
c d X \ {c, d}
a d b

)
∈DmS(X,Y )D ∩ S(X,Y )D ∩ S(X,Y )D2,

hence β ∈ (D)q(m,2)∩(D)q(m,1). We suppose that S(X,Y ) ∈ BQn
m, n ∈ {1, 2}. Since

β /∈
∪
i∈N

Di, we obtain that β = ληα for some λ ∈ Dm, η ∈ S(X,Y ), α ∈ D ∪ D2.

Since d ∈ Xβ, α can be

(
Y c d x
b e d a

)
x∈X\(Y ∪{c,d})

or

(
c d X \ {c, d}
a d b

)
. If

λ =

(
Y ∪ {d} x

b a

)
x∈X\(Y ∪{d})

, then we obtain by cλ = eλ that d = cβ = cληα =

eληα = eβ = a which is a contradiction. If λ ̸=
(
Y ∪ {d} x

b a

)
x∈X\(Y ∪{d})

, by

eλ ∈ Y we also get that eλη ∈ Y . Since Y α = b, we get a contradiction from

a = eβ = eληα = b. Thus S(X,Y ) /∈ BQn
m for n = 1 or 2. Finally, we assume that

n > 2. Now, we show that S(X,Y ) /∈ BQn
m for m,n > 2. Let

D =

{(
Y c d x
b d e a

)
x∈X\(Y ∪{c,d})

,

(
a Y \ {a} c d x
a b c b e

)
x∈X\(Y ∪{c,d})

}
.

We see that

D2 =

{(
c d X \ {c, d}
e a b

)
,

(
Y ∪ {c} d x

b e a

)
x∈X\(Y ∪{c,d})

,
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(
Y ∪ {d} c x

b d a

)
x∈X\(Y ∪{c,d})

,

(
a Y \ {a} c d x
a b c b e

)
x∈X\(Y ∪{c,d})

}
,

D3 =D2 ∪
{(

c X \ {c}
a b

)
,

(
d X \ {d}
a b

)
,

(
c X \ {c}
e b

)
,

(
A X \A
b a

)
A=Y ∪{c,d}

}
,

D4 =D3 ∪
{(

X
b

)}

and D2 ⊆ D3 ⊆ D4 = D5 = D6 = . . .. Define β =

(
Y ∪ {c} d x

b d a

)
X\(Y ∪{c,d})

.

Then we have

β =

(
Y ∪ {c} d x

b e a

)
x∈X\(Y ∪{c,d})

(
a Y \ {a} X \ Y
a b d

)
=

(
Y ∪ {c} d x

b c e

)
x∈X\(Y ∪{c,d})

(
Y ∪ {d} c x

b d a

)
x∈X\(Y ∪{c,d})

∈D3S(X,Y ) ∩ S(X,Y )D3

⊆DmS(X,Y )D ∩ S(X,Y )Dn ⊆ (D)q(m,n).

If S(X,Y ) ∈ BQn
m, then β ∈ (D)q(m,n) = (D)(m,n). Since β /∈

∪
i∈N

Di, β =

ληα for some λ ∈ Dm, η ∈ S(X,Y ), α ∈ Dn. Since d ∈ Xβ, we must have

α =

(
Y ∪ {d} c x

b d a

)
x∈X\(Y ∪{c,d})

. Since Dm = D4 for all m > 2, we consider

λ in 2 cases. Firstly, λ =

(
Y ∪ {c} d x

b e a

)
x∈X\(Y ∪{c,d})

, we have a = eβ =

eληα = aηα = b because aη ∈ Y which is a contradiction. Secondary, λ ̸=(
Y ∪ {c} d x

b e a

)
x∈X\(Y ∪{c,d})

. Since dλ ∈ Y for all λ and dλη ∈ Y , we have

d = dβ = dληα = b which is a contradiction. Thus S(X,Y ) /∈ BQn
m.

Now, the proof is completed.
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