CHAPTER 3

Main Results

Recall that a subsemigroup A of a semigroup S is said to be (m,n)-ideal [resp.
(m, n)-quasi-ideal] of S, m,n are nonnegtive integers, if A™SA™ C A [resp. A™SNSA" C
A] where A’S = S = SA". From the previous chapter, we see that if A is an (m,n)-quasi-
ideal of S, then A is an (m,n)-ideal of S. The following example shows that there is an

(m,n)-ideal which is not an (m, n)-quasi-ideal.

Example 3.0.1. Let X ={1,2,3,4}, Y = {1,2,3}. Define a semigroup S(X,Y) = {a :
X — X | Ya C Y} with the composition of function and g = <% % g’ % . Then one

can see that

) (1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Ben=911 1 231 112)11711)(2221)(2222
is an (2, 1)-ideal of S, but not an (2, 1)-quasi-ideal of S.

In this research, we extend the concept of BQ-semigroups to that of (m,n)-BQ-

semigroups which is defined as follows.

Definition 3.0.2. Let m,n be nonnegative integers. A semigroup S is called an (m,n)-

BQ-semigroup if the set of (m,n)-ideals and (m, n)-quasi-ideals coincide.

In this thesis, we denote the class of all (m,n)-BQ-semigroups by BQ",

3.1 (m,n)-BQ-semigroups

In 1969, Kapp [10] proved that a right [left] simple semigroup and a right [left]
0-simple semigroup are in BQ, see [3, p. 5] and [3, p. 67], respectively. Now, we obtain

an analogous result in (m, n)-B@-semigroups.

Theorem 3.1.1. Let m,n be nonnegative integers. If S is a right [left] simple semigroup
or a right [left] 0-simple semigroup, then S € BQ,.

Proof. Assume that S is a right simple semigroup. We show that every (m,n)-ideal of
S is (m, n)-quasi-ideal of S. Indeed, let A be an (m,n)-ideal of S. Since A™S is a right
ideal of S, by assumption, we have A™S = S. Hence SA™ = A™SA™ C A, which implies
that AMSNSA" =SNSA" = SA™ C A. Then A is an (m,n)-quasi-ideal of S.
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In the case where S is a right O-simple semigroup, let B be an (m,n)-ideal of
S. If B = {0}, we are done by definition. The case where B # {0} can be shown as
above. Similarly, we can prove that if S is a left simple or a left O-simple semigroup, then

S e BQy,. O]

Let m,n be nonnegative integers. In [4], an element z € S is said to be an (m,n)-
reqular element if x € ™ Sx™ where 2V is defined by 2%y = yz° = y for all y € S. The set
of all (m,n)-regular elements of S is denoted by Reg)’ (S). In particular, S is said to be
(m,n)-regular if every element of S is an (m, n)-regular element. Obviously, if z € ™ Sx",
then x € Sz, i.e. Regl(S) C Reg(S), where Reg(S) is the set of all regular elements of
S. In fact, Lajos [13] has shown that every (m,n)-ideal of a regular semigroup S is an

(m,n)-quasi-ideal of S, which leads to the following theorem.

Theorem 3.1.2. Let m,n be nonnegative integers. Every reqular semigroup is an (m,n)-

BQ-semigroup.

In [2], Calais characterized BQ-semigroups: S € BQ if and only if for all z,y € S,
({7, y}) a1 = ({2,9})g(1,1)- In this thesis, we generalize this result as follows.

Theorem 3.1.3. Let S be a semigroup and m,n nonnegative integers. Then the following

statements are equivalent:
(1) every (m,n)-ideal A of S is an (m,n)-quasi-ideal of S;

(2) for every nonempty subset D of S such that |D| < m+n, the (m,n)-ideal generated
by D of S is an (m,n)-quasi-ideal of S.

Proof. Let A be an (m,n)-ideal of S. Assume that (2) holds. Let z € A™S N SA™
Then z = (I[[2a;)s1 = so(II}_;b;) for some s1,s2 € S and some a;,b; € A. Let D =
{a1,az, ..., am}U{b1, ba, ..., b,}. Hence |[D| < m+n and (D), ) is an (m, n)-quasi-ideal
of S by assumption. This implies that z € (D){}, \SNS(D),, ) € (D)(m,n) S A. Thus,

A is an (m, n)-quasi-ideal of S. Conversely, if (1) holds, it is easy to see that (2) holds. O

To prove that a semigroup S belongs to BQy,, we have to show that (A)(, ) =
(A)g(m,n) for any nonempty subset A of S such that |[A| < m + n. By Proposition 2.2.9,
it suffices to show that (A)y(mn) € (A)(m,n)- It is obvious that U;’flx{m’n} At C U AL
so we must show that A™S N SA™ C A™SA". Thus if we want to show that S ¢ BQ7},,
we may show that there is an element x € A™S N SA™ but z ¢ A™SA". The following

theorems are tools for showing that S € BQ},.



Theorem 3.1.4. Let m,n be nonnegative integers. Every bi-ideal of a regular semigroup

is an (m,n)-BQ-semigroup.

Proof. Let T be a bi-ideal of a regular semigroup S and A an (m,n)-ideal of T. Let
x € AT NTA™. By the regularity of S, there is s € S such that x = xsx. Then
x =axsx € AMTSTA™ C AMTA™ C A. Therefore, A is an (m,n)-quasi-ideal of T', that
is, T € BQ,. O

Theorem 3.1.5. Let m,n be nonnegative integers. If S is a regular semigroup, then the

following statements hold:

(1) every right ideal of S is an (m,n)-BQ-semigroup,

(2) for any right ideal R of S and left ideal L of S, RN L is an (m,n)-BQ-semigroup.
Proof. Assume that S is a regular semigroup.

(1) Let R be aright ideal of S and A an (m, n)-ideal of R. We show that A" RN RA™ C
A. Let x € AMRN RA™. By assumption, x € xSz C A™RSRA™ C AM™RA™ C A.

So, R is an (m,n)-BQ-semigroup.

