CHAPTER 2

Preliminaries

The aim of this chapter is to briefly review some concepts of semigroup properties
and some concepts of the monoid of all generalized hypersubstitutions that will be used

throughout this thesis.

2.1 Semigroups

Let A be a nonempty set and n > 1 be a natural number. An n-ary operation on
A is a function f4: A" — A and the natural number n is called the arity of f4.
Let I be a nonempty indexed set, and let ( A

“ier be a function which assigns to

every element of I an n;-ary operation f{* defined on A. Then the pair A = (A, (f)icr)
is called an algebra. The set A is called the base set or universe of A, and (f,A)z‘eI is called
the sequence of fundamental operations of A. The sequence 7 := (n;);es for all the arities
is called the type of the algebra A.

A groupoid (5, ) is defined as a nonempty set S together with a binary operation
“” (by which we mean a map - := S xS — §). We call (S,-) a semigroup if the operation
- is associative, i.e., (a-b)-c=a- (b-c) for all a,b,c € S. For convenience, we write ab
instead of a - b.

A semigroup S is called a monoid if S has an identity, i.e., there exists an element

e in S such that ae = a = ea for all a € S. Clearly, if a semigroup has an identity, then

that identity is unique.

Definition 2.1.1 ([6]). An element a of a semigroup S is called regular if there exists

x € S such that aza = a.

Definition 2.1.2 ([10]). An element a of a semigroup S is called completely reqular if

there exists z € S such that a = aza and ax = za.

An element a of a semigroup S is called left [right] regular if a € Sa® [a € a28S).
If all its elements are left regular [right regular| then a semigroup S is left regular [right

reqular].



Theorem 2.1.3 ([10]). An element a of a semigroup S is completely regular if and only
if a is both left reqular and right regqular.

Proof. Let a be a completely regular element in a semigroup S. Then there exists z € S
such that a = axa and ax = ra. So a = azxa = a’x € a®S and a = azxa = za® € Sa?, i.e.
a is both left regular and right regular.

Conversely, if a is both left regular and right regular element in a semigroup S, then

a € 2SN Sa?. There exist x,y € S such that a = a2 and a = ya®. Consider

aya = ay(a®z) = a(ya®)z = aax = a*x = a

aza = (ya*)za = y(a®z)a = yaa = ya® = a

and ax = ya’z = ya.

Hence a(yax)a = (aya)za = axa = a and a(yazr) = (aya)r = ax = ya = y(axa) =

ax)a. Therefore a is completely regular. O
(yax) y reg

Example 2.1.4. (Zg, -) is a commutative semigroup under multiplication with the identity

1. Consider
0=0"2=2-0°, 3=3.1=1.%
1=17".1=1-T, 1=7.1=1.7°
2=2".5=5.2°, 5=5.5=5-5.

So every element in Zg is both left regular and right regular. By Theorem 2.1.3 we have

that every element in Zg is completely regular.

2.2 Permutations

Let X,, ={1,2,...,n} which n > 1. A mapping 7 : X,, — X,, is called a permutation
of X,, if 7 is both one-to-one and onto. The set of all permutations of X, is denoted by
Sp. It turns out that (S, o) forms a group and is called the symmetric group of degree n.

To simplify the manipulation of these permutations, a matrix-typing notation is

useful. For example, if the permutation 7 : X4 — X4 is defined by 7(1) = 3, n(2) = 1,

(1234
T™=\3142)

m(3) =4, n(4) = 2, we write it as



Here the image of each element of X,, = {1,2,3,4} is written below that element. In

general, given 7 € S,, write it in matrix form as

" <w<11> w<22> w?m) |

Hence a typical member of S,, takes this form, where m(1),7(2),...,m(n) is the list of

numbers 1,2, ...,n in a (posibility) different order.

Example 2.2.1 ([7]). List the elements of S3 in matrix notation.
123 123 123
123)'\231)7\312
123 123 123
213)'\321)'\132)°

In particular, to construct a permutation

5> <w<11> w<22> w?m)

we must choose the numbers 7(1), 7(2), ..., 7(n) from X, so that they are all distinct. So
we have n choices for 7(1), then n — 1 choices for 7(2), and so on. Thus 7 can be formed

inn(n—1)(n—2)..2-1=n! ways.
2.2.1 Cycles
Consider the permutation
(123456

"\e4a3125
in Sg. Since the elements of 7 are moved in a cycle, 7 is called a cycle for this reason and
we will write 7 = (1 6 5 2 4). This notation lists only elements moved by 7, and each is
moved to its neighbor to the right, except the last element, which “cycle around” to the
first. We generalize this type of permutation as follows.

Let ki, ks, ..., k. be distinct elements of X,,. Then the cycle 7 = (k1 ko ... k) is

permutation in S,, defined as

’/'['(ki):ki+1 if 1§i§7‘—1

7T(]€) =k if k ¢ {k‘l,k‘g, .‘.,]{fr}.

We say that 7 has length r and refer to ™ as an r-cycle.



