CHAPTER 3

Main Results

Recall that a subsemigroup A of a semigroup S is said to be (m, n)-ideal [resp. (m, n)-quasi-ideal] of S, m, n are nonnegtive integers, if $A^m S A^n \subseteq A$ [resp. $A^m S \cap S A^n \subseteq A$] where $A^0S = S = SA^0$. From the previous chapter, we see that if A is an (m, n)-quasi-ideal of S, then A is an (m, n)-ideal of S. The following example shows that there is an (m, n)-ideal which is not an (m, n)-quasi-ideal.

Example 3.0.1. Let $X = \{1, 2, 3, 4\}$, $Y = \{1, 2, 3\}$. Define a semigroup $S(X, Y) = \{\alpha : X \to X \mid Y\alpha \subseteq Y\}$ with the composition of function and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \end{pmatrix}$. Then one can see that

$$(\beta)_{(2,1)} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 2 \end{pmatrix} \right\}$$

is an (2,1)-ideal of *S*, but not an (2,1)-quasi-ideal of *S*.

In this research, we extend the concept of BQ-semigroups to that of (m, n)-BQsemigroups which is defined as follows.

Definition 3.0.2. Let m, n be nonnegative integers. A semigroup S is called an (m, n)-BQ-semigroup if the set of (m, n)-ideals and (m, n)-quasi-ideals coincide.

In this thesis, we denote the class of all (m, n)-BQ-semigroups by BQ_m^n

$3.1 \quad (m,n)$ -BQ-semigroups

In 1969, Kapp [10] proved that a right [left] simple semigroup and a right [left] 0-simple semigroup are in BQ, see [3, p. 5] and [3, p. 67], respectively. Now, we obtain an analogous result in (m, n)-BQ-semigroups.

Theorem 3.1.1. Let m, n be nonnegative integers. If S is a right [left] simple semigroup or a right [left] 0-simple semigroup, then $S \in BQ_m^n$.

Proof. Assume that S is a right simple semigroup. We show that every (m, n)-ideal of S is (m, n)-quasi-ideal of S. Indeed, let A be an (m, n)-ideal of S. Since A^mS is a right ideal of S, by assumption, we have $A^mS = S$. Hence $SA^n = A^mSA^n \subseteq A$, which implies that $A^mS \cap SA^n = S \cap SA^n = SA^n \subseteq A$. Then A is an (m, n)-quasi-ideal of S.

In the case where S is a right 0-simple semigroup, let B be an (m, n)-ideal of S. If $B = \{0\}$, we are done by definition. The case where $B \neq \{0\}$ can be shown as above. Similarly, we can prove that if S is a left simple or a left 0-simple semigroup, then $S \in BQ_m^n$.

Let m, n be nonnegative integers. In [4], an element $x \in S$ is said to be an (m, n)regular element if $x \in x^m S x^n$ where x^0 is defined by $x^0 y = yx^0 = y$ for all $y \in S$. The set of all (m, n)-regular elements of S is denoted by $Reg_m^n(S)$. In particular, S is said to be (m, n)-regular if every element of S is an (m, n)-regular element. Obviously, if $x \in x^m S x^n$, then $x \in xSx$, i.e. $Reg_m^n(S) \subseteq Reg(S)$, where Reg(S) is the set of all regular elements of S. In fact, Lajos [13] has shown that every (m, n)-ideal of a regular semigroup S is an (m, n)-quasi-ideal of S, which leads to the following theorem.

Theorem 3.1.2. Let m, n be nonnegative integers. Every regular semigroup is an (m, n)-BQ-semigroup.

In [2], Calais characterized BQ-semigroups: $S \in BQ$ if and only if for all $x, y \in S$, $(\{x, y\})_{(1,1)} = (\{x, y\})_{q(1,1)}$. In this thesis, we generalize this result as follows.

Theorem 3.1.3. Let S be a semigroup and m, n nonnegative integers. Then the following statements are equivalent:

- (1) every (m,n)-ideal A of S is an (m,n)-quasi-ideal of S;
- (2) for every nonempty subset D of S such that $|D| \le m+n$, the (m, n)-ideal generated by D of S is an (m, n)-quasi-ideal of S.

Proof. Let A be an (m, n)-ideal of S. Assume that (2) holds. Let $x \in A^m S \cap SA^n$. Then $x = (\prod_{i=1}^m a_i)s_1 = s_2(\prod_{j=1}^n b_j)$ for some $s_1, s_2 \in S$ and some $a_i, b_j \in A$. Let $D = \{a_1, a_2, \ldots, a_m\} \cup \{b_1, b_2, \ldots, b_n\}$. Hence $|D| \leq m+n$ and $(D)_{(m,n)}$ is an (m, n)-quasi-ideal of S by assumption. This implies that $x \in (D)_{(m,n)}^m S \cap S(D)_{(m,n)}^n \subseteq (D)_{(m,n)} \subseteq A$. Thus, A is an (m, n)-quasi-ideal of S. Conversely, if (1) holds, it is easy to see that (2) holds. \Box

To prove that a semigroup S belongs to BQ_m^n , we have to show that $(A)_{(m,n)} = (A)_{q(m,n)}$ for any nonempty subset A of S such that $|A| \leq m + n$. By Proposition 2.2.9, it suffices to show that $(A)_{q(m,n)} \subseteq (A)_{(m,n)}$. It is obvious that $\bigcup_{i=1}^{max\{m,n\}} A^i \subseteq \bigcup_{i=1}^{m+n} A^i$, so we must show that $A^m S \cap SA^n \subseteq A^m SA^n$. Thus if we want to show that $S \notin BQ_m^n$, we may show that there is an element $x \in A^m S \cap SA^n$ but $x \notin A^m SA^n$. The following theorems are tools for showing that $S \in BQ_m^n$.

Theorem 3.1.4. Let m, n be nonnegative integers. Every bi-ideal of a regular semigroup is an (m, n)-BQ-semigroup.

Proof. Let T be a bi-ideal of a regular semigroup S and A an (m, n)-ideal of T. Let $x \in A^m T \cap TA^n$. By the regularity of S, there is $s \in S$ such that x = xsx. Then $x = xsx \in A^m TSTA^n \subseteq A^m TA^n \subseteq A$. Therefore, A is an (m, n)-quasi-ideal of T, that is, $T \in BQ_m^n$.

Theorem 3.1.5. Let m, n be nonnegative integers. If S is a regular semigroup, then the following statements hold:

- (1) every right ideal of S is an (m, n)-BQ-semigroup,
- (2) for any right ideal R of S and left ideal L of S, $R \cap L$ is an (m, n)-BQ-semigroup.

Proof. Assume that S is a regular semigroup.

- (1) Let R be a right ideal of S and A an (m, n)-ideal of R. We show that A^mR ∩ RAⁿ ⊆
 A. Let x ∈ A^mR ∩ RAⁿ. By assumption, x ∈ xSx ⊆ A^mRSRAⁿ ⊆ A^mRAⁿ ⊆ A. So, R is an (m, n)-BQ-semigroup.
- (2) Let R be a right ideal of S and L a left ideal of S. We have $\emptyset \neq RL \subseteq R \cap L$. Let B be an (m, n)-ideal of $R \cap L$. For each $y \in B^m(R \cap L) \cap (R \cap L)B^n \subseteq B^mR \cap LB^n$, we obtain by the regularity of S that

$$y \in ySy \subseteq B^m RSLB^n \subseteq B^m RLB^n \subseteq B^m (R \cap L)B^n \subseteq B.$$

Therefore, $R \cap L$ is an (m, n)-BQ-semigroup.

Theorem 3.1.6. Let S be a semigroup and m, n nonnegative integers. If $\emptyset \neq A \subseteq Reg_m^n(S)$, then $(A)_{q(m,n)} = (A)_{(m,n)}$.

Proof. It suffices to prove that $(A)_{q(m,n)} \subseteq (A)_{(m,n)}$. Assume that $\emptyset \neq A \subseteq \operatorname{Reg}_m^n(S)$. Let $x \in (A)_{q(m,n)}$. If $x \in A^i$ for some $i \in \{1, 2, \ldots, \max\{m, n\}\}$, then $x \in (A)_{(m,n)}$. Suppose $x \in A^m S \cap SA^n$. If m = 0 or n = 0, it is clear that $x \in A^m SA^n \subseteq (A)_{(m,n)}$. We assume that $m, n \neq 0$. Then $x = (\prod_{i=1}^m a_i)s = t(\prod_{j=1}^n b_j)$ for some $s, t \in S$ and some $a_i, b_j \in A$. If n = 1, we have $x = (\prod_{i=1}^m a_i)s = tb_1$. Since $b_1 \in A \subseteq \operatorname{Reg}_m^n(S) \subseteq \operatorname{Reg}(S)$, there is $v \in S$ such that $b_1 = b_1vb_1$ and hence $x = tb_1 = tb_1vb_1 = (\prod_{i=1}^m a_i)svb_1 \in A^m SA = A^m SA^n \subseteq (A)_{(m,n)}$. Now, we suppose that n > 1. Since $a_1 \in A$, by assumption, there is $u \in S$ such

that $a_1 = a_1^m u a_1^n$ and hence $x = (\prod_{i=1}^m a_i)s = a_1^m u a_1^n (\prod_{i=2}^m a_i)s = a_1^m u a_1^{n-1} (\prod_{i=1}^m a_i)s = a_1^m u a_1^{n-1} t (\prod_{j=1}^n b_j) \in A^m S A^n$. So $(A)_{q(m,n)} \subseteq (A)_{(m,n)}$ and by Proposition 2.2.9, the theorem follows.

Some results that are true for BQ-semigroups need not be true in the case of (m, n)-BQ-semigroups, see for example Theorem 2.2.4. See also the example given below.