(2) Let R be a right ideal of S and L a left ideal of S. We have () # RL C RN L. Let B
be an (m,n)-ideal of RN L. For each y € B™"(RNL)N(RNL)B" C B"RN LB",
we obtain by the regularity of S that

y € ySy C B"RSLB" C B"RLB" C B™(RNL)B" C B.
Therefore, RN L is an (m, n)-BQ-semigroup.
O

Theorem 3.1.6. Let S be a semigroup and m,n nonnegative integers. If ) # A C
Reggz(s): then (A)q(m,n) i (A)(m,n)

Proof. Tt suffices to prove that (A)g(mn) € (A)(m,n)- Assume that ) # A C Regy, (S). Let
x € (A)gmn)- If 2 € A" for some i € {1,2,...,max{m,n}}, then 2 € (A)(, ). Suppose
r € AMSNSA™. If m =0 or n =0, it is clear that x € AMSA" C (A) 4, n). We assume
that m,n # 0. Then z = (I a;)s = t(II7_,b;) for some s, € S and some a;,b; € A. If
n =1, we have z = (II]” a;)s = tby. Since by € A C Reg),,(S) C Reg(S), there is v € S
such that by = bjvb; and hence x = tby = tbyvb; = (11" a;)svb; € A™SA = AMSA" C

(A)(m,n)- Now, we suppose that n > 1. Since a; € A, by assumption, there is u € S such
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that a1 = af"ua? and hence x = (111, a;)s = afua? (I ya;)s = afua?™ (I a;)s =
a’lnuarf_lt(l'[?:lbj) € AMSA™. So (A)gmm) € (A)(mn) and by Proposition 2.2.9, the

theorem follows. O

Some results that are true for BQ-semigroups need not be true in the case of (m,n)-

BQ-semigroups, see for example Theorem 2.2.4. See also the example given below.

Counter Example 3.1.7. Let X = {1,2,3,4}, Y = {1,2}. Define a semigroup S(X,Y) =
{a: X - X | Ya C Y} with the composition of function and let A = { <% % i1’> §> },

Bz{(% % Z %)} Since
1 2 3 4\ (1 2 3 4\(1 2 3 4\(1 2 3 4
111 3)—\1 11 3/J{1 1 4 3)\1 1 1 3/

A C Reg(S(X,Y)). We see that

123 4\ /123 4\ /(1 2 3 4
(B)<1,4>={(1 1 4 2)’<1 1 2 1)7(1 11 1>}=(B)q(1,4)-

However, (AU B)(14) # (AU B),(1,4) since

1 2 3 4\ (1 2 3 4\(1 2 3 4 q
11 2 2)fislie 2/01 . 5 322
1 2 3 4\ (1 2 3 4\(1 2 3 4\(1 2 3 4\(1 2 3 4\(1 2 3 4
112 2)=\1 13 3J{1t 14 2J{1t 113){1t 14 2){1 14 2)

1 2 4 1 2 3 4
0(1 23 2>6(AUB)S(X,Y)OS(X,Y)(AUB)4g(AUB)q(lA),but (1 LS 2>¢

AU B)(1.4)- Indeed, we put a = l2 ¥ and suppose that o € (AU B)q 4. Direct
(1,4) Tl 2302 (1,4)

computation shows

wosr= {0 2TDA3TDEIINA 51D
o SRR WK S
={G 2 DM EicbldMat Onlverdtd))
womr={( 1190119033 90329)
1+4

So o ¢ U(A U B)" and we must have a € (AU B)S(X,Y)(AU B)*. That is a = \3y
i=1
for some A\ € AUB,3 € S(X,Y),y € (AU B)% Since Xa = {1,2}, so v must be

<% % ‘3 411> If\ = (% % ? %),then we have 2 = 3a = 3A\8y = 18vy. Hence

15 = 3, a contradiction with 8 € S(X,Y). Similarly, if A = <% % 131 3), then we have

2 = 4da = 4By = 287. Hence 2 = 3, a contradiction with 5 € S(X,Y). Therefore,
(e ¢ (A U B)(174). That is (A U B)(174) ?é (A U B)q(174).
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3.2 Some equivalence relations on (m,n)-BQ-semigroups

For elements a, b in a semigroup S, we write aBBb if and only if (a)(;,1) = (b)(1,1) and
write aQb if and only if (a)4(1,1) = (b)g(1,1)- In [10,18], the authors show that the relations
B, Q are equivalence relations on S. In [14], Mielke showed that if S € BQ, then B = Q.
In [21], the equivalence relation B}, where m, n are nonnegative integers, was introduced
by Tilidetzke. In this thesis, we define the relation Q), which is more general than the

relation Q and extend some results in [14] to (m, n)-BQ-semigroups as follows.

Definition 3.2.1. Let S be a semigroup and m, n nonnegative integers. For a,b € S, we

write a Qb if and only if either
(i) a=bor
(ii) a=b"u,a =ovb" and b = a™x,b = ya™ for some u,v,x,y € S.
Moreover, we denote the Q7 -class containing a by Q7 (a).
Theorem 3.2.2. The relation Q}, s an equivalence relation. Moreover, Q C Q.

Proof. The reflexive and symmetric properties are satisfied by definition. Next, we prove
that the relation 97, has transitivity. In case m = 0 or n = 0, it is easy to see that 97,
has transitivity. Now, we assume that m,n # 0. Let a,b,c € S be such that aQ' b and
bQlc. If a =10 or b= c, we are done. If a # b and b # c, there are s,t,u,v,w,z,y,z € S
such that a = b™s,a = tb",b = a™u,b = va™,b = c™w,b = xc™,c = by and ¢ = zb".

Hence

a="b"s = c"w(c™w)" s, a = tb" = t(xc") " Lac?,

¢ = by Za™ula™ )Ty, e = 20R E(h L™

Therefore, aQ7 c. This proves the relation Q7 is an equivalence relation. It is easy to see

that Q" C Q. 0

Proposition 3.2.3. Let a,b € S and m,n nonnegative integers. Then aQ}b if and only

if (a)q(m,n) = (b)q(m,n)

Proof. Assume that (a)qmn) = (b)g(mn)- If @ = b, then aQ;b. We now suppose that

a # b and consider the following cases.

Case 1:a € b™SNSH",bea™SNSa" We are done by definition.
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Case 2 : a = b*,2 < k < mazx{m,n} and b € a™S N Sa". There exist s,s’ € S such

that b = a™s = s'a™. Then
a = bk — (ams)k _ (bmks)k _ bmbm(k—l)s(bmks)k—l = b,

where u = 6™+~ Dg(bmks)k=1 € §. Similarly, we obtain that a = vb”®, where

v = (s'b)E-1s/pnk=1) € S So a Q™ b.

Case 3:a€b™SNSV" and b=ar2<k< max{m,n}. We can prove in a similar
fashion, as above.

