
CHAPTER 2

Preliminaries

The aim of this chapter is to briefly review some concepts of semigroup properties

and some concepts of the monoid of all generalized hypersubstitutions that will be used

throughout this thesis.

2.1 Semigroups

Let A be a nonempty set and n ≥ 1 be a natural number. An n-ary operation on

A is a function fA : An → A and the natural number n is called the arity of fA.

Let I be a nonempty indexed set, and let (fA
i )i∈I be a function which assigns to

every element of I an ni-ary operation fA
i defined on A. Then the pair A = (A, (fA

i )i∈I)

is called an algebra. The set A is called the base set or universe of A, and (fA
i )i∈I is called

the sequence of fundamental operations of A. The sequence τ := (ni)i∈I for all the arities

is called the type of the algebra A.

A groupoid (S, ·) is defined as a nonempty set S together with a binary operation

“·” (by which we mean a map · := S×S → S). We call (S, ·) a semigroup if the operation

· is associative, i.e., (a · b) · c = a · (b · c) for all a, b, c ∈ S. For convenience, we write ab

instead of a · b.

A semigroup S is called a monoid if S has an identity, i.e., there exists an element

e in S such that ae = a = ea for all a ∈ S. Clearly, if a semigroup has an identity, then

that identity is unique.

Definition 2.1.1 ([6]). An element a of a semigroup S is called regular if there exists

x ∈ S such that axa = a.

Definition 2.1.2 ([10]). An element a of a semigroup S is called completely regular if

there exists x ∈ S such that a = axa and ax = xa.

An element a of a semigroup S is called left [right] regular if a ∈ Sa2 [a ∈ a2S].

If all its elements are left regular [right regular] then a semigroup S is left regular [right

regular].
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Theorem 2.1.3 ([10]). An element a of a semigroup S is completely regular if and only

if a is both left regular and right regular.

Proof. Let a be a completely regular element in a semigroup S. Then there exists x ∈ S

such that a = axa and ax = xa. So a = axa = a2x ∈ a2S and a = axa = xa2 ∈ Sa2, i.e.

a is both left regular and right regular.

Conversely, if a is both left regular and right regular element in a semigroup S, then

a ∈ a2S ∩ Sa2. There exist x, y ∈ S such that a = a2x and a = ya2. Consider

aya = ay(a2x) = a(ya2)x = aax = a2x = a

axa = (ya2)xa = y(a2x)a = yaa = ya2 = a

and ax = ya2x = ya.

Hence a(yax)a = (aya)xa = axa = a and a(yax) = (aya)x = ax = ya = y(axa) =

(yax)a. Therefore a is completely regular.

Example 2.1.4. (Z6, ·) is a commutative semigroup under multiplication with the identity

1. Consider

0 = 0
2 · 2 = 2 · 02, 3 = 3

2 · 1 = 1 · 32

1 = 1
2 · 1 = 1 · 12, 4 = 4

2 · 4 = 4 · 42

2 = 2
2 · 5 = 5 · 22, 5 = 5

2 · 5 = 5 · 52.

So every element in Z6 is both left regular and right regular. By Theorem 2.1.3 we have

that every element in Z6 is completely regular.

2.2 Permutations

Let Xn = {1, 2, ..., n} which n ≥ 1. A mapping π : Xn → Xn is called a permutation

of Xn if π is both one-to-one and onto. The set of all permutations of Xn is denoted by

Sn. It turns out that (Sn, ◦) forms a group and is called the symmetric group of degree n.

To simplify the manipulation of these permutations, a matrix-typing notation is

useful. For example, if the permutation π : X4 → X4 is defined by π(1) = 3, π(2) = 1,

π(3) = 4, π(4) = 2, we write it as

π =

(
1

3

2

1

3

4

4

2

)
.
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Here the image of each element of Xn = {1, 2, 3, 4} is written below that element. In

general, given π ∈ Sn write it in matrix form as

π =

(
1

π(1)

2

π(2)
...

n

π(n)

)
.

Hence a typical member of Sn takes this form, where π(1), π(2), ..., π(n) is the list of

numbers 1, 2, ..., n in a (posibility) different order.