 $\begin{aligned} & \text{Counter Example 3.1.7. Let } X = \{1, 2, 3, 4\}, Y = \{1, 2\}. \text{ Define a semigroup } S(X, Y) = \\ & \{\alpha : X \to X \mid Y \alpha \subseteq Y\} \text{ with the composition of function and let } A = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 3 \end{pmatrix} \right\}. \text{ Since} \\ & \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 3 \end{pmatrix}, \\ A \subseteq Reg(S(X,Y)). \text{ We see that} \\ & (B)_{(1,4)} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \right\} = (B)_{q(1,4)}. \\ \text{However, } (A \cup B)_{(1,4)} \neq (A \cup B)_{q(1,4)} \text{ since} \\ & \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 2 \end{pmatrix} \text{ and} \\ & \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 2 \end{pmatrix}, \\ \text{so } \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 2 \end{pmatrix} \in (A \cup B)S(X,Y) \cap S(X,Y)(A \cup B)^4 \subseteq (A \cup B)_{q(1,4)}, \text{ but } \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 2 \end{pmatrix} \notin \\ & (A \cup B)_{(1,4)}. \text{ Indeed, we put } \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 2 \end{pmatrix} \\ & (A \cup B)^2 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 1 \end{pmatrix} \right\} \\ & (A \cup B)^3 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 4 \end{pmatrix} \right\} \right\} \end{aligned}$

$$(A \cup B)^4 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 1 \end{pmatrix} \right\}$$
$$(A \cup B)^5 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 1 \end{pmatrix} \right\}.$$

So $\alpha \notin \bigcup_{i=1}^{i-1} (A \cup B)^i$ and we must have $\alpha \in (A \cup B)S(X,Y)(A \cup B)^4$. That is $\alpha = \lambda\beta\gamma$ for some $\lambda \in A \cup B, \beta \in S(X,Y), \gamma \in (A \cup B)^4$. Since $X\alpha = \{1,2\}$, so γ must be $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 1 \end{pmatrix}$. If $\lambda = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 3 \end{pmatrix}$, then we have $2 = 3\alpha = 3\lambda\beta\gamma = 1\beta\gamma$. Hence $1\beta = 3$, a contradiction with $\beta \in S(X,Y)$. Similarly, if $\lambda = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 4 & 2 \end{pmatrix}$, then we have $2 = 4\alpha = 4\lambda\beta\gamma = 2\beta\gamma$. Hence $2\beta = 3$, a contradiction with $\beta \in S(X,Y)$. Therefore, $\alpha \notin (A \cup B)_{(1,4)}$. That is $(A \cup B)_{(1,4)} \neq (A \cup B)_{q(1,4)}$.

3.2 Some equivalence relations on (m, n)-BQ-semigroups

For elements a, b in a semigroup S, we write $a\mathcal{B}b$ if and only if $(a)_{(1,1)} = (b)_{(1,1)}$ and write $a\mathcal{Q}b$ if and only if $(a)_{q(1,1)} = (b)_{q(1,1)}$. In [10,18], the authors show that the relations \mathcal{B}, \mathcal{Q} are equivalence relations on S. In [14], Mielke showed that if $S \in BQ$, then $\mathcal{B} = \mathcal{Q}$. In [21], the equivalence relation \mathcal{B}_m^n , where m, n are nonnegative integers, was introduced by Tilidetzke. In this thesis, we define the relation \mathcal{Q}_m^n which is more general than the relation \mathcal{Q} and extend some results in [14] to (m, n)-BQ-semigroups as follows.

Definition 3.2.1. Let S be a semigroup and m, n nonnegative integers. For $a, b \in S$, we write $aQ_m^n b$ if and only if either

(i) a = b or

(ii)
$$a = b^m u, a = vb^n$$
 and $b = a^m x, b = ya^n$ for some $u, v, x, y \in S$.

Moreover, we denote the \mathcal{Q}_m^n -class containing a by $\mathcal{Q}_m^n(a)$.

Theorem 3.2.2. The relation \mathcal{Q}_m^n is an equivalence relation. Moreover, $\mathcal{Q}_m^n \subseteq \mathcal{Q}$.

Proof. The reflexive and symmetric properties are satisfied by definition. Next, we prove that the relation \mathcal{Q}_m^n has transitivity. In case m = 0 or n = 0, it is easy to see that \mathcal{Q}_m^n has transitivity. Now, we assume that $m, n \neq 0$. Let $a, b, c \in S$ be such that $a\mathcal{Q}_m^n b$ and $b\mathcal{Q}_m^n c$. If a = b or b = c, we are done. If $a \neq b$ and $b \neq c$, there are $s, t, u, v, w, x, y, z \in S$ such that $a = b^m s, a = tb^n, b = a^m u, b = va^n, b = c^m w, b = xc^n, c = b^m y$ and $c = zb^n$. Hence

$$a = b^{m}s = c^{m}w(c^{m}w)^{m-1}s, a = tb^{n} = t(xc^{n})^{n-1}xc^{n},$$

$$c = b^{m}y = a^{m}u(a^{m}u)^{m-1}y, c = zb^{n} = z(vb^{n})^{n-1}vb^{n}.$$

Therefore, $aQ_m^n c$. This proves the relation Q_m^n is an equivalence relation. It is easy to see that $Q_m^n \subseteq Q$.

Proposition 3.2.3. Let $a, b \in S$ and m, n nonnegative integers. Then $aQ_m^n b$ if and only if $(a)_{q(m,n)} = (b)_{q(m,n)}$.

Proof. Assume that $(a)_{q(m,n)} = (b)_{q(m,n)}$. If a = b, then $a\mathcal{Q}_m^n b$. We now suppose that $a \neq b$ and consider the following cases.

Case $1: a \in b^m S \cap Sb^n, b \in a^m S \cap Sa^n$. We are done by definition.

Case 2 : $a = b^k, 2 \le k \le max\{m, n\}$ and $b \in a^m S \cap Sa^n$. There exist $s, s' \in S$ such that $b = a^m s = s'a^n$. Then

$$a = b^{k} = (a^{m}s)^{k} = (b^{mk}s)^{k} = b^{m}b^{m(k-1)}s(b^{mk}s)^{k-1} = b^{m}u,$$

where $u = b^{m(k-1)}s(b^{mk}s)^{k-1} \in S$. Similarly, we obtain that $a = vb^n$, where $v = (s'b^{nk})^{k-1}s'b^{n(k-1)} \in S$. So $a\mathcal{Q}_m^n b$.

Case 3 : $a \in b^m S \cap Sb^n$ and $b = a^k, 2 \le k \le max\{m, n\}$. We can prove in a similar fashion, as above.

Case $4: a = b^k, 2 \le k \le max\{m, n\}$ and $b = a^l, 2 \le l \le max\{m, n\}$. Then

$$a = b^k = a^{lk} = b^{lk^2} = a^{l^2k^2} = b^{l^2k^3} = a^{l^3k^3} = \dots$$

We can choose an integer r > 0 such that $l^r k^{r+1} > max\{m,n\} + 1$. Hence $a \in b^m S \cap Sb^n$. Similarly, we can show that $b \in a^m S \cap Sa^n$. Therefore $a\mathcal{Q}_m^n b$.

Conversely, we assume that $aQ_m^n b$. There exist $u, v, x, y \in S$ such that

$$a = b^m u = v b^n, b = a^m x = y a^n$$

Since $a \in b^m S \cap Sb^n \subseteq (b)_{q(m,n)}$ and $b \in a^m S \cap Sa^n \subseteq (a)_{q(m,n)}$, it follows that

$$(a)_{q(m,n)} \subseteq (b)_{q(m,n)} \subseteq (a)_{q(m,n)}.$$

Therefore, the condition holds.

Proposition 3.2.4. For any nonnegative integers $m, n, \mathcal{B}_m^n \subseteq \mathcal{Q}_m^n$.

Proof. Let $(x, y) \in \mathcal{B}_m^n$. Since $y \in (y)_{(m,n)} = (x)_{(m,n)} \subseteq (x)_{q(m,n)}$, we have $(y)_{q(m,n)} \subseteq (x)_{q(m,n)}$. Similarly, we obtain that $(x)_{q(m,n)} \subseteq (y)_{q(m,n)}$. Thus, $(x)_{q(m,n)} = (y)_{q(m,n)}$, that is, $(x, y) \in \mathcal{Q}_m^n$.

Lemma 3.2.5. Let S be a semigroup and m, n be nonnegative integers. For $a \in S$, the following statements are true:

1. if
$$a \in Reg_m^n(S)$$
, then $\mathcal{B}_m^n(a) = \mathcal{Q}_m^n(a)$;

2. if
$$a \notin Reg_m^n(S)$$
, then $\mathcal{B}_m^n(a) = \{a\}$.

Proof. Let $a \in S$.

1. If $a \in Reg_m^n(S)$, then $a = a^m x a^n$ for some $x \in S$. Let $b \in \mathcal{Q}_m^n(a)$ be such that $b \neq a$. In case m = 0 or n = 0, it is easy to see that $b \in \mathcal{B}_m^n(a)$. Thus, we assume that m, n > 0. Hence, there are $u, v, s, t \in S$ such that $a = b^m u = v b^n, b = a^m s = t a^n$. Consider,

$$a = b^{m}u$$

= $b \cdot b^{m-1}u$
= $ta^{n}b^{m-1}u$
= $ta^{n-1} \cdot ab^{m-1}u$
= $ta^{n-1}a^{m}xa^{n}b^{m-1}u$
= $ta^{n}a^{m-1}xa^{n-1}ab^{m-1}u$
= $a^{m}sa^{m-1}xa^{n-1}vb^{n-1}b^{m}u$
= $b^{m}ua^{m-1}sa^{m-1}xa^{n-1}vb^{n-1}$

and

$$b = ta^n = ta^n a^{m-1} xa^n = a^m sa^{m-1} xa^n.$$

By definition, we obtain that $b \in \mathcal{B}_m^n(a)$, that is $\mathcal{Q}_m^n(a) \subseteq \mathcal{B}_m^n(a)$. By Proposition 3.2.4, we have $\mathcal{B}_m^n(a) \subseteq \mathcal{Q}_m^n(a)$. Thus, $\mathcal{B}_m^n(a) = \mathcal{Q}_m^n(a)$.

2. If $a \notin Reg_m^n(S)$, we prove by contradiction. Suppose that there is $b \neq a$ and $b \in \mathcal{B}_m^n(a)$. Then

$$a=b^msb^n=a^mta^nb^{m-1}sb^{n-1}a^mta^n\in a^mSa^n$$

for some $s, t \in S$, which is a contradiction. Therefore, $\mathcal{B}_m^n(a) = \{a\}$.

In particular, we can see that if $a \notin Reg(S)$, then $\mathcal{B}(a) = \{a\}$.

Lemma 3.2.6. Let S be a semigroup and m,n nonnegative integers. If $Reg(S) = Reg_m^n(S)$, then $\mathcal{B} = \mathcal{B}_m^n$

Proof. Assume that $Reg(S) = Reg_m^n(S)$. By Proposition 2.3.5, it suffices to show that $\mathcal{B} \subseteq \mathcal{B}_m^n$. Let $(a, b) \in \mathcal{B}$. Then a = bub, b = ava for some $u, v \in S$. If $a \notin Reg_m^n(S) = Reg(S)$ or $b \notin Reg_m^n(S) = Reg(S)$, then a = b by Lemma 3.2.5; hence $(a, b) \in \mathcal{B}_m^n$. If $a, b \in Reg_m^n(S)$, there are $s, t \in S$ such that $a = a^m sa^n$ and $b = b^m tb^n$. Hence $a = b^m tb^n ub^m tb^n$ and $b = a^m sa^n va^m sa^n$, that is $(a, b) \in \mathcal{B}_m^n$. This means that $\mathcal{B} \subseteq \mathcal{B}_m^n$.

Theorem 3.2.7. Let m, n be nonnegative integers. If $S \in BQ_m^n$, then $\mathcal{B}_m^n = \mathcal{Q}_m^n$.