Case 4 :a = b¥ 2 < k < maz{m,n} and b = a!,2 <1 < max{m,n}. Then
DY e Y F N N

a=b =aq

We can choose an integer 7 > 0 such that I"k"*' > max{m,n} + 1. Hence a €

b™S N Sb™. Similarly, we can show that b € a™S N Sa™. Therefore a Q) b.
Conversely, we assume that a Q' b. There exist u,v,z,y € S such that
a=0"u=v0"b=0a"xr =ya".
Since a € b™S N SO"™ C (b)g(m,n) and b € a™S N Sa"™ C (a)g(m,n), it follows that

(a)q(m,n) C (b)q(m,n) C (a)q(m,n)-
Therefore, the condition holds. O

Proposition 3.2.4. For any nonnegative integers m,n, By, C O .

PT’OOf. Let (w,y) € B;Ln Since Yy € (y)(m,n) - (x)(m,n) - (x)q(m,n)a we have (y)q(m,n) -
(Z)g(m,n)- Similarly, we obtain that (z)ym,n) € (¥)gmmn)- Thus, (2)g@m.n) = (¥)g(m,n), that
is, (z,y) € Q.. O

Lemma 3.2.5. Let S be a semigroup and m,n be nonnegative integers. For a € S, the

following statements are true:
1. if a € Reg) (S), then Bl (a) = QP (a);
2. if a ¢ Reg),(S), then B} (a) = {a}.

Proof. Let a € S.
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1. If a € Reg]’ (S), then a = a™xa™ for some x € S. Let b € Q" (a) be such that b # a.
In case m = 0 or n = 0, it is easy to see that b € B}, (a). Thus, we assume that
m,n > 0. Hence, there are u,v,s,t € S such that a = b™u = vb",b = s = ta”.

Consider,

=b-0"tu
= ta"b™

=ta" 1 ab™

=ta" tamza"b™ tu
=ta"a™ tza" tab™ u

=amsa™ lza™ Lob" My

= b ua™ Lsa™ Lza™ Lob o™

and

b=ta" = ta"a™ ‘za" = a™sa™ ‘xa”.

By definition, we obtain that b € B} (a), that is Q" (a) C B} (a). By Proposition
3.2.4, we have B, (a) C Q" (a). Thus, B (a) = Q" (a).

2. If a ¢ Reg],(S), we prove by contradiction. Suppose that there is b # a and
be B} (a). Then

a=b"sb" = a™ta"b™ Lsb" ta™ta™ € a™Sa”
for some s,¢ € S, which is a contradiction. Therefore, B, (a) = {a}.
In particular, we can see that if a ¢ Reg(S), then B(a) = {a}. O

Lemma 3.2.6. Let S be a semigroup and m,n nonnegative integers. If Reg(S) =

Reg (S), then B = B},

Proof. Assume that Reg(S) = Reg),(S). By Proposition 2.3.5, it suffices to show that B C
B. Let (a,b) € B. Then a = bub,b = ava for some u,v € S. If a ¢ Reg" (S) = Reg(S) or
b ¢ Regl (S) = Reg(S), then a = b by Lemma 3.2.5; hence (a,b) € B,. If a,b € Reg? (S),
there are s,t € S such that a = a™sa™ and b = b™tb". Hence a = b™tb"ub™tb"™ and

b= a"sa"va™sa", that is (a,b) € BJ},. This means that B C B}},. O
Theorem 3.2.7. Let m,n be nonnegative integers. If S € BQY,, then B, = Q).
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Proof. Assume that S € BQy,. Let (z,y) € Q.. Then (2)y(m.n) = (¥)g(mn)- By assump-

tion, we obtain

(x)(m,n) C (x)q(m,n) = (y)q(m,n) - (y)(m n) - (y)q(m,n) = (:B)q(m,n) C (x)(m,n)
Hence, (z,y) € B}, and by proposition 3.2.4, we obtain B}}, = Q). O
The next example show that the converse of Theorem 3.2.7 is not true.

Example 3.2.8. Let X,Y be nonempty sets such that ¥ C X,|X| = 4,]Y| = 3.
The semigroup of transformations with invariant set, denoted by S(X,Y), is defined by
SX,)Y)={a: X - X |Ya CY}. In[8,16], we know that S(X,Y’) with composition
of functions is a nonregular semigroup. For convenience, let X = {1,2,3,4},Y = {1,2,3}

and (3,7, A1, \2 € S(X,Y) given by
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
p= <1 12 3),72(1 11 3>’A1= <1 3 1 4> andA?Z(l 2 1 4)‘
Since 7 = B2\ = Mot € FS(X,Y) N S(X,Y)B C (B)ypn and 7 £ fi = 1,2,3. If
v € (B)(2,1), then v = B%X383 for some A3 € S(X,Y). Since 3 = 4y = 4B%)\38 = 2X33
and 48 = 3, so we must have 2\3 = 4, a contradiction with A\3 € S(X,Y). Thus,

(B)2,1) # (B)g(2,1) and so by Theorem 3.1.3, S(X,Y) ¢ BQ). A direct computation
shows that Bi = O} as follows,

s={i D013 3)} {11119}

(RN EEINEE DI B!
DI (RN (TR
TERE 1 P ANGE Y R

R R I (RN R
R R R D (EERI (T
IR R

R R R (E R (R RN
R DD D R ER ()
(DR D (R B )]
R R (R (R [EE R (R}

—
(S
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Theorem 3.2.9. Let A be a nonempty subset of a semigroup S and let ) # X C A

(A)g(mm) if and only if

()] =1 for all x € X. Then (A)mn)

n
m

be such that |[AN B

(X)(m,n)

(X)q(m,n) .

(A)(m,n)- Since

zeX

Proof. We first prove that (X))

U (a)(m,n) - (A)(m,n)a

acA

U {a} <
zeX

X =

(X)mn) € (A)(m,n) and since

(U a)(m,n) - ( U (a)(m,n))(m,n)
acA

a€A

(A) (m,n)

(X)(m,n)u

((X) (m,n) ) (m,n)

c

yeX

= (A)g(m,n), Which implies that

Then we asume that (A)(n,n)

X C (A>(m,n) - (A>q(m,n) Hence,

(A) (m,n)

(X)(m,n) C (X)q(m,n) - (A)q(m,n)
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Thus, (X)(m,n) = (X)q(m,n)
COHVGI'SGly, if (X)(m,n) = (X)q(m,n)u then A - (A)(m,n) = (X)(m,n) = (X)
which implies that (A)gmn) € (X)g(m,n)- S0,

(A)(m,n) - (A)q(m,n) - (X)q(m,n) = (X)(m,n) = (A)(m,n)
and the proof is complete. ]

Corollary 3.2.10. Let S be a semigroup and a € S. Then (a)(mn) = (@)g(m,n) if and
Only iffOT all C' C B?n(a)’ (C)(m,n) = (C)q(m,n)

Proof.  Assume that (a)(m ) = (@)gmn)- Let C C By, (a). Since

CC U (C)(m,n) = (a)(m,n)a

ceC

(C)(m,n) C (a)(m,n). Since
@ mam) = |J O mm) S (Ogmgmy»

(C)(mmn) = (@)(m,n)- By assumption, we obtain that (C)(m,n) € (C)mn)- Thus (C)mn) =

(C)g(m,n)- The proof for the converse is easy. O

3.3 Some semigroups of transformations which are

(m,n)-BQ-semigroups

Let X,Y be nonempty sets such that ¥ C X and m,n nonnegative integers. In
previous chapter, the concept of full transformation semigroup on X, 7'(X), and its sub-
semigroups were introduced. In this section, we characterize these semigroups when they

belong to BQ7,.