Example 2.2.2 ([7]). Let 7 = (é 5 3 144 150 161 172 g g }g 121 162 143 114) in cycle notation.

Solution. The cycle factorization of 7is 7= (1510 134 14)(2 712 6 11)(3 9).

Remark 2.2.3. The only cycle of lenght 1 is the identity permutation €.

2.3 The Monoid of all Generalized Hypersubstitutions

In 2000, S. Leeratanavalee and K. Denecke generalized the concepts of a hypersubsti-
tution and a hyperidentity to the concepts of a generalized hypersubstitution and a strong
hyperidentity, respectively [8]. The set of all generalized hypersubstitutions together with
a binary operation and the identity hypersubstitution forms a monoid.

Let X := {x1,x9,...} be a countably infinite variables and X,, := {x1,z2,...,2,}
which n € N is an n-element set. Let {f;|i € I} be a set of n;-ary operation symbols
indexed by the set I. We call the sequence 7 = (n;);er of arities of f;, the type. An n-ary
term of type 7 is defined inductively, as follows.

(i) Every z; € X is an n-ary term of type 7.

(ii) If ¢1,t9, ..., tp, are n-ary terms of type 7, then f;(t1,t2,...,t,,) is an n-ary term

of type 7.

Example 2.3.1. Let 7 = (3,3). This means we have two ternary operation sym-

bols, say f and g respectively. For some examples of ternary terms of type (3,3) :

x1, T2, 23, f (21, g(21, 23, 21), 22), 9(f (23, 22, 1), T2, 9(23, 3, 71).

The smallest set, which contains x1, xo, ..., z, and is closed under finite application
of (ii), is denoted by W-(X,,) and it is called the set of all n-ary terms of type 7. It is clear
that every n-ary term is also an m-ary term for all m > n. Let W-(X) = U2, W-(X,,)
be the set of all terms of type 7.

A generalized hypersubstitution of type 7 is a mapping o : {fi|li € I} — W.(X),
which does not necessarily preserve the arity. We denote the set of all generalized hy-
persubstitutions of type 7 by Hypa(7). To define a binary operation on the set of all
generalized hypersubstitutions, we need the concept of a generalized superposition of

terms and the extension of a generalized hypersubstitution, which are defined as follows.

Definition 2.3.2 ([8]). A generalized superposition of terms is a mapping
S W (X)) — W,(X) such that
(1) 8™ (xj,t1, .. tn) =15, if 1 <5 <my
(i7) S™ (zj,t1, ..., tn) = x5, if n < j;
(#7) S (£, 11, ooy tn) = [i(S™ (S1,t15 s tn) s ooy S (Smyy b1y ooy tn))y i £ = Fi(81, cens Sy )-



We extend every generalized hypersubstitution o to a mapping 6 : W, (X) — W, (X)
such that

(1) olz;] = x5 € X;

(13) o[fi(tr,ta, ... tn;)] = S™ (o (fi), d[t1], ..., G[tn,;]) for any n;-ary operation symbol
fi and suppose that &[t;],1 < j < n; are already defined.

We define a binary operation og on Hypg(7) by 01 0g 02 := d1 0 09 where o denotes
the usual composition of mappings and 01,09 € Hypg(7). Let 044 be the hypersubstitu-

tion which maps each n;-ary operation symbol f; to the term f;(x1,xo, ..., Zp,).

Example 2.3.3. Let 7 = (3,2), i.e., we have one ternary operation symbol and one
binary operation symbol, say that f and g, respectively. Let o : {f,g} — W32)(X)
where o(f) = f(z1,9(z3,21),22) and o(g) = g(z2,x3). Consider

Example 2.3.4. Let 7 = (2) with one binary operation f. Let 01,02 € Hypg(2) where
o1(f) = f(zs, f(z2,25)) and oo(f) = f(f (x4, 1), f(z2,23)). Consider

(010G 02)(f) = a1[f(f (w4, 21), f(22,73))]

and

= 5%(0a(f), Fa[s], Gol f (2, 5)])

= S%(02(f), 23, 5%(02(f), F2[w2], Fol5]))

= S%(0a(f), 23, S*(f(f (w4, 21), f (w2, 23)), 2, 25))

= S2(f(f(@a, 1), f(x2,23)), w3, f(f (24, 22), f(25,25)))



= f(f(z4,23), f(f(f(24,2), f(25,73)),73)).

Hence o1 oG 09 # 09 0 01, i.e., oG is not commutative.

Let 04 be the hypersubstitution which maps each n-ary operation symbol f; to the
term f;(x1,...,x,). In 2000, S. Leeratanavalee and K. Denecke proved that for arbitrary
terms t,t1,to, ..., t, € W-(X) and for arbitrary generalized hypersubstitutions o, 01,02 €
Hypg(T), we have

(1) S™(alt],o(t1], ..., 0[tn])) = G[S™(t,t1, ooy tn)];

(1) (01002 = d1009.

Using the previous result, S. Leeratanavalee and K. Deneeke proved that Hypg(7) :=

(Hypa(T),°a,0iq) is a monoid [8].