Proof. Assume that $S \in BQ_m^n$. Let $(x, y) \in \mathcal{Q}_m^n$. Then $(x)_{q(m,n)} = (y)_{q(m,n)}$. By assumption, we obtain

$$(x)_{(m,n)} \subseteq (x)_{q(m,n)} = (y)_{q(m,n)} \subseteq (y)_{(m,n)} \subseteq (y)_{q(m,n)} = (x)_{q(m,n)} \subseteq (x)_{(m,n)}.$$

Hence, $(x, y) \in \mathcal{B}_m^n$ and by proposition 3.2.4, we obtain $\mathcal{B}_m^n = \mathcal{Q}_m^n$.

The next example show that the converse of Theorem 3.2.7 is not true.

Example 3.2.8. Let X, Y be nonempty sets such that $Y \subseteq X, |X| = 4, |Y| = 3$. The semigroup of transformations with invariant set, denoted by S(X, Y), is defined by $S(X, Y) = \{\alpha : X \to X \mid Y\alpha \subseteq Y\}$. In [8,16], we know that S(X, Y) with composition of functions is a nonregular semigroup. For convenience, let $X = \{1, 2, 3, 4\}, Y = \{1, 2, 3\}$ and $\beta, \gamma, \lambda_1, \lambda_2 \in S(X, Y)$ given by

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \end{pmatrix}, \gamma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 3 \end{pmatrix}, \lambda_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 1 & 4 \end{pmatrix} \text{ and } \lambda_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{pmatrix}.$$

Since $\gamma = \beta^2 \lambda_1 = \lambda_2 \beta \in \beta^2 S(X, Y) \cap S(X, Y) \beta \subseteq (\beta)_{q(2,1)}$ and $\gamma \neq \beta^i, i = 1, 2, 3$. If $\gamma \in (\beta)_{(2,1)}$, then $\gamma = \beta^2 \lambda_3 \beta$ for some $\lambda_3 \in S(X, Y)$. Since $3 = 4\gamma = 4\beta^2 \lambda_3 \beta = 2\lambda_3 \beta$ and $4\beta = 3$, so we must have $2\lambda_3 = 4$, a contradiction with $\lambda_3 \in S(X, Y)$. Thus, $(\beta)_{(2,1)} \neq (\beta)_{q(2,1)}$ and so by Theorem 3.1.3, $S(X, Y) \notin BQ_2^1$. A direct computation shows that $\mathcal{B}_2^1 = \mathcal{Q}_2^1$ as follows,

$$\mathcal{B}_{2}^{1} = \left\{ \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 1 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 &$$

$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 1 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 1 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 1 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 1 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 1 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 1 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 3 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 3 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 3 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 3 & 4$$

Theorem 3.2.9. Let A be a nonempty subset of a semigroup S and let $\emptyset \neq X \subseteq A$ be such that $|A \cap \mathcal{B}_m^n(x)| = 1$ for all $x \in X$. Then $(A)_{(m,n)} = (A)_{q(m,n)}$ if and only if $(X)_{(m,n)} = (X)_{q(m,n)}$.

Proof. We first prove that $(X)_{(m,n)} = (A)_{(m,n)}$. Since

$$X = \bigcup_{x \in X} \{x\} \subseteq \bigcup_{x \in X} (x)_{(m,n)} = \bigcup_{a \in A} (a)_{(m,n)} \subseteq (A)_{(m,n)},$$

 $(X)_{(m,n)} \subseteq (A)_{(m,n)}$ and since

$$(A)_{(m,n)} = (\bigcup_{a \in A} a)_{(m,n)} \subseteq (\bigcup_{a \in A} (a)_{(m,n)})_{(m,n)}$$
$$= (\bigcup_{y \in X} (y)_{(m,n)})_{(m,n)} \subseteq ((X)_{(m,n)})_{(m,n)} = (X)_{(m,n)},$$

 $(X)_{(m,n)} = (A)_{(m,n)}$. Then we asume that $(A)_{(m,n)} = (A)_{q(m,n)}$, which implies that $X \subseteq (A)_{(m,n)} \subseteq (A)_{q(m,n)}$. Hence,

$$(X)_{(m,n)} \subseteq (X)_{q(m,n)} \subseteq (A)_{q(m,n)} = (A)_{(m,n)} = (X)_{(m,n)}.$$

Thus, $(X)_{(m,n)} = (X)_{q(m,n)}$.

Conversely, if $(X)_{(m,n)} = (X)_{q(m,n)}$, then $A \subseteq (A)_{(m,n)} = (X)_{(m,n)} = (X)_{q(m,n)}$, which implies that $(A)_{q(m,n)} \subseteq (X)_{q(m,n)}$. So,

$$(A)_{(m,n)} \subseteq (A)_{q(m,n)} \subseteq (X)_{q(m,n)} = (X)_{(m,n)} = (A)_{(m,n)}$$

and the proof is complete.

Corollary 3.2.10. Let S be a semigroup and $a \in S$. Then $(a)_{(m,n)} = (a)_{q(m,n)}$ if and only if for all $C \subseteq \mathcal{B}_m^n(a)$, $(C)_{(m,n)} = (C)_{q(m,n)}$.

Proof. Assume that $(a)_{(m,n)} = (a)_{q(m,n)}$. Let $C \subseteq \mathcal{B}_m^n(a)$. Since

$$C \subseteq \bigcup_{c \in C} (c)_{(m,n)} = (a)_{(m,n)},$$

 $(C)_{(m,n)} \subseteq (a)_{(m,n)}$. Since

$$(a)_{(m,n)} = \bigcup_{c \in C} (c)_{(m,n)} \subseteq (C)_{(m,n)},$$

 $(C)_{(m,n)} = (a)_{(m,n)}$. By assumption, we obtain that $(C)_{q(m,n)} \subseteq (C)_{(m,n)}$. Thus $(C)_{(m,n)} = (C)_{q(m,n)}$. The proof for the converse is easy.

3.3 Some semigroups of transformations which are (m, n)-BQ-semigroups

Let X, Y be nonempty sets such that $Y \subseteq X$ and m, n nonnegative integers. In previous chapter, the concept of full transformation semigroup on X, T(X), and its subsemigroups were introduced. In this section, we characterize these semigroups when they belong to BQ_m^n .

Lemma 3.3.1. T(X) is an (m, n)-BQ-semigroup.

Proof. We obtain this Lemma by Theorem 2.4.1 and 3.1.2.

Theorem 3.3.2. T(X,Y) is an (m,n)-BQ-semigroup.

Proof. We prove that T(X, Y) is a left ideal of T(X). Let $\alpha \in T(X, Y)$ and $\beta \in T(X)$. Since $X\beta\alpha \subseteq X\alpha \subseteq Y$, $\beta\alpha \in T(X, Y)$. That is T(X, Y) is a left ideal of T(X). By Theorem 3.1.5 and Theorem 2.4.1, we see that $T(X, Y) = T(X) \cap T(X, Y)$ is an (m, n)-BQ-semigroup.

By Theorem 2.4.2, we obtain the following theorem.

Theorem 3.3.3. If one of the following statements holds:

- (i) Y = X,
- (*ii*) |Y| = 1,

then the semigroup $S(X,Y) \in BQ_m^n$.

Theorem 3.3.4. If |X| = 3 and |Y| = 2, then $S(X, Y) \in BQ_m^n$.

Proof. If m, n = 1, we are done by Theorem 2.4.4. Assume that m > 1 or n > 1. For convenience, we let $X = \{1, 2, 3\}, Y = \{1, 2\}$. Then

$$S := S(X,Y) = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \right\}.$$

In this proof, we want to show that $(A)_{(m,n)} = (A)_{q(m,n)}$ for any nonempty subset A of S. So we divide the proof into four parts as follows.

• **Part I**: To show that $Reg_m^n(S) = Reg(S)$. By Theorem 2.4.3, we have

$$Reg(S) = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \right\}$$

It suffices to show that $Reg(S) \subseteq Reg_m^n(S)$. We can see that

$$E(S) = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}, \\ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \right\}.$$

By definition, we can see that every idempotent elements are (m, n)-regular elements. Thus $E(S) \subseteq Reg_m^n(S)$. Since

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

are idempotent elements and

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix},$$
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}^{k} = \begin{cases} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix} & \text{if } k \text{ is odd,} \\ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix} & \text{if } k \text{ is even,} \\ \\ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}^{k} = \begin{cases} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix} & \text{if } k \text{ is odd,} \\ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} & \text{if } k \text{ is odd,} \\ \\ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}^{k} = \begin{cases} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix} & \text{if } k \text{ is odd,} \\ \\ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} & \text{if } k \text{ is odd,} \\ \\ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}^{k} = \begin{cases} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 1 & 2 & 3 \end{pmatrix} & \text{if } k \text{ is odd,} \\ \\ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} & \text{if } k \text{ is odd,} \\ \\ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} & \text{if } k \text{ is odd,} \end{cases}$$

which implies that for any m, n,

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}^m \eta_1 \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}^n \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}^m \eta_2 \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}^n \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}^m \eta_3 \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}^n$$

where

$$\eta_{1} = \begin{cases} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix} & \text{if } m + n \text{ is even,} \\ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix} & \text{if } m + n \text{ is odd,} \\ \\ \eta_{2} = \begin{cases} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix} & \text{if } m + n \text{ is even,} \\ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix} & \text{if } m + n \text{ is odd,} \\ \\ \eta_{3} = \begin{cases} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 1 & 2 & 1 \end{pmatrix} & \text{if } m + n \text{ is even,} \\ \\ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 1 & 2 & 3 \end{pmatrix} & \text{if } m + n \text{ is odd.} \end{cases}$$

Thus $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ are (m, n)-regular elements which implies that

$$Reg(S) = E(S) \cup \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\} \subseteq Reg_m^n(S).$$

Therefore, $Reg(S) = Reg_m^n(S)$.

• **Part II**: To find \mathcal{B}_m^n on *S*. By Lemma 3.2.6, we have $\mathcal{B}_m^n = \mathcal{B}$. By Lemma 3.2.5(2), we can compute that

$$\mathcal{B}_{m}^{n} = \mathcal{B} = \left\{ \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix} \right\}, \\ \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix} \right\}, \\ \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix} \right\}, \\ \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix} \right\}, \\ \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \right\}, \right\},$$

for any m, n. In the end of this part, we put

$$S^* = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \right\}$$
$$= E(S) \cup \{\alpha, \beta\}$$
where $\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix}, \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix}$. Note that
$$\alpha^2 = \beta \alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \beta^2 = \alpha \beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix}.$$

• **Part III** : To claim that for any $A \subseteq E(S)$ and $\emptyset \neq B \subseteq \{\alpha, \beta\}$,

$$(A \cup B)^2 = \begin{cases} C & \text{if } A \subseteq \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix} \right\},\\ A \cup C \cup D & \text{; otherwise,} \end{cases}$$

where
$$C \subseteq \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix} \right\}$$
 such that
 $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \in C$ if $Y\eta = \{1\}$, for some $\eta \in A \cup B$,
 $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix} \in C$ if $Y\eta = \{2\}$, for some $\eta \in A \cup B$,

and $D \subseteq \{\alpha, \beta\}$ such that

$$D = \begin{cases} B \cup \{\alpha\} & \text{if } \begin{pmatrix} 1 & 2 & 3\\ 1 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3\\ 1 & 2 & 2 \end{pmatrix} \in A, \\ B \cup \{\beta\} & \text{if } \begin{pmatrix} 1 & 2 & 3\\ 2 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3\\ 1 & 2 & 1 \end{pmatrix} \in A, \\ B & \text{; otherwise.} \end{cases}$$

Indeed, let $A \subseteq E(S)$ and $\emptyset \neq B \subseteq \{\alpha, \beta\}$.