Lemma 3.3.1. T(X) is an (m,n)-BQ-semigroup.

Proof. We obtain this Lemma by Theorem 2.4.1 and 3.1.2. O
Theorem 3.3.2. T(X,Y) is an (m,n)-BQ-semigroup.

Proof. We prove that T'(X,Y) is a left ideal of T'(X). Let a € T(X,Y) and g € T(X).
Since Xfa € Xa C Y, fa € T(X,Y). That is T(X,Y) is a left ideal of T(X). By
Theorem 3.1.5 and Theorem 2.4.1, we see that T(X,Y) = T(X)NT(X,Y) is an (m,n)-
BQ@-semigroup. O

By Theorem 2.4.2, we obtain the following theorem.
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Theorem 3.3.3. If one of the following statements holds:

(i) Y] =1,
then the semigroup S(X,Y) € BQ,.
Theorem 3.3.4. If |X| =3 and |Y| =2, then S(X,Y) € BQy,.

Proof. If m,n = 1, we are done by Theorem 2.4.4. Assume that m > 1 or n > 1. For
convenience, we let X = {1,2,3}, Y = {1,2}. Then

1 23V /1 23\ /1 23\ /1 23\ /1 23\ /12 3
5ZS(X,Y)Z{<111)»<112>v(113)7(121)7(122)7(123)

1 23\ /1 23\ /1 23\ /1 23\ /123

21 1)0(2 1 2)l213)(221)2 2 2)

419

In this proof, we want to show that (A)(,n) = (A)g(m,n) for any nonempty subset A of

S. So we divide the proof into four parts as follows.

e Part I : To show that Reg],(S) = Reg(S). By Theorem 2.4.3, we have
1
Reg(S) = {(1

1723 1 2 3\ (1
2 1 1):{2 1 2) 12

— DO
— o
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— DN
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—N NN
— o
b 7
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NN NN
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~__
i N
==

DO DO [Nl N}
LW W
N~

It suffices to show that Reg(S) C Reg),(S). We can see that
1 2 3 1 2 3 1 2 3 1 2 3
E(S) = {(1 1 1), <1 1 3), <1 2 1>» (1 2 2)3
1 2 3 1 2 3 1 2 3
1 243 I\ 2vi2ar2er W2A-25 3/

By definition, we can see that every idempotent elements are (m, n)-regular elements.

Thus E(S) C Reg (S). Since

123\ (123 /1t 23 (1 23\Y/123° (123
21 1) =\122)l212)={121)213 =(1 23
are idempotent elements and
3\ (1
1) = {1
3\ (1
2) =11
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DO —
— D
N O
~__
N
— =
NN NN



Y
N —
— N
ww
~__

— = R

e
DN DN DN DO DN DO
—wW NWw W =W

—— N
WWw wWww

N\

N —

— Do

DO O

~_

=

Il

TN N TN N N N
N2 R N N 2

[l V)
— W

7 N N
[NOT SR NS
—N =N
[NCFJCEI I
N N, W 72
Il Il
P N\ Pt U T
DO =
— N
DO O
N~ N
3
3
[\
7N\
DN —
— N
Do o
~__
3

1 23\ (12 3
21 3)=(21 3
where
(1 2 3
2 1 1
M=3/1 2 3
17242
((1 2 3
)
= (123)
13 h
\
4
1, 7B
2 1 3
W=Y/1 2 3
\T 23

Thus (% % i’), <% % §>’ <% % g) are (m,n)-regular elements which implies

s~z {(3 7 1).(3 3 9.

Therefore, Reg(S) = Reg),(5).
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if k£ is odd,
if k is even,
if k£ is odd,

if k is even,

if £ is odd,

if £ is even,

3 3

3 3

@ oy
7 N i~
DN = DO =
— DN — DN
W w —
~_ ~_
3 3

if m + n is even,

if m 4+ n is odd,

if m + n is even,

if m + n is odd,

if m + n is even,

if m +n is odd.



e Part IT : To find B}, on S. By Lemma 3.2.6, we have B}, = B. By Lemma 3.2.5(2),

U TR0 1))
Jal
SR
for any m,n. In the end of this part, we put
s {FIDEIDCIDEINE 1Y
(39306390639
= E(S) U{a, B}

Wherea:<% % %),,8:<% g i{’) Note that
1 2 3 1 2 3
0‘2—50‘—<1 1 1)752—0‘5—<2 2 2)-

e Part III : To claim that for any A C F(S) and § # B C {a, 5},

(AUB)? = S ifAC{G i ZD@ % §>}

AuCuUD ; otherwise,

where C C {(% % ?), <% g %)} such that

?) € C if Yn= {1}, for somen € AU B,

we can compute that

o))

3

|

(05

|
—
— =
— DN
—

7\
DO —
— DN

DO DN DO DN

1
1
1
2

==
(NN V) N DN [\l N}

H/_/
—N
7N\
DO —

N Al N
N =
DO DO — DN

g) € Cif Yn = {2}, for somen e AU B,
and D C {a, 3} such that

Bu{a} it G

p=tpug i}

ww
N——
Y

— =

O NN
[\JJV)
N~

m

o

NN =N
W W
N
7\
— =

B ; otherwise.

Indeed, let A C E(S) and () # B C {«, 8}.
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1 2 3
111

1 2 3

InthecasewhenAQ{( 2 9 9

)

>}, it is clear that (AU B)? = C.

In another case, we first show that AU DUC C (AU B)2.

(i) A C A2 since A C E(S), i.e. 0 =02 for all § € A.