Example 2.2.1 ([7]). List the elements of S3 in matrix notation.

(
1

1

2

2

3

3

)
,

(
1

2

2

3

3

1

)
,

(
1

3

2

1

3

2

)
(
1

2

2

1

3

3

)
,

(
1

3

2

2

3

1

)
,

(
1

1

2

3

3

2

)
.

In particular, to construct a permutation

π =

(
1

π(1)

2

π(2)
...

n

π(n)

)
we must choose the numbers π(1), π(2), ..., π(n) from Xn so that they are all distinct. So

we have n choices for π(1), then n− 1 choices for π(2), and so on. Thus π can be formed

in n(n− 1)(n− 2)...2 · 1 = n! ways.

2.2.1 Cycles

Consider the permutation

π =

(
1

6

2

4

3

3

4

1

5

2

6

5

)
in S6. Since the elements of π are moved in a cycle, π is called a cycle for this reason and

we will write π = (1 6 5 2 4). This notation lists only elements moved by π, and each is

moved to its neighbor to the right, except the last element, which “cycle around” to the

first. We generalize this type of permutation as follows.

Let k1, k2, ..., kr be distinct elements of Xn. Then the cycle π = (k1 k2 ... kr) is

permutation in Sn defined as

π(ki) = ki+1 if 1 ≤ i ≤ r − 1

π(kr) = k1

π(k) = k if k /∈ {k1, k2, ..., kr}.

We say that π has length r and refer to π as an r-cycle.
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Example 2.2.2 ([7]). Let π =
(
1
5

2
7

3
9

4
14

5
10

6
11

7
12

8
8

9
3

10
13

11
2

12
6

13
4

14
1

)
in cycle notation.

Solution. The cycle factorization of π is π = (1 5 10 13 4 14)(2 7 12 6 11)(3 9).

Remark 2.2.3. The only cycle of lenght 1 is the identity permutation ε.

2.3 The Monoid of all Generalized Hypersubstitutions

In 2000, S. Leeratanavalee and K. Denecke generalized the concepts of a hypersubsti-

tution and a hyperidentity to the concepts of a generalized hypersubstitution and a strong

hyperidentity, respectively [8]. The set of all generalized hypersubstitutions together with

a binary operation and the identity hypersubstitution forms a monoid.

Let X := {x1, x2, ...} be a countably infinite variables and Xn := {x1, x2, ..., xn}

which n ∈ N is an n-element set. Let {fi|i ∈ I} be a set of ni-ary operation symbols

indexed by the set I. We call the sequence τ = (ni)i∈I of arities of fi, the type. An n-ary

term of type τ is defined inductively, as follows.

(i) Every xj ∈ X is an n-ary term of type τ .

(ii) If t1, t2, ..., tni are n-ary terms of type τ , then fi(t1, t2, ..., tni) is an n-ary term

of type τ .

Example 2.3.1. Let τ = (3, 3). This means we have two ternary operation sym-

bols, say f and g respectively. For some examples of ternary terms of type (3, 3) :

x1, x2, x3, f(x1, g(x1, x3, x1), x2), g(f(x3, x2, x1), x2, g(x3, x3, x1).

The smallest set, which contains x1, x2, ..., xn and is closed under finite application

of (ii), is denoted by Wτ (Xn) and it is called the set of all n-ary terms of type τ . It is clear

that every n-ary term is also an m-ary term for all m ≥ n. Let Wτ (X) = ∪∞
n=1Wτ (Xn)

be the set of all terms of type τ .

A generalized hypersubstitution of type τ is a mapping σ : {fi|i ∈ I} → Wτ (X),

which does not necessarily preserve the arity. We denote the set of all generalized hy-

persubstitutions of type τ by HypG(τ). To define a binary operation on the set of all

generalized hypersubstitutions, we need the concept of a generalized superposition of

terms and the extension of a generalized hypersubstitution, which are defined as follows.