In the case when $A \subseteq \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix} \right\}$, it is clear that $(A \cup B)^2 = C$. In another case, we first show that $A \cup D \cup C \subseteq (A \cup B)^2$.

- (i) $A \subseteq A^2$ since $A \subseteq E(S)$, i.e. $\theta = \theta^2$ for all $\theta \in A$.
- (ii) $D \subseteq A^2 \cup AB \cup BA$ since

$$\alpha = \alpha \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \alpha \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \alpha \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix} \alpha$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \alpha$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \beta \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \beta \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \beta \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \beta \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \beta \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \beta$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \beta$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \beta$$
(iii) $C \subseteq BA \cup B^2$ by the following:

$$\cdot \text{ If } B = \{\alpha, \beta\}, \text{ then } C = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \right\} \subseteq B^2$$

$$\cdot \text{ If } B = \{\alpha\} \text{ and } A \text{ contains } \theta \text{ such that } Y \theta = \{2\}, \text{ then }$$

$$C = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \right\}$$
Since $X \alpha \theta = Y \theta = \{2\}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \in BA$ which implies that

nce $X\alpha\theta = Y\theta = \{2\}, \begin{pmatrix} 1 & 2 & 3\\ 2 & 2 & 2 \end{pmatrix} \in BA$ which implies tha $C = \left\{ \begin{pmatrix} 1 & 2 & 3\\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3\\ 2 & 2 & 2 \end{pmatrix} \right\} \subseteq BA \cup B^2.$

· If $B = \{\alpha\}$ and A dose not contain θ such that $Y\theta = \{2\}$, then

$$C = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} \right\} \subseteq B^2.$$

· In case $B = \{\beta\}$, we can prove as two above cases that $C \subseteq BA \cup B^2$. Now, we have $C \subseteq BA \cup B^2$.

From (i), (ii), (iii), we obtain that

$$A \cup C \cup D \subseteq A^2 \cup AB \cup BA \cup B^2 = (A \cup B)^2.$$

Next, we show that $(A \cup B)^2 \subseteq A \cup C \cup D$. It is easy to see that $B^2 \subseteq C$, $A^2 \subseteq A \cup C \cup D$. Since

$$\begin{split} \alpha S^* &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix} \right\},\\ S^* \alpha &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix} \right\},\\ \beta S^* &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix} \right\},\\ S^* \beta &= \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix} \right\},\end{split}$$

 $AB \cup BA \subseteq C \cup D$. Now, we obtain $(A \cup B)^2 = A \cup C \cup D$.

In the end of this part, we want to show that $(A \cup B)^k = (A \cup B)^2$ for all k > 1. Since

$$(A \cup B)^3 = (A \cup B)(A \cup B)^2$$
$$= \begin{cases} (A \cup B)C = C\\ (A \cup B)(A \cup C \cup D) = (A \cup B)^2 \cup [(D \setminus B) \cup C] \end{cases}$$
$$= (A \cup B)^2,$$

the result is obtained by induction.

• **Part IV**: Now, we show that $(H)_{(m,n)} = (H)_{q(m,n)}$ for any nonempty subset H of S. According to Theorem 3.2.9, we can reduce to the case of S^* instead of S, and, by Theorem 3.1.6, we obtain that $(F)_{(m,n)} = (F)_{q(m,n)}$ for any $F \subseteq E(S)$. Thus we need show that

$$(A \cup B)_{(m,n)} = (A \cup B)_{q(m,n)}$$

for any $A \subseteq E(S)$ and $\emptyset \neq B \subseteq \{\alpha, \beta\}$. To complete this proof, we consider the following three cases.

Case : m = 1, n > 1, we have $(A \cup B)S \cap S(A \cup B)^n = (A \cup B)S \cap S(A \cup B)^2$. Then

$$(A\cup B)S\cap S(A\cup B)^2 = \begin{cases} (A\cup B)S\cap SC \subseteq C = (A\cup B)SC = (A\cup B)S(A\cup B)^2, \\ (A\cup B)S\cap S(A\cup C\cup D). \end{cases}$$

By a part of the proof of Theorem 2.4.4, see [15], we have $(D)_{(1,1)} = (D)_{q(1,1)}$. Since $A \cup C \subseteq Reg(S)$, by Theorem 2.2.4 we obtain that

 $(A \cup B)S \cap S(A \cup B \cup C) \subseteq (A \cup C \cup D)_{q(1,1)}$ $= (A \cup C \cup D)_{(1,1)}$ $= (A \cup C \cup D) \cup (A \cup C \cup D)^2$ $\cup (A \cup C \cup D)S(A \cup C \cup D)$ $= (A \cup B)^2 \cup (A \cup B)^4 \cup (A \cup C \cup D)S(A \cup C \cup D)$ $= (A \cup B)^2 \cup (A \cup B)S(A \cup C \cup D)$ $\cup CS(A \cup C \cup D) \cup (D \setminus B)S(A \cup C \cup D)$ $\subseteq (A \cup B)^2 \cup (A \cup B)S(A \cup C \cup D)$ $\cup (A \cup B)^2 \cup A^2 S(A \cup C \cup D)$ $\subseteq (A \cup B)^2 \cup (A \cup B)S(A \cup C \cup D)$ $\cup AS(A \cup C \cup D)$ $\subseteq (A \cup B)^2 \cup (A \cup B)S(A \cup C \cup D)$ $= (A \cup B)^2 \cup (A \cup B)S(A \cup B)^2$ $\subset (A \cup B) \cup (A \cup B)^2 \cup (A \cup B)S(A \cup B)^2$ $= (A \cup B) \cup (A \cup B)^2 \cup (A \cup B)S(A \cup B)^n$ $\subseteq (A \cup B)_{(1,n)}.$

Therefore, $(A \cup B)S \cap S(A \cup B)^n \subseteq (A \cup B)_{(1,n)}$. Case : m > 1, n = 1, we have $(A \cup B)^m S \cap S(A \cup B) = (A \cup B)^2 S \cap S(A \cup B)$. Then

$$(A \cup B)^2 S \cap S(A \cup B) = \begin{cases} CS \cap S(A \cup B), \\ (A \cup C \cup D)S \cap S(A \cup B). \end{cases}$$

$$\begin{split} & \text{If } A \subseteq \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix} \right\}, \text{ then } (A \cup B)^2 S \cap S(A \cup B) = CS \cap S(A \cup B) \subseteq \\ & CS \subseteq (A \cup B)^2 \subseteq (A \cup B)_{(m,1)}. \text{ If } (A \cup B)^2 S \cap S(A \cup B) = (A \cup C \cup D)S \cap S(A \cup B), \end{split}$$

by a part of the proof of Theorem 2.4.4, see [15], we have $(D)_{(1,1)} = (D)_{q(1,1)}$. Since $A \cup C \subseteq Reg(S)$, by Theorem 2.2.4 we obtain that

$$\begin{split} (A \cup C \cup D)S \cap S(A \cup B) &\subseteq (A \cup C \cup D)_{q(1,1)} \\ &= (A \cup C \cup D)_{(1,1)} \\ &= (A \cup C \cup D) \cup (A \cup C \cup D)^2 \\ &\cup (A \cup C \cup D)S(A \cup C \cup D) \\ &= (A \cup B)^2 \cup (A \cup B)^4 \cup (A \cup C \cup D)S(A \cup C \cup D) \\ &= (A \cup B)^2 \cup (A \cup B)^4 \cup (A \cup C \cup D)S(A \cup C \cup D) \\ &= (A \cup B)^2 \cup (A \cup C \cup D)S(C \cup (D \setminus B)) \\ &\cup (A \cup C \cup D)S(C \cup (D \setminus B)) \\ &= (A \cup B)^2 \cup (A \cup B)^2S(A \cup B) \\ &\cup (A \cup B)^2SC \cup (A \cup B)^2S(A \cup B) \cup C \cup (A \cup B)^2SA^2 \\ &\subseteq (A \cup B)^2 \cup (A \cup B)^2S(A \cup B) \cup (A \cup B)^2SA^2 \\ &\subseteq (A \cup B)^2 \cup (A \cup B)^2S(A \cup B) \\ &= (A \cup B)^2SA \\ &\subseteq (A \cup B)^2 \cup (A \cup B)^2S(A \cup B) \\ &= (A \cup B)^2 \cup (A \cup B)^2S(A \cup B) \\ &= (A \cup B)^2 \cup (A \cup B)^2S(A \cup B) \\ &\subseteq (A \cup B)^2 \cup (A \cup B)^2S(A \cup B) \\ &\subseteq (A \cup B)^2 \cup (A \cup B)^2S(A \cup B) \\ &= (A \cup B)^2 \cup (A \cup B)^2$$

Therefore, $(A \cup B)^m S \cap S(A \cup B) \subseteq (A \cup B)_{(m,1)}$.

Case : m, n > 1, we have $(A \cup B)^m S \cap S(A \cup B)^n = (A \cup B)^2 S \cap S(A \cup B)^2$. Then

$$(A \cup B)^2 S \cap S(A \cup B)^2 = \begin{cases} CS \cap SC \subseteq C = CSC = (A \cup B)^2 S(A \cup B)^2, \\ (A \cup C \cup D)S \cap S(A \cup C \cup D). \end{cases}$$

By a part of the proof of Theorem 2.4.4, see [15], we have $(D)_{(1,1)} = (D)_{q(1,1)}$. Since $A \cup C \subseteq Reg(S)$, by Theorem 2.2.4 we obtain that

$$(A \cup C \cup D)S \cap S(A \cup C \cup D) \subseteq (A \cup C \cup D)_{q(1,1)}$$
$$= (A \cup C \cup D)_{(1,1)}$$
$$= (A \cup C \cup D) \cup (A \cup C \cup D)^2$$
$$\cup (A \cup C \cup D)S(A \cup C \cup D)$$
$$= (A \cup B)^2 \cup (A \cup B)^4 \cup (A \cup B)^2S(A \cup B)^2$$

$$= (A \cup B)^2 \cup (A \cup B)^m S(A \cup B)^n$$
$$\subseteq (A \cup B)_{(m,n)}.$$

Therefore, $(A \cup B)^m S \cap S(A \cup B)^n \subseteq (A \cup B)_{(m,n)}$.