(ii) D C A2 U AB U BA since

1 2 3
a_a<121>
(1 2 3
—a(122>
=g,
:0‘<123>
1Y 2%3
2(113>a
= ALY 3
—(223)0‘
_<123><123>
=l7)1 NI R 2
and
1 2 3
ﬁ:5(121>
1 /9’3
=5<122>
DAk 3
=5<123>
2 3
—(%13)5
}—9—7
=<223>5
_<123><123>
el iR i Wl ey

(iii) C € BA U B? by the following:
1 2 3 182 3

-IfB:{a,ﬁ},thenC:{(l 1 1),<2 5 2>}QB2

- If B={a} and A contains 6 such that Y0 = {2}, then

S ((RRIACRRIL}

12 3> € BA which implies that

2 2 2
)}QBAUB2.

)

1 2 3
1 11

1 2 3
2 2 2

Since Xaf =Y 0 = {2}, <

o-{(

1 2 3
111

1 2 3
2 2 2
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- If B={a} and A dose not contain € such that Y6 = {2}, then

(1 ))er

- In case B = {3}, we can prove as two above cases that C C BA U B2.

Now, we have C C BAU B2.

From (i), (ii), (iii), we obtain that
AUCUD C A?UABUBAUB? = (AUB)~

Next, we show that (AU B)2 C AUC U D. 1t is easy to see that B? C C,
A%2 C AUC U D. Since

s {10 DY)
s {300 12)
w2002 9.0 )
5*5:{(% ; ‘i’):(% > 3)}

ABUBA C CUD. Now, we obtain (AU B)?=AUCUD.

In the end of this part, we want to show that (AU B)* = (AU B)? for all k > 1.
Since
(AUB)3 = (AUB)(AUB)?
(AUB)C =C
(AUB)(AUCUD) =(AUB)?U[(D\ B)UC]

= (AU B)?,
the result is obtained by induction.

e Part IV : Now, we show that (H ), n) = (H)g(m,n) for any nonempty subset H of
S. According to Theorem 3.2.9, we can reduce to the case of S* instead of S, and,
by Theorem 3.1.6, we obtain that (F')(;, ) = (F)g(m,n) for any F' C E(S). Thus we
need show that

(AU B)(mn) = (AU B)gm.n)

for any A C E(S) and 0 # B C {«,8}. To complete this proof, we consider the

following three cases.
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Case : m =1,n > 1, we have (AUB)SNS(AUB)" = (AUB)SNS(AUB)2.
Then

uwamﬂmﬂaﬂ—<AUBWQSC§C:*AUBWC=(AumsmuBP,

(AUB)SNS(AUCUD).

By a part of the proof of Theorem 2.4.4, see [15], we have (D)1 1y = (D)qq1,1)-
Since AU C C Reg(S), by Theorem 2.2.4 we obtain that

(AUB)SNS(AUBUC) C(AUC U D),
=(AUCUD)q
—(AUCUD)U(AUCUD)?
U(AUCUD)S(AUCUD)
—(AUB)?U(AUB)*U(AUCUD)S(AUCUD)
=(AUB)?U(AUB)S(AUCUD)
UCS(AUCUD)U(D\ B)S(AUC UD)
C(AUB)?U(AUB)S(AUCUD)
U(AUB)?U A%2S(AuCU D)
C(AUB)?U(AUB)S(AUCUD)
UAS(AUCUD)

C(AUB)?U(AUB)S(AUuCUD)

C( 2
(AUB)*U (AU B)S(AU B)?
(

N

(AUB)?U(AUB)S(AU B)?
AUB

)
)
AUB)U
( YU(AUB)?U(AUB)S(AUB)"®
C(AUB);

(1,n)-
Therefore, (AU B)SNS(AUB)" C (AU B)q1,5)-

Case : m > 1,n =1, we have (AUB)"SNS(AUB) = (AUB)?SNS(AUB).
Then

CSNS(AUB),
(AUB)’SNS(AUB) = ( )

(AUCUD)SNS(AU B).

1 2 3\ (1 2 3
CS C (AUB)? C (AUB) 4, 1y- If (AUB)?SNS(AUB) = (AUCUD)SNS(AUB),

23



by a part of the proof of Theorem 2.4.4, see [15], we have (D)(1,1) = (D)qq1,1)-
Since AU C C Reg(S), by Theorem 2.2.4 we obtain that

(AUCUD)SNS(AUB) C(AUCU D)y
—(AUCUD)q
=(AUCUD)U(AUCUD)?
U(AUCUD)S(AUCUD)
=(AUB)?U(AUB)*U(AUCUD)S(AUCUD)
=(AUB)?U(AUCUD)S(AUB)
U(AUCUD)S(CU(D\ B))
=(AUB)?U(AUB)*S(AUB)
U(AUB)?SCU(AUB)2S(D\ B)
C(AUB)*U(AUB)’S(AUB)UC U (AU B)*SA?
C(AUB)?U(AUB)?S(AUB)U (AU B)?
U(AUB)?SA
C(AUB)*U(AUB)*S(AUB)
(AUB)?U (AU B)™S(AU B)

Q(A U B)(m,l)-

Therefore, (AU B)™"SNS(AUB) C (AU B) 1)
Case : m,n > 1, we have (AU B)™SN S(AUB)" = (AU B)2SNS(AU B)2
Then

CSNSC CC=CSC=(AUB)?S(AUB)?,
(AUB)?SNS(AUB)? =

(AUCUD)SNS(AUCU D).

By a part of the proof of Theorem 2.4.4, see [15], we have (D)1 = (D)q1,1)-
Since AUC C Reg(S), by Theorem 2.2.4 we obtain that

(AUCUD)SNS(AUCUD) C(AUCUD), 1)

(A ucu D)(l,l)

(AUCUD)U(AUuCUD)?
U(AUCUD)S(AuCUD)
—=(AUB)?U(AUB)*U(AUB)?>S(AUB)?
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(AUB)?U(AUB)™S(AUB)"
Q(A U B)(m,n)

Therefore, (AU B)"SNS(AUB)" C (AU B)(n)-

maz{m,n} m-+n
From above cases, since U (AUB)" C U (AUB) for all m, n, (AUB)g(mn) €
i=1 i=1

(AU B)(mn)- By Proposition 2.2.9, we now get (D)n) = (D)g(mn) for any
nonempty subset D of S*.
Therefore, S(X,Y) € BQ", and the proof is complete. O

From the above two theorems, we obtain the analogous result on BQ, with BQ,

see Theorem 2.4.4, as follows.

Corollary 3.3.5. If one of the following statements holds

(i) [Y]=1,
(i11) |X| < 3,
then S(X,Y) € BQ7,.