Definition 2.3.2 ([8]). A generalized superposition of terms is a mapping

Sn : Wτ (X)n+1 → Wτ (X) such that

(i) Sn (xj , t1, ..., tn) = tj , if 1 ≤ j ≤ n;

(ii) Sn (xj , t1, ..., tn) = xj , if n < j;

(iii) Sn (t, t1, ..., tn) = fi(S
n (s1, t1, ..., tn) , ..., S

n (sni , t1, ..., tn)), if t = fi(s1, ..., sni).
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We extend every generalized hypersubstitution σ to a mapping σ̂ : Wτ (X) → Wτ (X)

such that

(i) σ̂[xj ] = xj ∈ X;

(ii) σ̂[fi(t1, t2, ..., tni)] = Sni(σ(fi), σ̂[t1], ..., σ̂[tni ]) for any ni-ary operation symbol

fi and suppose that σ̂[tj ], 1 ≤ j ≤ ni are already defined.

We define a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦σ2 where ◦ denotes

the usual composition of mappings and σ1, σ2 ∈ HypG(τ). Let σid be the hypersubstitu-

tion which maps each ni-ary operation symbol fi to the term fi(x1, x2, ..., xni).

Example 2.3.3. Let τ = (3, 2), i.e., we have one ternary operation symbol and one

binary operation symbol, say that f and g, respectively. Let σ : {f, g} → W(3,2)(X)

where σ(f) = f(x1, g(x3, x1), x2) and σ(g) = g(x2, x3). Consider

σ̂[f(x2, g(x3, x1), x4)] = S3(σ(f), σ̂[x2], σ̂[g(x3, x1)], σ̂[x4])

= S3(σ(f), x2, S
2(σ(g), σ̂[x3], σ̂[x2]), x4)

= S3(σ(f), x2, S
2(g(x2, x3), x3, x2), x4)

= S3(f(x1, g(x3, x1), x2), x2, g(x2, x3), x4)

= f(x2, g(x4, x2), g(x2, x3)).

Example 2.3.4. Let τ = (2) with one binary operation f . Let σ1, σ2 ∈ HypG(2) where

σ1(f) = f(x3, f(x2, x5)) and σ2(f) = f(f(x4, x1), f(x2, x3)). Consider

(σ1 ◦G σ2)(f) = σ̂1[f(f(x4, x1), f(x2, x3))]

= S2(σ1(f), σ̂1[f(x4, x1)], σ̂1[f(x2, x3)])

= S2(σ1(f), S
2(σ1(f), σ̂1[x4], σ̂1[x1]), S

2(σ1(f), σ̂1[x2], σ̂1[x3]))

= S2(σ1(f), S
2(f(x3, f(x2, x5)), x4, x1), S

2(f(x3, f(x2, x5)), x2, x3))

= S2(f(x3, f(x2, x5)), f(x3, f(x1, x5)), f(x3, f(x3, x5)))

= f(x3, f(f(x3, f(x3, x5)), x5)),

and

(σ2 ◦G σ1)(f) = σ̂2[f(x3, f(x2, x5))]

= S2(σ2(f), σ̂2[x3], σ̂2[f(x2, x5)])

= S2(σ2(f), x3, S
2(σ2(f), σ̂2[x2], σ̂2[x5]))

= S2(σ2(f), x3, S
2(f(f(x4, x1), f(x2, x3)), x2, x5))

= S2(f(f(x4, x1), f(x2, x3)), x3, f(f(x4, x2), f(x5, x3)))
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= f(f(x4, x3), f(f(f(x4, x2), f(x5, x3)), x3)).

Hence σ1 ◦G σ2 ̸= σ2 ◦G σ1, i.e., ◦G is not commutative.

Let σid be the hypersubstitution which maps each n-ary operation symbol fi to the

term fi(x1, ..., xn). In 2000, S. Leeratanavalee and K. Denecke proved that for arbitrary

terms t, t1, t2, ..., tn ∈ Wτ (X) and for arbitrary generalized hypersubstitutions σ, σ1, σ2 ∈

HypG(τ), we have

(i) Sn(σ̂[t], σ̂[t1], ..., σ̂[tn]) = σ̂[Sn(t, t1, ..., tn)];

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

Using the previous result, S. Leeratanavalee and K. Deneeke proved thatHypG(τ) :=

(HypG(τ), ◦G, σid) is a monoid [8].
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