From above cases, since $\bigcup_{i=1}^{\max\{m,n\}} (A \cup B)^i \subseteq \bigcup_{i=1}^{m+n} (A \cup B)^i$ for all $m, n, (A \cup B)_{q(m,n)} \subseteq (A \cup B)_{(m,n)}$. By Proposition 2.2.9, we now get $(D)_{(m,n)} = (D)_{q(m,n)}$ for any nonempty subset D of S^* .

Therefore, $S(X,Y) \in BQ_m^n$ and the proof is complete. \Box

From the above two theorems, we obtain the analogous result on BQ_m^n with BQ, see Theorem 2.4.4, as follows.

Corollary 3.3.5. If one of the following statements holds

- (i) Y = X,
- (*ii*) |Y| = 1,
- $(iii) |X| \le 3,$

then $S(X,Y) \in BQ_m^n$.

Since S(X, Y) is a nonregular semigroup, see [8, 16], S(X, Y) need not to be an (m, n)-BQ-semigroup. The following theorems show that S(X, Y) dose not belong to BQ_m^n in some cases.

Theorem 3.3.6. Let X, Y be nonempty sets such that |X| > 3, |Y| > 1 and $Y \subsetneq X$. If m = 1, then $S(X, Y) \notin BQ_m^n$.

Proof. If n = 1, we are done by Theorem 2.4.4. Suppose that n > 1.

• Case |Y| = 2. Let $Y = \{a, b\}$. Since |X| > 3, so we have $|X \setminus Y| > 1$ and let $c, d \in X \setminus Y$. If n = 2, we define $\alpha_1, \beta_1, \gamma_1 \in S(X, Y)$ by

$$\alpha_1 = \begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & a & b & c \end{pmatrix}, \quad \beta_1 = \begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & b & a & d \end{pmatrix} \text{ and}$$
$$\gamma_1 = \begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & b & d & b \end{pmatrix}.$$

Then

$$\begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & a & b & a \end{pmatrix} = \alpha_1 \beta_1 = \gamma_1 \alpha_1^2 \in \alpha_1 S(X, Y) \cap S(X, Y) \alpha_1^2 \subseteq (\alpha_1)_{q(1,2)}.$$

Suppose that $\alpha_1\beta_1 \in (\alpha_1)_{(1,2)}$, then $\alpha_1\beta_1 \in \alpha_1 S(X,Y)\alpha_1^2$ because $\alpha_1\beta_1 \notin \{\alpha_1,\alpha_1^2,\alpha_1^3\}$. Then there exists $\eta_1 \in S(X,Y)$ such that $\alpha_1\beta_1 = \alpha_1\eta_1\alpha_1^2$. Hence $b = c\alpha_1\beta_1 = c\alpha_1\eta_1\alpha_1^2 = b\eta_1\alpha_1^2$. Since $\alpha_1^2 = \begin{pmatrix} a & b & c & X \setminus \{a,b,c\} \\ a & a & a & b \end{pmatrix}$, we have that $b\eta_1 \notin Y$ which is a contradiction with $\eta_1 \in S(X,Y)$. Thus $S(X,Y) \notin BQ_1^2$. If n > 2, we define

$$\alpha_{2} = \begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & a & b & d \end{pmatrix}, \beta_{2} = \begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & b & a & a \end{pmatrix},$$
$$\gamma_{2} = \begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & a & d & a \end{pmatrix}$$

and let $D = \{\alpha_1, \alpha_2\}$. Since

$$D^{n} = D^{3} = \left\{ \begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & a & a & a \end{pmatrix}, \begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & a & a & b \end{pmatrix}, \\ \begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & a & a & c \end{pmatrix}, \begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & a & a & d \end{pmatrix} \right\},$$

for any n > 2, we have $\begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & a & b & a \end{pmatrix} = \alpha_1 \beta_2 = \gamma_2 \alpha_2 \alpha_1 \alpha_2 \in DS(X, Y) \cap S(X, Y) D^n \subseteq (D)_{q(1,n)}$. Suppose that $\alpha_1 \beta_2 \in (D)_{(1,n)}$, then $\alpha_1 \beta_2 \in DS(X, Y) D^n$ because $\alpha_1 \beta_2 \notin \bigcup_{i=1}^{1+n} D^i$; there exist $\eta_2 \in S(X, Y)$, $\alpha \in D$ and $\lambda^* \in D^n$ such that $\alpha_1 \beta_2 = \alpha \eta_2 \lambda^*$. Since $c\alpha_1 = c\alpha_2 = b$, so $b = c\alpha_1 \beta_2 = c\alpha \eta_2 \lambda^* = b\eta_2 \lambda^*$. Thus we must have $\lambda^* = \begin{pmatrix} a & b & c & X \setminus \{a, b, c\} \\ a & a & b \end{pmatrix} \in D^3$, which implies that $b\eta_2 \notin Y$, a contradiction to $\eta_2 \in S(X, Y)$ Thus $S(X, Y) \notin BQ_1^n$.

• Case |Y| > 2. Since $X \setminus Y \neq \emptyset$, we can assume that $a, b, c \in Y$ and $d \in X \setminus Y$. Now, we define $\alpha_1, \alpha_2, \beta_1, \beta_2$ by

$$\alpha_1 = \begin{pmatrix} a & b & Y \setminus \{a, b\} & X \setminus Y \\ a & a & c & d \end{pmatrix}, \alpha_2 = \begin{pmatrix} a & Y \setminus \{a\} & X \setminus Y \\ a & b & c \end{pmatrix},$$
$$\beta_1 = \begin{pmatrix} a & b & Y \setminus \{a, b\} & x \\ b & a & c & x \end{pmatrix}_{x \in X \setminus Y}, \beta_2 = \begin{pmatrix} a & Y \setminus \{a\} & x \\ c & a & x \end{pmatrix}_{x \in X \setminus Y}.$$

It easy to see that $\alpha_2\alpha_1 = \alpha_1\alpha_2\alpha_1$, $\alpha_1^2 = \alpha_1$ and $\alpha_2\alpha_1\alpha_2 = \alpha_2^3 = \alpha_2^2$. Define $D = \{\alpha_1, \alpha_2\}$. Then we have $D^2 = \{\alpha_1, \alpha_1\alpha_2, \alpha_2\alpha_1, \alpha_2^2\}$ and

$$D^3 = \{\alpha_1, \alpha_1\alpha_2, \alpha_2\alpha_1, \alpha_2^2, \alpha_2^2\alpha_1\} = D^4 = \ldots = D^n.$$

Hence $\alpha_2\beta_1 = \beta_2\alpha_1\alpha_2 \in DS(X,Y) \cap S(X,Y)D^n \subseteq (D)_{q(1,n)}$. Suppose that $\alpha_2\beta_1 \in (D)_{(1,n)}$. Since $\alpha_2\beta_1 \notin \bigcup_{i=1}^{n+1} D^i$, $\alpha_2\beta_1 \in DS(X,Y)D^n = DS(X,Y)D^3$ that is $\alpha_2\beta_1 = \alpha\eta\lambda$ for some $\alpha \in D$, $\eta \in S(X,Y)$, $\lambda \in D^3$. Since

$$\alpha_2\beta_1 = \begin{pmatrix} a & Y \setminus \{a\} & X \setminus Y \\ b & a & c \end{pmatrix}$$

and $(X\alpha_2)\beta_1 \neq X\alpha^*$ for all $\alpha^* \in D^3 \setminus \{\alpha_1\alpha_2\}$, we must have $\lambda = \alpha_1\alpha_2 = \begin{pmatrix} a & b & Y \setminus \{a, b\} & X \setminus Y \\ a & a & b & c \end{pmatrix}$. If $\alpha = \alpha_1$, then $b = a\alpha_2\beta_1 = a\alpha_1\eta\lambda = b\alpha_1\eta\lambda = b\alpha_2\beta_1 = a$ which is a contradiction. If $\alpha = \alpha_2$, then $c = d\alpha_2\beta_1 = d\alpha_2\eta\alpha_1\alpha_2 = c\eta\alpha_1\alpha_2$ implies that $c\eta \in X \setminus Y$ which is a contradiction to $\eta \in S(X,Y)$. Thus $\alpha_2\beta_1 \notin (D)_{(1,n)}$, that is $(D)_{(1,n)} \neq (D)_{q(1,n)}$. Therefore, $S(X,Y) \notin BQ_1^n$

Theorem 3.3.7. Let X, Y be sets such that |X| = 4, |Y| = 2 and $Y \subsetneq X$. If one of the following statements holds

- (*i*) n = 1,
- (*ii*) m = 2, n = 2,

then $S(X,Y) \notin BQ_m^n$.

Proof. Let $X = \{a, b, c, d\}$ and $Y = \{a, b\}$. Define

$$\mu_1 = \begin{pmatrix} a & b & c & d \\ a & a & b & c \end{pmatrix}, \mu_2 = \begin{pmatrix} a & b & c & d \\ a & a & b & d \end{pmatrix}$$
$$\gamma_1 = \begin{pmatrix} a & b & c & d \\ a & b & b & c \end{pmatrix}, \gamma_2 = \begin{pmatrix} a & b & c & d \\ a & b & b & d \end{pmatrix}$$
$$\rho = \begin{pmatrix} a & b & c & d \\ b & b & d & a \end{pmatrix}, \beta = \begin{pmatrix} a & b & c & d \\ a & a & c & b \end{pmatrix}.$$

(i) Assume that n = 1. If m = 1, we are done by Theorem 2.4.4. Let m > 1 and $D = \{\mu_1, \gamma_2, \rho\}$. Then we have

$$D^{2} = \left\{ \begin{pmatrix} a & b & c & d \\ a & a & a & b \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & a & b & b \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & b & d \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & a & a & c \end{pmatrix}, \\ \begin{pmatrix} a & b & c & d \\ b & b & d & d \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & b & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & a & c & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & d & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & d & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & d & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & d & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & d & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & d & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & d & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & d & b \end{pmatrix} \right\}.$$

It's easy to see that $D^2 \subseteq D^3 = D^4 = D^5 = \dots$ Since

$$\beta = \begin{pmatrix} a & b & c & d \\ b & b & d & a \end{pmatrix} \begin{pmatrix} a & b & c & d \\ b & a & c & c \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ a & a & d & c \end{pmatrix} \begin{pmatrix} a & b & c & d \\ a & a & b & c \end{pmatrix},$$