Since S(X,Y) is a nonregular semigroup, see [8,16], S(X,Y) need not to be an
(m,n)-BQ-semigroup. The following theorems show that S(X,Y’) dose not belong to

BQ? in some cases.

Theorem 3.3.6. Let X,Y be nonempty sets such that |X| > 3,[Y| > 1 and Y G X. If
m =1, then S(X,Y) ¢ BQ,.

Proof. If n =1, we are done by Theorem 2.4.4. Suppose that n > 1.

o Case |Y| = 2. Let Y = {a,b}. Since |X| > 3, so we have | X \ Y| > 1 and let
c,d € X \Y. If n =2, we define a1, 51,71 € S(X,Y) by

X
<Z 3 ) \{g’b’ C}> = a1 = m1af € aS(X,Y)NS(X,Y)af C (a1)g2)-
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Suppose that a1 81 € (a1)(1,2), then a1 81 € a15(X, Y)a? because a1 81 ¢ {ai,a?, ai}.
Then there exists 71 € S(X,Y) such that a1 81 = alma% Hence b = ca161 =
a b oc X\{a b, C}>, we have that by ¢ Y

a a a
which is a contradiction with 71 € S(X,Y). Thus S(X,Y) ¢ BQ3. If n > 2, we

define
_(a b ¢ X\{ab,c} _f(a b ¢ X\{abc}
a2_<a a b d >’*82_<a b a a )

_(a b ¢ X\A{ab,c}
72_(@ a d a >

and let D = {1, a9}. Since

Dn:DSZ{(g 2 ; X\{g,b,c}>7<a b ¢ X\{abc}>

caymad = bmpald. Since of = (

a a a
(a b c X\{a,b,c}) ( b ¢ X\{a,b,c})}

a a a c ; a a d ’
for any n > 2, we have (Z 2 g X\ {Z’ be}) a2 = ypanaiag € DS(X,Y)N
S(X,Y)D™ C (D)g(1,n)- Suppose that a182 € (D)1, then a1 € DS(X,Y)D"
because a152 ¢ U1+” D'; there exist 2 € S(X,Y), a € D and \* € D" such that
a1fs = ampA*. Since ca; = cas = b, s0 b = ca1 P8y = camA® = bp*. Thus we
Z 2 2 X\{a b, c} € D3, which implies that by ¢ Y, a
contradiction to 72 € S(X,Y) Thus S(X,Y) ¢ BQT.

must have \* =

Case |Y| > 2. Since X \' Y # (), we can assume that a,b,c € Y and d € X \ Y. Now,
we define a1, ag, 1, B2 by

a1:<a b Y\{a b} X\Y>, 2:<g Y\b{a} X>Y>’

a a

oGl A Ll o8 b
zeX\Y

It easy to see that asa; = ajasas, a% = o1 and asojag = a% = a%. Define

Y \a{a} :1:>

o

zeX\Y

D = {a1,as}. Then we have D? = {a1, a9, agay, a3} and
3 2 2 4
D° ={a1, 0109, 001, 05,0501} = D* = ... = D"

Hence agf1 = faciag € DS(X,Y) N S(X,Y)D"™ C (D)y(1,n)- Suppose that a1 €
(D)(1ny- Since azBy ¢ UiH DY, asBy € DS(X,Y)D" = DS(X,Y)D? that is
a1 = an) for some o € D, n € S(X,Y), A € D3. Since

O@ﬂl:(z Y\a{a} X>Y>
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and (Xag)py # Xa* for all o € D3\ {ajaz}, we must have A\ = ajay =
<a b Y\{a b} X\Y>. If @« = a1, then b = aaf; = aan\ = banA =

a a
basfr = a Wthh is a contradiction. If a = ao, then ¢ = dasf; = dasnaias =

cnajag implies that en € X \ 'Y which is a contradiction to n € S(X,Y). Thus
042,81 ¢ (D>(1,n)> that is ( )(1 n) 7& ( )q(l n) Therefore, S(X7 Y) ¢ BQ?

O]

Theorem 3.3.7. Let X,Y be sets such that |X| =4,|Y| =2 and Y G X. If one of the

following statements holds
(i) n=1,
(1) m=2,n=2,

then S(X,Y) ¢ BQy,.

Proof. Let X = {a,b,c,d} and Y = {a,b}. Define

=
=
Il
N\
S
o> o> @ o
o
o
Sl /|
2
(V)
Il
N\

SIS
B oo oo
SO
QUL
~__—

b
a c d a
(b d a>’ﬁ 7 (a
(i) Assume that n = 1. If m = 1, we are done by Theorem 2.4.4. Let m > 1 and

D = {u1,72,p}. Then we have

It’s easy to see that D> C D3 = D* = D5 = .. .. Since

B_abcdabcd_abcdabcd

“\b b d a/\b a ¢c ¢)J] " \a a d c)Jla a b c)’

B e D*S(X,Y)NS(X,Y)D C (D)g21) € (D)gs,1) S (D)g(m,1)- Suppose that

S(X,Y) € BQ},. Then (D)y(m1) = (D)(m,1y- Since 8 ¢ U;ey D', 8 € D™S(X,Y)D,

that is 8 = Ana for some A € Dm,n € S(X,Y),a € D. Since ¢ € X3, we must have
_abcdlf)\_abcd a b c d adeth

®=\a a b ¢ “\a a ¢ a)%\b b d a b b d b) MR

dA € Y. Then we get a contradiction from b = df = dAna = a. In the other hand,

we have ¢ = ¢ = cA\na = a which is a contradiction. Therefore, S(X,Y) ¢ BQL..
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(74) Assume that m =n = 2. Let D = {ug, 71, p}. Then we have

)
no
\
—N
o —
Q
Qo
ISINe
QUL
~~__
N
Q
ISIRS
S0
o .
N~
S
o
oo
0
Q Q.
~_~
TN
Q
Q o
Q0
Sl
"
N\
QL
oo
0
S
~_~

Suppose that S(X,Y) € BQ3. Since

B_abcd a b ¢c d\_(a b ¢ d\{a b c d
“\b b ¢ al\b a ¢c d)] " \a b d c)J\a a b c)’

B € D*S(X,Y)NS(X,Y)D? C (D)y22) = (D)(29)- Since B ¢ Ji_, D’, there are

M\ a € D2 ne S(X,Y) such that B = Ana. Since ¢c € X3 and a = Y3 = Y \na, we

a b ¢ d
a a b c

If cA ¢ Y, then d\ = a for all A € D?. Consider b = d3 = d\na = ana = a which is
a contradiction. Thus S(X,Y) ¢ BQ3.

must have o = . If eX €Y, then ¢ = ¢8 = cAna = a, a contradiction.

O]

Theorem 3.3.8. Let X,Y be sets such that | X| =4,|Y| =3 and Y & X. If one of the

following statements holds

(i) m=2,n =2,
then S(X,Y) ¢ BQ7,.
Proof. Let X = {a,b,c,d} and Y = {a,b,c}. Suppose that S(X,Y) € BQ},.

If m = 1, we are done by Theorem 2.4.4. Let m > 1 and
D = {(a b c d), <Z 2 ¢ g) } Then we can compute that

a b c d\_f(a b c d\fa b ¢ d
b a ¢c d)  \a ¢ ¢ d)/\ec b ¢ a)
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(i)

B € D*S(X,Y)NS(X,Y)D C (D)ya1) = (D)gim1y = (D) (m.1)- Since B ¢ "3 D",
B € D™S(X,Y)D; that is 8 = Ao for some A € D2 n € S(X,Y),a € D. Since
a b g) Since a — df = dAna and dA € Y for all
A € D?, we obtain that d\n = d which is a contradiction to n € S(X,Y).

Assume that m = n = 2. LetDz{(a b e d>7<a b E{l)} It is easy to

c b ¢ a c b

a € X3, we must have o =

SO

compute that

and D2C D} =D*=D>=D6 = . .. Deﬁneﬁz(z Ié i Z).Since

B_abcd a b c d\_(a b c d\fa b c

“\e b b af\a ¢ b d)] T \b a a d)j\c b Db ’
B e D*S(X,Y)NS(X,Y)D* C (D)ya2) = (D)2,2)- Since 8 ¢ DUD?UD?* =
DUD?>UD3U...UD™?! there are \,a € D?,n € S(X,Y) such that 8 = A\na.

Since a € X3, we must have a = <CCL 2 g Z) If A= (z 2 g g),thenb:

ISIESH

aff = adna = bna = bAna = b = c which is a contradiction. If A\ # <z g g g>7

then dA € Y for all A and implies that dAn € Y. Since a = df = d\na, din = d.
Hence d\n ¢ Y, a contradiction.

Therefore, S(X,Y) ¢ BQ7,. O

Theorem 3.3.9. Let X,Y be sets. If | X[ >4,]Y|>1andY G X, then S(X,Y) ¢ BQy,.

Proof. Let m,n € N. The case where m = 1 and n € N was proved in Theorem 3.3.6. We
assume that m > 1. Since Y G X, so [X \ Y] > 1.

If | X \Y|=1, then |Y| > 3 because |X| > 4. Let a,b,c,d € Y and X \ Y = {e}. If

n = 1, we define

0‘1:<d b) <{a x c Y\{fi’b’c} f;)

and let D = {a1,a2}. Then we can easily compute that

e (DI ICARR

for any k£ > 2. Since

- )
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( )({ab} ¢ Y\{abc} Z)

€ D?’S(X,Y)NS(X,Y)D =D™S(X,Y)NS(X,Y)D,

we have <a Z) € (D)g(m,1)- Suppose that (a g) € (D) (m,1)- Since (a 2) ¢

m+1
U D', there are A € D™, € S(X,Y),a € D such that (}; g) = Ana. Since
i=1

a € X(Z g), a=a. If A= (g), then

is impossible. If A # ‘g , then b = eAnag = anas implies an = e which is a

X<Z g)‘ > [((XA)n)al, which

contradiction. Thus (D)y(m1) # (D)(m,1), that is S(X,Y) ¢ BQ},. In case n > 1,

we define

a3:<{a,g,c} ¥\ {abe} 6),a4:<g b Y\ a0} )

c e’

and put E = {a3,a4}. A direct computation shows that

Ek{(){){)’({a,g,c} Y\{Z,b,c} 2>7<{a(,)b} Y\j[la,b} i>,
(o 87 )}

E3_{<)b(> (g a) <{abc} Y\{abc} 2>7<{ai)b} Y\ga,b} fz>’
<{a,bb} Y\ga,b} §>,<Z g Y\ga,b} 6)}

It is easy to see that F? C E3 = E* = E = ... and we define

52({%2,0} Y\ {a.bc} )

@

Since

6:<{a,2,c} Y\ {a,be} 2) (Z .o ¥\{abe) 2)

:({a,cb} ; Y\{g,b,c} e> <{al,)b} Y\;{la,b} e>

e Cc

€E?S(X,Y)NS(X,Y)E* N E*S(X,Y)NS(X,Y)E?,

we obtain that § € ﬂ (E)gij) € (E)gimm)- Suppose that S(X,Y) € BQy,.

ije{2,3}
m+n
Then (E)g(mn) = (E)m,n)- Since B ¢ U E', 8 = \na for some A\ € E™ n €
i=1

S(X,Y),a € E". Since ¢ € X3, we must have a = ({ai)b} Y ga, b} g) Since
| X 8] = 3, A can be one of the possible cases:
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If A= <{a,g, ¢} Y\ {Z’b’ c} 2), then ¢ = e = eAna = dna implies that
dn = e which is a conradiction.

If A= ({a 0} Y\ {a b} 6> then ¢ = e = eAna = cna implies that ¢n = e
which is a contradlctlon

Tf ) — (g b Y\ {ab} 6) then @ = ¢8 = cAna = dAna = dB — b which is
a contradiction.

IftA= <{a[,)b} YA ga, b} 2), then a = ¢f = cA\na = dAna = df = b which

is a contradiction.
Hence 3 ¢ (E)(mn), that is (E)gmn) 7 (E)(m,n)- Therefore, S(X,Y) ¢ BQy,.

If | X \Y|=2. Since | X| > 4, we have |Y| > 2. Let a,b,c € Y and X \ Y = {d, e}.

In this case, we define

- {(t T\ (L 2 0)
and compute that

D2 L {<Z Y\a{b} {dc,le}>7<}; {d,ce}>7<YUa{d}

)()}

) and since

SO

a0

It is clear that D? = D3 = D* = .... So we let 3 = <Y Ua{d}

p- (YU“} B 25
<YUa{d} Z) <g 2 g)m){\{a,b}

YU e} (Y {de
< (= )

S(X,Y)DND?S(X,Y)NS(X,Y)D?,

we get that 8 € (D)g(mn) for n > 1. If S(X,Y) € BQy,, then 8 € (D), - Since

B¢ U D!, 8 must belong to (D) (m,ny; that is 8 = Ana for some A\ € D™ = D?.n¢
€N
S(X,Y),a € D" = DUD?. From c € X3, if n = 1, we must have o = (Z Ccl g)

Since [X 8] = 2, A # ({f) If A = (’g Y (b} {dc’f}> or <Y {d, 6}>, then a —

df = d o = ehna = ef = ¢ which is a contradiction. If A = (Y U {d} i), then

c=efl = e\na = bna = a because Ya = a, a contradiction. Thus S(X,Y) ¢ BQ.,.
Now, we assume that n > 1. Then we also have a = (g {d,ce}>‘ With the same

reason in case n = 1, we get a contradiction. Therefore, S(X,Y’) ¢ BQ",.
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e If | X\ Y| > 2, then there are ¢,d,e € X \ Y. Since |Y| > 1, we can let a,b € Y. In

case m = 2, we define

a1=<c d X\{c,d}) OQ:(Y {c,d} m)
e d b ’ b € a zeX\(YU{c,d})

and let D = {ay,a9}. It is easy to compute the following sets:

DQZ{@ X\b{d})(c d X\{cd}) < ) ({cd} X\{cd})}’

S

(e TN ) () 7
and we can see that D3 = D* = D® = ... Given 8 = <2 X \b{c})’ we see that
B¢ U D'. Since
1€EN
B = X \b{C})O‘2

(e}

C

X \b{c}> ({c&d} X\ gc, d}>
X \b{c}> (g X \b{d})

QO

(
< d X\gc,d}) (3 X\b{“})
(
(

S(X,Y)YDND?S(X,Y)NS(X,Y)D?*NS(X,Y)D?,

we have 8 € (D)g(2,1) N (D)g2,2) N (D)g(2,3)- Suppose that S(X,Y) € BQY for some

n € N. From D? = D* = D® = ..., we can consider n in 3 cases as follows.

Case n = 1, we have 8 € (D),1)- Then 8 = Ana for some A\ € D% n ¢
S(X,Y),a € D. SincecA € Y forall A € D2, cAn € Y and we must have a = ao

because a € X . Since a = ¢ff = cA\nag, cAn ¢ Y which is a contradiction.

Case n = 2, we have 8 € (D)(22). Then there are \,a € D% n e S(X,Y) such
that 8 = Ana. Since a € X3, we must have

a:(c d X\{c d}> <{c&d} X\l{)c,d}>'

a e

Since cA € Y for all A € D2, cAnp € Y. Hence b = cAna = ¢ = a which is a

contradiction.

Case n > 3, we have 8 € (D)(27n). Similarly, we also obtain that § = Ana
for some A\ € D?,n € S(X,Y),a € D". Since a € X3, we must have a =
g X \b{d} . Since cA € Y for all A € D?, cAn € Y implies that a = ¢ =

cAna = b which is a contradiction.
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Therefore, S(X,Y) ¢ BQ4. Now, we assume that m > 2. If n =1 or n = 2, we
define

D:{<Y c d :I}) (a Y\{a} ¢ d x> }
boed af \(vureay \? b € b ) vy

We see that

D2:{<c d X\{c,d}) <Y ¢ d a:) <YU{d} :c>

a d b b e b A o vutean b @) wex\(vu{dy)
<a Y\{a} ¢ d 93) }
a b e b =z e X\(Y Ufe.d)) ’

s_J(d X\A{d} c X\A{c} Yl X

2 ={{d V) (V) E ), e ()
<YU{d} x) <a Y\{a} ¢ d l’) }

b @) ex\uiay \% g ¢ b T) o vufeay

andD3:D4:D5:....Let5:(% o~ ﬁ) . Then we have
zeX\(YU{c,d})

Y ¢ d =z a Y\{a} =z
p :(b e b a) (a \b{ J d>
zeX\(YU{c,d}) zeX\Y
4 (Y u{d} ¢ a:) (Y c d :c)
b d 2] ovueap\? € % %) o vigea
c d = d X \{cd
& < d b C) d \ g })

eD"S(X,Y)DNS(X,Y)DNS(X,Y)D?,

_

C
2€X\(YU{c,d}) <a

hence 8 € (D) g(m,2) N (D)g(m,1)- We suppose that S(X,Y) € BQy,, n € {1,2}. Since
g ¢ U D', we obtain that 3 = Ana for some A € D™, n € S(X,Y),a € DU D2,

1€eN
Since d € X[, a can be <}(; g g £> of <c Ell X\{{)C,d}) It
a
z€X\(YU{c,d})
A= <Y Y td} g) . then we obtain by cA = eX that d = cf = cAna =
2€X\(YU{d})
e\na = eff = a which is a contradiction. If \ # (Y Ub{d} ‘2) , by
2eX\(YU{d})

el € Y we also get that eAn € Y. Since Ya = b, we get a contradiction from
a=ef =e na=0>. Thus S(X,Y) ¢ BQ, for n =1 or 2. Finally, we assume that
n > 2. Now, we show that S(X,Y) ¢ BQy, for m,n > 2. Let

D:{(Y c d x) (a Y\{a} ¢ d x) }
bod e a) \wupeay \ b ¢ boe) xruied)

We see that

D2:{<c d X\{c,d})(Yub{c} d z

e a b e a ’

) zeX\(YU{c,d})
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(958 @ NS
preptu{ (0 ) (V) () () L)

()

and D?> C D3 C D* = D5 = DS = .. .. Define 8 = (YUI){C}
Then we have

= <Y Ub{c} 2) 2eX\(YU{c,d}) (g - \b{a} : 5 Y>

:<YU{C} d x) <YU{d} c x)
b € €)sex\(Yuled)) b d 0] \vuled)

eD?*S(X,Y)NnS(X,Y)D?

d x

d a> X\(YU{ed))

LIRS

CD™S(X,Y)D N S(X,Y)D" C (D) ymm)-

If S(X,Y) € BQp, then 8 € (D)yimm = (D)mm)- Since 8 ¢ | J D', 8 =
€N
Ana for some A\ € D™ np € S(X,Y),aa € D". Since d € X3, we must have
a = <Y Ub{d} cci g) . Since D™ = D* for all m > 2, we consider
zeX\(YU{c,d})
YU{c} d =z
b

4 , we have a = eff =

A in 2 cases. Firstly, A = ( a>
zeX\(YU{c,d})

eAna = ana = b because an € Y which is a contradiction. Secondary, A #

(Y Ub{c} g 2) . Since d\ € Y for all A and d\np € Y, we have
zeX\(YU{c,d})
d = df = d\na = b which is a contradiction. Thus S(X,Y) ¢ BQ},.

Now, the proof is completed. O
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