 $\beta \in D^2 S(X,Y) \cap S(X,Y) D \subseteq (D)_{q(2,1)} \subseteq (D)_{q(3,1)} \subseteq (D)_{q(m,1)}.$ Suppose that $S(X,Y) \in BQ_m^1.$ Then $(D)_{q(m,1)} = (D)_{(m,1)}.$ Since $\beta \notin \bigcup_{i \in \mathbb{N}} D^i, \beta \in D^m S(X,Y) D,$ that is $\beta = \lambda \eta \alpha$ for some $\lambda \in D^m, \eta \in S(X,Y), \alpha \in D.$ Since $c \in X\beta$, we must have $\alpha = \begin{pmatrix} a & b & c & d \\ a & a & b & c \end{pmatrix}.$ If $\lambda = \begin{pmatrix} a & b & c & d \\ a & a & c & a \end{pmatrix}$ or $\begin{pmatrix} a & b & c & d \\ b & b & d & a \end{pmatrix}$ or $\begin{pmatrix} a & b & c & d \\ b & b & d & b \end{pmatrix},$ then $d\lambda \in Y.$ Then we get a contradiction from $b = d\beta = d\lambda\eta\alpha = a.$ In the other hand, we have $c = c\beta = c\lambda\eta\alpha = a$ which is a contradiction. Therefore, $S(X,Y) \notin BQ_m^1.$

(*ii*) Assume that m = n = 2. Let $D = \{\mu_2, \gamma_1, \rho\}$. Then we have

$$\begin{split} D^{2} = & \left\{ \begin{pmatrix} a & b & c & d \\ a & a & a & d \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & a & b & c \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & b & d \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & a & d & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & c & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & c & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & a & b \end{pmatrix} \right\}, \\ D^{3} = D^{2} \cup \left\{ \begin{pmatrix} a & b & c & d \\ a & a & a & c \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & a & c & d \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & a & b & b \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & a & a & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & b & b \end{pmatrix} \right\}, \\ & \left(\begin{matrix} a & b & c & d \\ b & b & c & c \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & a & c & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ a & a & b & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & d & b \end{pmatrix} \right\}, \\ D^{4} = D^{3} \cup \left\{ \begin{pmatrix} a & b & c & d \\ b & b & c & b \end{pmatrix} \right\}. \end{split}$$

Suppose that $S(X,Y) \in BQ_2^2$. Since

$$\beta = \begin{pmatrix} a & b & c & d \\ b & b & c & a \end{pmatrix} \begin{pmatrix} a & b & c & d \\ b & a & c & d \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ a & b & d & c \end{pmatrix} \begin{pmatrix} a & b & c & d \\ a & a & b & c \end{pmatrix},$$

 $\beta \in D^2 S(X, Y) \cap S(X, Y) D^2 \subseteq (D)_{q(2,2)} = (D)_{(2,2)}$. Since $\beta \notin \bigcup_{i=1}^4 D^i$, there are $\lambda, \alpha \in D^2, \eta \in S(X, Y)$ such that $\beta = \lambda \eta \alpha$. Since $c \in X\beta$ and $a = Y\beta = Y\lambda\eta \alpha$, we must have $\alpha = \begin{pmatrix} a & b & c & d \\ a & a & b & c \end{pmatrix}$. If $c\lambda \in Y$, then $c = c\beta = c\lambda\eta\alpha = a$, a contradiction. If $c\lambda \notin Y$, then $d\lambda = a$ for all $\lambda \in D^2$. Consider $b = d\beta = d\lambda\eta\alpha = a\eta\alpha = a$ which is a contradiction. Thus $S(X, Y) \notin BQ_2^2$.

Theorem 3.3.8. Let X, Y be sets such that |X| = 4, |Y| = 3 and $Y \subsetneq X$. If one of the following statements holds

- (*i*) n = 1,
- (*ii*) m = 2, n = 2,

then $S(X,Y) \notin BQ_m^n$.

Proof. Let $X = \{a, b, c, d\}$ and $Y = \{a, b, c\}$. Suppose that $S(X, Y) \in BQ_m^n$.

(i) Assume that n = 1. If m = 1, we are done by Theorem 2.4.4. Let m > 1 and $D = \left\{ \begin{pmatrix} a & b & c & d \\ c & c & c & b \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ c & b & c & a \end{pmatrix} \right\}$. Then we can compute that $D^2 = \left\{ \begin{pmatrix} a & b & c & d \\ c & c & c & c \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ c & c & c & b \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ c & b & c & c \end{pmatrix} \right\}$. Given $\beta = \begin{pmatrix} a & b & c & d \\ c & c & c & a \end{pmatrix} \in S(X, Y)$, since $D^2 = D^3 = D^4 = \dots$ and $\beta = \begin{pmatrix} a & b & c & d \\ c & c & c & b \end{pmatrix} \begin{pmatrix} a & b & c & d \\ b & a & c & d \end{pmatrix} = \begin{pmatrix} a & b & c & d \\ a & c & c & d \end{pmatrix} \begin{pmatrix} a & b & c & d \\ c & b & c & a \end{pmatrix}$, $\beta \in D^2 S(X,Y) \cap S(X,Y) D \subseteq (D)_{q(2,1)} = (D)_{q(m,1)} = (D)_{(m,1)}. \text{ Since } \beta \notin \bigcup_{i=1}^{m+1} D^i,$ $\beta \in D^m S(X,Y)D$; that is $\beta = \lambda \eta \alpha$ for some $\lambda \in D^2, \eta \in S(X,Y), \alpha \in D$. Since $a \in X\beta$, we must have $\alpha = \begin{pmatrix} a & b & c & d \\ c & b & c & a \end{pmatrix}$. Since $a = d\beta = d\lambda\eta\alpha$ and $d\lambda \in Y$ for all $\lambda \in D^2$, we obtain that $d\lambda \eta = d$ which is a contradiction to $\eta \in S(X, Y)$.

(*ii*) Assume that m = n = 2. Let $D = \left\{ \begin{pmatrix} a & b & c & d \\ c & b & c & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ c & b & b & d \end{pmatrix} \right\}$. It is easy to compute that

$$D^{2} = \left\{ \begin{pmatrix} a & b & c & d \\ c & b & c & c \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & b & c \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ c & b & b & a \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & b & d \end{pmatrix} \right\}$$
$$D^{3} = D^{2} \cup \left\{ \begin{pmatrix} a & b & c & d \\ b & b & b & b \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ c & b & b & c \end{pmatrix}, \begin{pmatrix} a & b & c & d \\ b & b & b & a \end{pmatrix} \right\}$$

and $D^2 \subseteq D^3 = D^4 = D^5 = D^6 = \dots$ Define $\beta = \begin{pmatrix} a & b & c & d \\ b & c & c & a \end{pmatrix}$. Since $\beta = \begin{pmatrix} a & b & c & d \end{pmatrix} \begin{pmatrix} a & b & c & d \end{pmatrix} = \begin{pmatrix} a & b & c & d \end{pmatrix} \begin{pmatrix} a & b & c & d \end{pmatrix}$

$$\beta \in D^2 S(X,Y) \cap S(X,Y) D^2 \subseteq (D)_{q(2,2)} = (D)_{(2,2)}. \text{ Since } \beta \notin D \cup D^2 \cup D^3 = D \cup D^2 \cup D^3 \cup \ldots \cup D^{m+1}, \text{ there are } \lambda, \alpha \in D^2, \eta \in S(X,Y) \text{ such that } \beta = \lambda \eta \alpha.$$

 $a\beta = a\lambda\eta\alpha = b\eta\alpha = b\lambda\eta\alpha = b\beta = c$ which is a contradiction. If $\lambda \neq \begin{pmatrix} a & b & c & d \\ b & b & b & d \end{pmatrix}$, then $d\lambda \in Y$ for all λ and implies that $d\lambda \eta \in Y$. Since $a = d\beta = d\lambda \eta \alpha$, $d\lambda \eta = d$. Hence $d\lambda \eta \notin Y$, a contradiction.

Therefore, $S(X, Y) \notin BQ_m^n$.

 $\beta \in$

=

Theorem 3.3.9. Let X, Y be sets. If |X| > 4, |Y| > 1 and $Y \subsetneq X$, then $S(X, Y) \notin BQ_m^n$.

Proof. Let $m, n \in \mathbb{N}$. The case where m = 1 and $n \in \mathbb{N}$ was proved in Theorem 3.3.6. We assume that m > 1. Since $Y \subsetneqq X$, so $|X \setminus Y| \ge 1$.

• If $|X \setminus Y| = 1$, then |Y| > 3 because |X| > 4. Let $a, b, c, d \in Y$ and $X \setminus Y = \{e\}$. If n = 1, we define

$$\alpha_1 = \begin{pmatrix} Y & e \\ d & b \end{pmatrix}, \alpha_2 = \begin{pmatrix} \{a, b\} & c & Y \setminus \{a, b, c\} & e \\ a & c & d & b \end{pmatrix},$$

and let $D = \{\alpha_1, \alpha_2\}$. Then we can easily compute that

$$D^{k} = D^{2} = \left\{ \begin{pmatrix} X \\ d \end{pmatrix}, \begin{pmatrix} Y & e \\ d & a \end{pmatrix}, \begin{pmatrix} \{a, b, e\} & c & Y \setminus \{a, b, c\} \\ a & c & d \end{pmatrix} \right\},\$$

for any k > 2. Since

$$\begin{pmatrix} Y & e \\ a & b \end{pmatrix} = \begin{pmatrix} Y & e \\ d & a \end{pmatrix} \begin{pmatrix} d & Y \setminus \{d\} & e \\ a & b & a \end{pmatrix}$$

$$= \begin{pmatrix} Y & e \\ a & e \end{pmatrix} \begin{pmatrix} \{a, b\} & c & Y \setminus \{a, b, c\} & e \\ a & c & d & b \end{pmatrix}$$

$$\in D^2 S(X, Y) \cap S(X, Y) D = D^m S(X, Y) \cap S(X, Y) D,$$

we have $\begin{pmatrix} Y & e \\ a & b \end{pmatrix} \in (D)_{q(m,1)}$. Suppose that $\begin{pmatrix} Y & e \\ a & b \end{pmatrix} \in (D)_{(m,1)}$. Since $\begin{pmatrix} Y & e \\ a & b \end{pmatrix} \notin$ $\bigcup_{i=1}^{m+1} D^i, \text{ there are } \lambda \in D^m, \eta \in S(X,Y), \alpha \in D \text{ such that } \begin{pmatrix} Y & e \\ a & b \end{pmatrix} = \lambda \eta \alpha. \text{ Since }$ $a \in X\begin{pmatrix} Y & e \\ a & b \end{pmatrix}, \ \alpha = \alpha_2.$ If $\lambda = \begin{pmatrix} X \\ d \end{pmatrix}$, then $\left| X\begin{pmatrix} Y & e \\ a & b \end{pmatrix} \right| > |((X\lambda)\eta)\alpha|$, which is impossible. If $\lambda \neq \begin{pmatrix} X \\ d \end{pmatrix}$, then $b = e\lambda\eta\alpha_2 = a\eta\alpha_2$ implies $a\eta = e$ which is a contradiction. Thus $(D)_{q(m,1)} \neq (D)_{(m,1)}$, that is $S(X,Y) \notin BQ_m^1$. In case n > 1, we define

$$\alpha_3 = \begin{pmatrix} \{a, b, c\} & Y \setminus \{a, b, c\} & e \\ b & a & c \end{pmatrix}, \alpha_4 = \begin{pmatrix} a & b & Y \setminus \{a, b\} & e \\ a & b & d & e \end{pmatrix}$$

and put $E = \{\alpha_3, \alpha_4\}$. A direct computation shows that

$$\begin{split} E^{2} =& \left\{ \begin{pmatrix} X \\ b \end{pmatrix}, \begin{pmatrix} \{a, b, c\} & Y \setminus \{a, b, c\} & e \\ b & a & d \end{pmatrix}, \begin{pmatrix} \{a, b\} & Y \setminus \{a, b\} & e \\ b & a & c \end{pmatrix}, \\ & \begin{pmatrix} a & b & Y \setminus \{a, b\} & e \\ a & b & d & e \end{pmatrix} \right\}, \\ E^{3} =& \left\{ \begin{pmatrix} X \\ b \end{pmatrix}, \begin{pmatrix} Y & e \\ b & a \end{pmatrix}, \begin{pmatrix} \{a, b, c\} & Y \setminus \{a, b, c\} & e \\ b & a & d \end{pmatrix}, \begin{pmatrix} \{a, b\} & Y \setminus \{a, b\} & e \\ b & a & d \end{pmatrix}, \begin{pmatrix} \{a, b\} & Y \setminus \{a, b\} & e \\ b & a & d \end{pmatrix}, \begin{pmatrix} \{a, b\} & Y \setminus \{a, b\} & e \\ b & a & c \end{pmatrix}, \begin{pmatrix} a & b & Y \setminus \{a, b\} & e \\ a & b & d & e \end{pmatrix} \right\}. \end{split}$$

It is easy to see that $E^2 \subseteq E^3 = E^4 = E^5 = \dots$ and we define

$$\beta = \begin{pmatrix} \{a, b, c\} & Y \setminus \{a, b, c\} & e \\ a & b & c \end{pmatrix}$$

Since

$$\begin{split} \beta = & \begin{pmatrix} \{a, b, c\} & Y \setminus \{a, b, c\} & e \\ b & a & d \end{pmatrix} \begin{pmatrix} a & \{b, c\} & Y \setminus \{a, b, c\} & e \\ b & a & c & e \end{pmatrix} \\ = & \begin{pmatrix} \{a, b\} & c & Y \setminus \{a, b, c\} & e \\ c & d & a & e \end{pmatrix} \begin{pmatrix} \{a, b\} & Y \setminus \{a, b\} & e \\ b & a & c \end{pmatrix} \\ \in & E^2S(X, Y) \cap S(X, Y)E^2 \cap E^3S(X, Y) \cap S(X, Y)E^3, \end{split}$$

we obtain that $\beta \in \bigcap_{i,j \in \{2,3\}} (E)_{q(i,j)} \subseteq (E)_{q(m,n)}$. Suppose that $S(X,Y) \in BQ_m^n$.

Then $(E)_{q(m,n)} = (E)_{(m,n)}$. Since $\beta \notin \bigcup_{i=1}^{m+n} E^i$, $\beta = \lambda \eta \alpha$ for some $\lambda \in E^m, \eta \in$ $S(X,Y), \alpha \in E^n$. Since $c \in X\beta$, we must have $\alpha = \begin{pmatrix} \{a,b\} & Y \setminus \{a,b\} & e \\ b & a & c \end{pmatrix}$. Since $|X\beta| = 3$, λ can be one of the possible cases:

If $\lambda = \begin{pmatrix} \{a, b, c\} & Y \setminus \{a, b, c\} & e \\ b & a & d \end{pmatrix}$, then $c = e\beta = e\lambda\eta\alpha = d\eta\alpha$ implies that $d\eta = e$ which is a contradiction. If $\lambda = \begin{pmatrix} \{a, b\} & Y \setminus \{a, b\} & e \\ b & a & c \end{pmatrix}$, then $c = e\beta = e\lambda\eta\alpha = c\eta\alpha$ implies that $c\eta = e$ which is a contradiction. If $\lambda = \begin{pmatrix} a & b & Y \setminus \{a, b\} & e \\ a & b & d & e \end{pmatrix}$, then $a = c\beta = c\lambda\eta\alpha = d\lambda\eta\alpha = d\beta = b$ which is a contradiction. If $\lambda = \begin{pmatrix} \{a, b\} & Y \setminus \{a, b\} & e \\ b & a & d \end{pmatrix}$, then $a = c\beta = c\lambda\eta\alpha = d\lambda\eta\alpha = d\beta = b$ which is a contradiction. If $\lambda = \begin{pmatrix} \{a, b\} & Y \setminus \{a, b\} & e \\ b & a & d \end{pmatrix}$, then $a = c\beta = c\lambda\eta\alpha = d\lambda\eta\alpha = d\beta = b$ which is a contradiction.

Hence $\beta \notin (E)_{(m,n)}$, that is $(E)_{q(m,n)} \neq (E)_{(m,n)}$. Therefore, $S(X,Y) \notin BQ_m^n$.

• If $|X \setminus Y| = 2$. Since |X| > 4, we have |Y| > 2. Let $a, b, c \in Y$ and $X \setminus Y = \{d, e\}$. In this case, we define

$$D = \left\{ \begin{pmatrix} b & Y \setminus \{b\} & \{d, e\} \\ b & a & d \end{pmatrix}, \begin{pmatrix} Y & d & e \\ a & c & b \end{pmatrix} \right\}$$

and compute that

$$D^{2} = \left\{ \begin{pmatrix} b & Y \setminus \{b\} & \{d, e\} \\ b & a & d \end{pmatrix}, \begin{pmatrix} Y & \{d, e\} \\ a & c \end{pmatrix}, \begin{pmatrix} Y \cup \{d\} & e \\ a & b \end{pmatrix}, \begin{pmatrix} X \\ a \end{pmatrix} \right\}.$$

It is clear that $D^2 = D^3 = D^4 = \dots$ So we let $\beta = \begin{pmatrix} Y \cup \{d\} & e \\ a & c \end{pmatrix}$ and since

$$\begin{split} \beta &= \begin{pmatrix} Y \cup \{d\} & e \\ a & d \end{pmatrix} \begin{pmatrix} Y & d & e \\ a & c & b \end{pmatrix} \\ &= \begin{pmatrix} Y \cup \{d\} & e \\ a & b \end{pmatrix} \begin{pmatrix} a & b & x \\ a & c & x \end{pmatrix}_{x \in X \setminus \{a, b\}} \\ &= \begin{pmatrix} Y \cup \{d\} & e \\ a & e \end{pmatrix} \begin{pmatrix} Y & \{d, e\} \\ a & c \end{pmatrix} \\ &\in S(X, Y)D \cap D^2 S(X, Y) \cap S(X, Y)D^2, \end{split}$$

we get that $\beta \in (D)_{q(m,n)}$ for $n \ge 1$. If $S(X,Y) \in BQ_m^n$, then $\beta \in (D)_{(m,n)}$. Since $\beta \notin \bigcup_{i \in \mathbb{N}} D^i$, β must belong to $(D)_{(m,n)}$; that is $\beta = \lambda \eta \alpha$ for some $\lambda \in D^m = D^2$, $\eta \in S(X,Y), \alpha \in D^n = D \cup D^2$. From $c \in X\beta$, if n = 1, we must have $\alpha = \begin{pmatrix} Y & d & e \\ a & c & b \end{pmatrix}$. Since $|X\beta| = 2, \lambda \neq \begin{pmatrix} X \\ a \end{pmatrix}$. If $\lambda = \begin{pmatrix} b & Y \setminus \{b\} & \{d,e\} \\ b & a & d \end{pmatrix}$ or $\begin{pmatrix} Y & \{d,e\} \\ c & b \end{pmatrix}$, then $a = d\beta = d\lambda\eta\alpha = e\lambda\eta\alpha = e\beta = c$ which is a contradiction. If $\lambda = \begin{pmatrix} Y \cup \{d\} & e \\ a & b \end{pmatrix}$, then $c = e\beta = e\lambda\eta\alpha = b\eta\alpha = a$ because $Y\alpha = a$, a contradiction. Thus $S(X,Y) \notin BQ_m^1$. Now, we assume that n > 1. Then we also have $\alpha = \begin{pmatrix} Y & \{d,e\} \\ a & c \end{pmatrix}$. With the same reason in case n = 1, we get a contradiction. Therefore, $S(X,Y) \notin BQ_m^n$. • If $|X \setminus Y| > 2$, then there are $c, d, e \in X \setminus Y$. Since |Y| > 1, we can let $a, b \in Y$. In case m = 2, we define

$$\alpha_1 = \begin{pmatrix} c & d & X \setminus \{c, d\} \\ e & d & b \end{pmatrix}, \alpha_2 = \begin{pmatrix} Y & \{c, d\} & x \\ b & e & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c, d\})}$$

and let $D = \{\alpha_1, \alpha_2\}$. It is easy to compute the following sets:

$$D^{2} = \left\{ \begin{pmatrix} d & X \setminus \{d\} \\ d & b \end{pmatrix}, \begin{pmatrix} c & d & X \setminus \{c, d\} \\ a & e & b \end{pmatrix}, \begin{pmatrix} X \\ b \end{pmatrix}, \begin{pmatrix} \{c, d\} & X \setminus \{c, d\} \\ a & b \end{pmatrix} \right\}, \\D^{3} = \left\{ \begin{pmatrix} d & X \setminus \{d\} \\ d & b \end{pmatrix}, \begin{pmatrix} d & X \setminus \{d\} \\ e & b \end{pmatrix}, \begin{pmatrix} X \\ b \end{pmatrix}, \begin{pmatrix} d & X \setminus \{d\} \\ a & b \end{pmatrix} \right\}$$

and we can see that $D^3 = D^4 = D^5 = \dots$ Given $\beta = \begin{pmatrix} c & X \setminus \{c\} \\ a & b \end{pmatrix}$, we see that $\beta \notin \bigcup_{i \in \mathbb{N}} D^i$. Since

$$\begin{split} \beta &= \begin{pmatrix} c & X \setminus \{c\} \\ e & b \end{pmatrix} \alpha_2 \\ &= \begin{pmatrix} c & d & X \setminus \{c,d\} \\ a & e & b \end{pmatrix} \begin{pmatrix} a & X \setminus \{a\} \\ a & b \end{pmatrix} \\ &= \begin{pmatrix} c & X \setminus \{c\} \\ c & b \end{pmatrix} \begin{pmatrix} \{c,d\} & X \setminus \{c,d\} \\ a & b \end{pmatrix} \\ &= \begin{pmatrix} c & X \setminus \{c\} \\ d & b \end{pmatrix} \begin{pmatrix} d & X \setminus \{d\} \\ a & b \end{pmatrix} \\ &\in S(X,Y)D \cap D^2S(X,Y) \cap S(X,Y)D^2 \cap S(X,Y)D^3, \end{split}$$

we have $\beta \in (D)_{q(2,1)} \cap (D)_{q(2,2)} \cap (D)_{q(2,3)}$. Suppose that $S(X,Y) \in BQ_2^n$ for some $n \in \mathbb{N}$. From $D^3 = D^4 = D^5 = \dots$, we can consider n in 3 cases as follows.

Case n = 1, we have $\beta \in (D)_{(2,1)}$. Then $\beta = \lambda \eta \alpha$ for some $\lambda \in D^2, \eta \in S(X,Y), \alpha \in D$. Since $c\lambda \in Y$ for all $\lambda \in D^2, c\lambda \eta \in Y$ and we must have $\alpha = \alpha_2$ because $a \in X\beta$. Since $a = c\beta = c\lambda \eta \alpha_2, c\lambda \eta \notin Y$ which is a contradiction.

Case n = 2, we have $\beta \in (D)_{(2,2)}$. Then there are $\lambda, \alpha \in D^2, \eta \in S(X, Y)$ such that $\beta = \lambda \eta \alpha$. Since $a \in X\beta$, we must have

$$\alpha = \begin{pmatrix} c & d & X \setminus \{c, d\} \\ a & e & b \end{pmatrix} \text{ or } \begin{pmatrix} \{c, d\} & X \setminus \{c, d\} \\ a & b \end{pmatrix}.$$

Since $c\lambda \in Y$ for all $\lambda \in D^2$, $c\lambda\eta \in Y$. Hence $b = c\lambda\eta\alpha = c\beta = a$ which is a contradiction.

Case $n \geq 3$, we have $\beta \in (D)_{(2,n)}$. Similarly, we also obtain that $\beta = \lambda \eta \alpha$ for some $\lambda \in D^2, \eta \in S(X,Y), \alpha \in D^n$. Since $a \in X\beta$, we must have $\alpha = \begin{pmatrix} d & X \setminus \{d\} \\ a & b \end{pmatrix}$. Since $c\lambda \in Y$ for all $\lambda \in D^2$, $c\lambda\eta \in Y$ implies that $a = c\beta = c\lambda\eta\alpha = b$ which is a contradiction. Therefore, $S(X,Y) \notin BQ_2^n$. Now, we assume that m > 2. If n = 1 or n = 2, we define

$$D = \left\{ \begin{pmatrix} Y & c & d & x \\ b & e & d & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})}, \begin{pmatrix} a & Y \setminus \{a\} & c & d & x \\ a & b & e & b & x \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})} \right\}.$$

We see that

$$\begin{split} D^2 =& \left\{ \begin{pmatrix} c & d & X \setminus \{c, d\} \\ a & d & b \end{pmatrix}, \begin{pmatrix} Y & c & d & x \\ b & e & b & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c, d\})}, \begin{pmatrix} Y \cup \{d\} & x \\ b & a \end{pmatrix}_{x \in X \setminus (Y \cup \{d\})} \\ & \begin{pmatrix} a & Y \setminus \{a\} & c & d & x \\ a & b & e & b & x \end{pmatrix}_{x \in X \setminus (Y \cup \{c, d\})} \right\}, \\ D^3 =& \left\{ \begin{pmatrix} d & X \setminus \{d\} \\ d & b \end{pmatrix}, \begin{pmatrix} c & X \setminus \{c\} \\ a & b \end{pmatrix}, \begin{pmatrix} Y & c & d & x \\ b & e & b & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c, d\})}, \begin{pmatrix} Y & c & d & x \\ b & e & b & a \end{pmatrix}_{x \in X \setminus (Y \cup \{d\})}, \begin{pmatrix} a & Y \setminus \{a\} & c & d & x \\ a & b & e & b & x \end{pmatrix}_{x \in X \setminus (Y \cup \{c, d\})} \right\} \end{split}$$

and $D^3 = D^4 = D^5 = \dots$ Let $\beta = \begin{pmatrix} Y & c & d & x \\ b & d & b & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})}$. Then we have

$$\begin{split} \beta = & \begin{pmatrix} Y & c & d & x \\ b & e & b & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})} \begin{pmatrix} a & Y \setminus \{a\} & x \\ a & b & d \end{pmatrix}_{x \in X \setminus Y} \\ = & \begin{pmatrix} Y \cup \{d\} & c & x \\ b & d & x \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})} \begin{pmatrix} Y & c & d & x \\ b & e & d & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})} \\ = & \begin{pmatrix} Y & c & d & x \\ b & d & b & c \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})} \begin{pmatrix} c & d & X \setminus \{c,d\} \\ a & d & b \end{pmatrix} \\ \in D^m S(X,Y) D \cap S(X,Y) D \cap S(X,Y) D^2, \end{split}$$

hence $\beta \in (D)_{q(m,2)} \cap (D)_{q(m,1)}$. We suppose that $S(X,Y) \in BQ_m^n$, $n \in \{1,2\}$. Since $\beta \notin \bigcup_{i \in \mathbb{N}} D^i$, we obtain that $\beta = \lambda \eta \alpha$ for some $\lambda \in D^m$, $\eta \in S(X,Y)$, $\alpha \in D \cup D^2$.

Since
$$d \in X\beta$$
, α can be $\begin{pmatrix} Y & c & d & x \\ b & e & d & a \end{pmatrix}_{x \in X \setminus \{Y \cup \{c,d\}\}}$ or $\begin{pmatrix} c & d & X \setminus \{c,d\} \\ a & d & b \end{pmatrix}$. If

 $\lambda = \begin{pmatrix} Y \cup \{d\} & x \\ b & a \end{pmatrix}_{x \in X \setminus (Y \cup \{d\})}, \text{ then we obtain by } c\lambda = e\lambda \text{ that } d = c\beta = c\lambda\eta\alpha = e\lambda\eta\alpha = e\beta = a \text{ which is a contradiction. If } \lambda \neq \begin{pmatrix} Y \cup \{d\} & x \\ b & a \end{pmatrix}_{x \in X \setminus (Y \cup \{d\})}, \text{ by } \lambda = e\lambda\eta\alpha = e\beta = a \text{ which is a contradiction. If } \lambda \neq \begin{pmatrix} Y \cup \{d\} & x \\ b & a \end{pmatrix}_{x \in X \setminus (Y \cup \{d\})}, \text{ by } \lambda = e\lambda\eta\alpha = e\beta = a \text{ which is a contradiction. If } \lambda \neq \begin{pmatrix} Y \cup \{d\} & x \\ b & a \end{pmatrix}_{x \in X \setminus (Y \cup \{d\})}, \text{ by } \lambda = e\lambda\eta\alpha = e\beta = a \text{ which is a contradiction. If } \lambda \neq \begin{pmatrix} Y \cup \{d\} & x \\ b & a \end{pmatrix}_{x \in X \setminus (Y \cup \{d\})}, \text{ by } \lambda = b\lambda\eta\alpha$

 $e\lambda\eta\alpha = e\beta = a$ which is a contradiction. If $\lambda \neq \begin{pmatrix} a \\ b \end{pmatrix}_{x\in X\setminus \{Y\cup\{d\}\}}^n$, by $e\lambda \in Y$ we also get that $e\lambda\eta \in Y$. Since $Y\alpha = b$, we get a contradiction from $a = e\beta = e\lambda\eta\alpha = b$. Thus $S(X,Y) \notin BQ_m^n$ for n = 1 or 2. Finally, we assume that n > 2. Now, we show that $S(X,Y) \notin BQ_m^n$ for m, n > 2. Let

$$D = \left\{ \begin{pmatrix} Y & c & d & x \\ b & d & e & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})}, \begin{pmatrix} a & Y \setminus \{a\} & c & d & x \\ a & b & c & b & e \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})} \right\}.$$

We see that

$$D^{2} = \left\{ \begin{pmatrix} c & d & X \setminus \{c, d\} \\ e & a & b \end{pmatrix}, \begin{pmatrix} Y \cup \{c\} & d & x \\ b & e & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c, d\})}, \right.$$

$$\begin{pmatrix} Y \cup \{d\} & c & x \\ b & d & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})}, \begin{pmatrix} a & Y \setminus \{a\} & c & d & x \\ a & b & c & b & e \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})} \Big\},$$

$$D^{3} = D^{2} \cup \left\{ \begin{pmatrix} c & X \setminus \{c\} \\ a & b \end{pmatrix}, \begin{pmatrix} d & X \setminus \{d\} \\ a & b \end{pmatrix}, \begin{pmatrix} c & X \setminus \{c\} \\ b & a \end{pmatrix}, \begin{pmatrix} A & X \setminus A \\ b & a \end{pmatrix}_{A = Y \cup \{c,d\}} \Big\},$$

$$D^{4} = D^{3} \cup \left\{ \begin{pmatrix} X \\ b \end{pmatrix} \right\}$$

and $D^2 \subseteq D^3 \subseteq D^4 = D^5 = D^6 = \dots$ Define $\beta = \begin{pmatrix} Y \cup \{c\} & d & x \\ b & d & a \end{pmatrix}_{X \setminus (Y \cup \{c,d\})}$. Then we have

$$\begin{split} \beta &= \begin{pmatrix} Y \cup \{c\} & d & x \\ b & e & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})} \begin{pmatrix} a & Y \setminus \{a\} & X \setminus Y \\ a & b & d \end{pmatrix} \\ &= \begin{pmatrix} Y \cup \{c\} & d & x \\ b & c & e \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})} \begin{pmatrix} Y \cup \{d\} & c & x \\ b & d & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})} \\ &\in D^3 S(X,Y) \cap S(X,Y) D^3 \\ &\subseteq D^m S(X,Y) D \cap S(X,Y) D^n \subseteq (D)_{q(m,n)}. \end{split}$$
 Since $\beta \notin \bigcup_{i \in \mathbb{N}} D^i, \beta = \lambda \eta \alpha$ for some $\lambda \in D^m, \eta \in S(X,Y), \alpha \in D^n$. Since $d \in X\beta$, we must have $\alpha = \begin{pmatrix} Y \cup \{d\} & c & x \\ b & d & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})}$. Since $D^m = D^4$ for all $m > 2$, we consider λ in 2 cases. Firstly, $\lambda = \begin{pmatrix} Y \cup \{c\} & d & x \\ b & e & a \end{pmatrix}_{x \in X \setminus (Y \cup \{c,d\})}$. Since $d\lambda \in Y$ for all λ and $d\lambda \eta \in Y$, we have $d = d\beta = d\lambda \eta \alpha = b$ which is a contradiction. Thus $S(X,Y) \notin BQ_m^n$.

Now, the proof is completed.

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved