CHAPTER 3

Main Results

In semigroup theory, the main study approach is diverse some special elements in
semigroups such as regular elements, quasi-regular elements and idempotent elements. In
Chapter 2, we have that (Hypg(7),0q,0:4) is @ monoid. So we can characterize these
special elements on this monoid. Th. Changphas and K. Denecke characterized idempo-
tent elements and regular elements of the monoid of all hypersubstitutions of type 7 [4].
W. Puninagool and S. Leeratanavalee [11] characterized the set of all regular elements of
the monoid of all generalized hypersubstitutions of type 7 = (2). In 2010, they charac-
terized the set of all idempotent and regular elements of the monoid of all generalized
hypersubstitutions of type 7 = (n) [12]. Furthermore, all idempotent and regular ele-
ments of the monoid of all generalized hypersubstitutions of type 7 = (3) were studied
by S. Sudsanit and S. Leeratanavalee [13]. In 2013, S. Sudsanit, S. Leeratanavalee and
W. Puninagool characterized left-right regular elements of the monoid of all generalized
hypersubstitutions of type 7 = (2) [14].

The main results of this thesis are to characterize the set of all maximal completely
regular submonoids of the monoid of all generalized hypersubstitutions of type 7 = (2) and
determine all maximal completely regular submonoids of all generalized hypersubstitutions
of type 7 = (n).

Henceforth, we introduce some notations which will be used throughout of this
thesis. For a type 7 = (n) with an n-ary operation symbol f and ¢ € W,,)(X), we denote

o := the generalized hypersubstitution of type 7 = (n) which maps f to the
term ¢,
le ftmost(t) := the first variable (from the left) occurring in ¢,
rightmost(t) := the last variable occurring in ¢,
var(t) := the set of all variables occurring in the term ¢.
For a type t € W;,)(X) and 1 <i < n, an i — most(t) is defined indeuctively by:
(i) if ¢ is a variable, then i — most(t) = t,
(ii) if t = f(t1,...,tn), then ¢ — most(t) = i — most(t;).
Notice that 1 — most(t) = leftmost(t) and n — most(t) = rightmost(t).



Example 3.0.1. Let 7 = (3) be a type, t = f(xo, f(xs,x5,23), f(x1, %6, T4)).
Then 1 — most(t) = x2, 2 — most(t) = 2 — most(f(xs, x5, 23)) = x5 and 3 — most(t) =

3 — most(f(x1,x6,74)) = x4.

3.1 All Maximal Completely Regular Submonoids of Hyps(2)

In the monoid of all generalized hypersubstitutions of type 7 = (n), all regular
elements were studied by W. Puninagool and S. Leeratanavalee in 2010 [12]. Moreover, in
2013, A. Boonmee and S. Leeratanavalee [3] characterized the set of all completely regular
element of the monoid of all generalized hypersubstitutions of type 7 = (n).

In this section, we used the concept of a completely regular element as a tool to
determine the set of all maximal completely regular submonoids of the monoid of all
generalized hypersubstitutions of type 7 = (n).

For a type 7 = (n) with n-ary operation f, we denote:

Ry :={og,|zi € X};

Ry := {o¢|t € W (X)\X and wvar(t)NX, =a};

R3 = {oi|t = f(t1,....,tn) where t;; = zj,....t;, = xj, for some iy,....%, €
{1,...,n} and for distinct ji,...,Jm € {1,...,n} and var(t) N X, = {zj,,...,z;,. } };

CR(R3) := {oy|t = f(t1,....,tn) where t;; = 214y, ..., ti,, = Tn(s,,) and 7 is a bijec-
tive map on {i1, ..., im } for some iy, ..., im € {1,...,n} and var()NXpn = {Tr(i,), s Ta(ip) } -

It is clearly that CR(R3) C Rs. In 2010, W. Puninagool and S. Leeratanavalee [12]
showed that U?:1 R; is the set of all regular elements in Hypg(n). In 2013, A. Boonmee

and S. Leeratanavalee [3] determined the set of all completely regular elements in Hypg(n),

as the following theorems.

Theorem 3.1.1 ([3]). For each oy € CR(R3), ot is a completely regular element in
Hypa(n).

Theorem 3.1.2 ([3]). Let CR(Hypg(n)) := CR(R3)U R1 U Ra. Then CR(Hypa(n)) is
the set of all completely regular elements in Hypg(n).

Next, we will consider in case of 7 = (2) this means that we have only one binary
operation symbol, say that f, and then

Ry :={og,|zi € X};

Ry := {oy|t € W(5)(X)\X and var(t) N Xz = T};

CR(R3) :={o¢| t= f(t1,t2) where t; = x; for some i € {1,2} and var(t)N Xy =

{1:1}} U {O-f($17$2)’ Uf($2,r1)}'
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It is easily to see that Ry, Ro, CR(R3) are pairwise disjoint and Ry, Ry are subsemi-
groups of Hypg(2) but CR(R3) is not a submonoid of Hypg(2) as the following example.

Example 3.1.3. Let 05,01 € CR(R3) such that s = f(x1, f(z4,21)) and t = f(x2,21).

Consider

So ot o o5 ¢ CR(R3).

Next, let oy € Hypa(2), we denote
CR1(R3) := {0t = f(x1,t') where t' € W9)(X) and var(t) N Xo = {z1}},
CRa(R3) := {0t = f(t',22) where t' € Wi9)(X) and var(t) N Xz = {z2}},
CRy(R3) := {o4|t = f(x1,t") where t' € Wig)(X), wvar(t)N Xz = {z1} and
rightmost(t') # x1},
CRy(R3) := {oy|t = f(t',22) where t' € Wig)(X) wvar(t) N Xz = {z2} and
lefttmost(t') # xo},

(MCR)Hype(2) = R1 U R2 UCR|(R3) UCRy(R3) U {0ia},
(MCR1)1,pe(2) = R1 U Ry UCR(R3) U {oia)
(MCRQ)HypG(2) = R URy UCRy(R3) U {04} and
(MCR3)Hypa(2) = B1U Ra U{0ids 0f(wp,21) Of (21,01)> O f(wa,w2) }-

Proposition 3.1.4. CRy(R3) U {04} and CR|(R3) U {04} are submonoids of Hypc(2).

Proof. Tt is clear that CR;(R3) C Hypa(2). Next we show that CRy(R3) is closed under
og. Let 0,05 € CRi(R3). Then t = f(x1,t'),s = f(x1,8') where t',s" € Wy)(X) and
var(t) N Xo = {z1},var(s) N X9 = {z1}. Consider

(010G 05)(f) = Ge[f(21,5)]
= S%(o4(f), 6e[z1], 64['])
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Then oyogos € CR1(R3) and therefore CRy(R3) U {04} is a submonoid of Hypa(2).

In case of CR)(R3) U {04} is a submonoid of Hypa(2), the proof is similar to the previous

proof. O

Proposition 3.1.5. CRy(R3) U {04} and CRL(R3) U {0ia} are submonoids of Hypc(2).

Proof. 1t is clear that CRa(R3) C Hypa(2). Next we show that CR2(R3) is closed under
og. Let 0,05 € CRa(R3). Then t = f(t',x2),5 = f(s',22) where t',s" € Wy)(X) and
var(t) N Xo = {2}, var(s) N Xo = {z2}. Consider

(010G 05)(f) = Ge[f(s', 22)]
= S%(04(f), 64[s'], Ge[w2])

= S2(f(t',22), 6[5'], 22)

= f(t',z2) since wvar(t)N Xy = {xa}
= Uf(t’,wg)(f)'

Then oy0cgos € CRy(R3) and therefore CRy(R3) U {04} is a submonoid of Hypa(2).

In case of CRL(R3) U {044} is a submonoid of Hypg(2), the proof is similar to the previous

proof. O
Theorem 3.1.6. (MCR)pyp,(2) is a completely regular submonoid of Hypg(2).

Proof. By Theorem 3.1.2, we have every element in (M CR) gy, (2) is completely regular.
Next we show that (MCR)yp,,(2) is closed under og. Let oy,05 € (MCR)pyp,2) =
Ry URyUCR/|(R3) UCRL(R3) U{oiq}-
Case 1: 0, € R;. Thent=1z; € X.
Case 1.1: 0g € Ry. It is obvious that oy og 05 € Ry C (MCR)pype(2)-
Case 1.2: o € Ry. Then s = f(s1,52) where 51,82 € W(2)(X) and war(s) N
X9 = @. Consider

(010G 0s)(f) = d¢[f(s1,52)]
= S2(04(f), 6¢ls1], Gesa])

= SQ(xi, OA't[Sl], Oct[sﬂ)
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(U}[si], if ie{1,2};

Xi, if 4>2
leftmost(sy), if i=1;

= § rightmost(sq), if i =2;

Xi, if 7> 2.

Then we have o, og 05 = 0, for some z; € X. Hence (0; og 05) € Ry C

(MCR) pypo (2):
Case 1.3: 0, € CRj(R3). Then s = f(x1,s") where s’ € W9)(X),var(s) N
Xy = {z1} and rightmost(s’) # z1. Consider

(01 oG 05)(f) = G4[f (21, 5")]
= 5%(ou(f), Ge[21], G4[s))
= S%(z;, 21, 64[5])
z1, if i=1;
= q a¢|s'] = rightmost(s'), if i=2;
i, if ©> 2.
Then we have o og 05 = 04, for some z; € X. Hence (0t og 0s) € Ry C
(MCR) type (2)-

Case 1.4: 0, € CRy(R3). Then s = f(s',29) where s’ € W9 (X), var(s) N
Xy = {x2} and leftmost(s’) # x2. Consider

(0t 0q 05)(f) = Gi[f(s', 22)]
= 5%(01(f), 6¢[s'], Gelx2])
= S%(2,64[5'], z2)
T2, if i =2;
= d0¢[s'] = leftmost(s'), if i=1;
i, if 7> 2.
Then we have o; og 05 = Ox; for some z; € X. Hence (0y og 0s) € Ry C

(MCR)HypG(Q)'
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Case 2: 04 € Ry. Then t € Wi5)(X) \ X and var(t) N Xz = @.
Case 2.1: 05 € Ry. It is obvious that o 0g 0s € R1 C (MCR)pyp(2)-
Case 2.2: 05 € Ry. Then s € W5y (X) \ X and var(s) N X2 = @. Since Ry is
a subsemigroup of Hypg(2), s0 01 oG 05 € Ra C (MCR)pype, (2)-
Case 2.3: 0, € CR|(R3). Then s = f(x1,5') where 8" € W) (X),var(s) N
Xy = {1} and rightmost(s’) # x1. Consider

(o1 oq 05)(f) = 64| f(x1, )]
= 5%(o1(f), 64[z1], 6u[s'])
= S%(f(t1,t9), x1,64[s"])

= f(t1,t2) since wvar(t) N Xo = .

Then o4 0oqg os € Ry C (MCR)HypG(Z)‘
Case 2.4: 05 € ORy(R3). Then s = f(s',x2) where s’ € W9 (X),var(s) N

Xy = {22} and leftmost(s’) # x2. We can prove in the same manner as in Case 2.3.

Case 3: 0y € CR{(R3). Then t = f(x1,t') where t' € W9 (X),var(t) N Xo = {z1}
and rightmost(t') # 1.
Case 3.1: 05 € Ry. It is obvious that o0 0s € R1 C (MCR)pyp.(2)-
Case 3.2: 04 € Ry. Then s = f(s1,s2) where s1,s9 € Wi (X) and var(s) N
X9 = @. Consider

where t” is a new term derived by substituting 1 which occurs in ¢’ by &¢[s1]. Then
010G 0s € Ry C (MOR)fype(2)-
Case 3.3: 05 € CR}(R3). By Proposition 3.1.4., we have that CR}(R3) U
{oia} is a submonoid of Hypg(2). So o1 o 05 € CRY(R3) C (MCOR)gype(2)-
Case 3.4: 05 € OR)(R3). Then s = f(s',x2) where s’ € W9 (X),var(s) N
X9 = {xo} and leftmost(s’) # xa. Consider

(010G 05)(f) = Gu[f(s', z2)]
= S*(04(f), 6u[s"], Gu[w2])
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- SQ(f(xlv t/>7 &t[s/]v 332)
= f(oct[S/L t,/)v
where ¢ is a new term derived by substituting 1 which occurs in ¢’ by d¢[s1]. Since

x1 ¢ var(s') and leftmost(s’) # x9, we have that x1,xe ¢ var(dy[s']). Since za ¢ var(t')

and z1,z2 ¢ var(d[s']), we have 0y og 05 € Ry C (MCR)pype,(2)-

Case 4: 0, € CRy(R3). Then t = f(t', x2) where t' € W5y (X),var(t) N Xo = {x2}
and leftmost(t') # x3. We can prove in the same manner as in Case 3. Therefore

(MCR)gype(2) is a completely regular submonoid of Hypg(2). O

Theorem 3.1.7. (MCR1) frype,(2) and (MCR2) frype(2) are completely regular submonoids
of Hypg(2).

Proof. By Theorem 3.1.2., we have every element in (MCRy) Hype (2) 18 completely regular.
Next we show that (MCR1)gyp(2) is closed under og. Let 01,05 € (MCR1)pype(2) =
R1URy UCRy(R3) U{0iq}.
Case 1: 0, € R;. Thent =x; € X.
Case 1.1: o5 € Ry. It is obvious that oy og 05 € R1 C (MC’Rl)HypG(2).
Case 1.2: 05 € Ry. Then s = f(s1,s2) where 51,52 € W(9)(X) and wvar(s) N
X9 = @. Consider

(010G os)(f) = di[f(s1,52)]
= 52(0t(f),<ft[81]7 d¢[s2])
= 2($i,§t[81],6t[52])

(U}[si], if e {1,2};

Ti, if 4> 2
leftmost(sy), if i=1;

=  rightmost(sq), if i =2;

z;, if > 2.
Then we have o4 og 05 = 0
(MCR1) Hype(2)-
Case 1.3: o5, € CRi(R3). Then s = f(x1,8') where s’ € W9 (X) and
var(s) N Xo = {z1}. Consider

for some z; € X. Hence (0, og 05) € R1 C

(01 0¢ 05)(f) = Gl f (21, )]
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= S%(04(f), 61]x1], 61]s'])

= Sz(xi,asl,a}[s/])

T, if i=1;
= d¢[s'] = rightmost(s’), if i =2;
i, if 7> 2.
Then we have oy og 05 = 0y, for some z; € X. Hence (0t og 05) € Ry C

(MCR1) Hype (2)-

Case 2: 0; € Ry. Then t € W5y(X) \ X and var(t) N Xz = @.
Case 2.1: o0, € Ry. It is obvious that o;og0s € Ry C (MC’Rl)HypG(Q).
Case 2.2: 05 € Ry. Then s € Wyy(X) \ X and var(s) N X2 = @. Since Ry is
a subsemigroup of Hypg(2), so 040G 05 € Ry C (MCR1) pype,(2)-
Case 2.3: 05 € CR1(R3). Then s = f(x1,5') where s € W()(X) and var(s)N
X9 = {x1}. Consider

(01 oc 05)(f) = il f(x1,5")]
= S%(04(f), Gt[a1], G1[s'])
= S2(f(t1,t2), 71, 64[s'])

= f(t1,t2)  since var(t)N X, = @.

Then 0t 0Gq 08 € Ry C (MCRI)Hypg(Q)-

Case 3: 0y € CRi(R3). Then t = f(x1,t') where t' € Wy)(X), var(t) N Xy = {x1}.
Case 3.1: 05 € Ry. It is obvious that o, 0505 € Ry C (MC’Rl)HypG(2).
Case 3.2: 05 € Ry. Then s = f(s1,52) where s1,52 € W) (X) and var(s) N
X9 = @. Consider

(01 oG 05)(f)

o¢[f(s1,52)]
S2(ou(f), Guls1], Gelsa])
SZ(f(xlv tl)’ 6t[51]7 UAt[SQ])

= f(G¢[s1],t") since var(t) N Xy = {1},

where " is a new term derived by substituting 21 which occurs in ¢’ by d¢[s1]. Then
orogos € Ry C (MCRl)Hypg(2)~
Case 3.3: 05 € CR1(R3). By Proposition 3.1.4., we have that CR;(R3) U
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{oia} is a submonoid of Hypg(2). So 0o 0s € CR1(R3) C (MCR1)pyp (2)-
Therefore (MCR;)
(MCRy)

Hyp(2) 18 @ completely regular submonoid of Hypg(2). In case of

Hype(2) 18 a completely regular submonoid of H ypa(2), the proof is similar to the

previous proof. O

Theorem 3.1.8. (MCR3)pyp,(2) i a completely regular submonoid of Hypg(2).

Proof. By Theorem 3.1.2, we have every element in (M CR3) gy, (2) is completely regular.
Next we show that (MCR3)gyp,(2) is closed under og. Let 04,05 € (MCR3)pyp(2) =
Ry U Ry U{0id; 0f(as,01) O f(a1.01)5 O f(a2a2) }-
Case 1: 0, € R;. Thent=1xz; € X.

Case 1.1:  0g € Ry. It is obvious that o og 05 € Ry C (MCRa)pype,(2)-

Case 1.2: 05 € Ry. Then s = f(s1,52) where s1,52 € Wio)(X) and war(s)N
X9 = @. We can prove in the same manner as in Case 1.2 of Theorem 3.1.6. and conclude
that oy og 05 € R1 C (MCOR3) Hype(2)-

Case 1.3: 05 € {0id, Of(20,01)» T f(x1,21)1 O f(wa,wz) }- 1t s Obvious that

ot oG os = oy if 05 = f(z1,22). If 05 = f(22,21), then

(010G 05)(f) = S¢[f (w2, 21)]
= 5%(04(f), Gt [w2], 64[z1])
— SQ(.’L'Z',ZEQ,IL'l)
T9, if 1=1;
=Sz, if i=2
Xi, if 7> 2.
If o5 = f(x1,21) or 05 = f(x2,z2), we can prove similar to case of o5 = f(z2,21). Then
0t 0G 0g € R, C (MCR3)HypG(2)'
Case 2: 0y € Ry. Then t € Wy (X) \ X and var(t) N Xa = @. We can prove

similar to Case 2 of Theorem 3.1.6., then oy o 05 € Ra C (MCR3) frype (2)-

Case 3: 01 € {0id, 0 f(2p,01) T f(w1,01) O f(wasz) ) -
Case 3.1: o5 € R;. It is obvious that o, 0q 0s € R C (MC’Rg)HypG(2).
Case 3.2: 05 € Rg. Then s = f(s1,s2) where s1,52 € W5)(X) and var(s)Nn
X9 = @. It is clear that o, 0q 05 = 05, if t = f(x1,22). If t = f(x2, 1), then

(ot oc 05)(f) = G¢[f(s1,52)]
= S*(04(f), Ge[s1], Ge[s2])
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= S2(f(w2,21), Ge]s1], G¢[s2])
= f(d¢[s2], d¢[s1])-

Since var(f(dy[sz2], di[s1])) N X2 = D, then 04, 2,y 06 0s € R2 C (MCR2) fype(2)-
If 05 = f(x1,21) or o5 = f(x2,22), we can prove similar to case of o5 = f(x2,21). Then
ot oG 0s € Ry C(MCOR3) ype(2)-
Case 3.3: 05 € {0id, 0 f(w0,01)) T f(w1,21) O f(wasw2) )
If 04 = 0 f(z,,25), then 010G 0s =05 € {0ids Of(2,1) T f(21,01) T f(wa2) )

If 0t = 0f(4y,2,), then

¥
O f(za,21)s if 5= f(x1,22);
O f(w1,22)> = f(z2,71);
0t 0G 0s =
O f(z1,21)s if s= f(xlawl);
Of(anan)s i 8= f(22,72)

If o = 0f(z1,01) OF Ot = Of(zy25), We can prove similar to case of o5, =
f(z2,21). Then oy oG 05,05 o 01 € {04, O f(an,a1)s O f(21,01)) T f(a,z) ) C (MCR3) Hype (2)
Therefore, (MCR3) pyp,(2) is a completely regular submonoid of Hypg(2). O

Theorem 3.1.9. (MCR)pyp,(2) is a mazimal completely reqular submonoid of Hypg(2).

Proof. Let K be a proper completely regular submonoid of Hypg(2) such that
(MCR)ype(2) € K C Hypg(2). Let oy € K, then oy is completely regular.

Case 1: 0, € CR1(R3)\CR}(R3). Choose o5 € CR,(R3), then s = f(s',22) where
s € Wg)(X),var(s) N Xo = {x2} and leftmost(s") # x3. Consider

(05 06 01)(f) = Fs[f(21,1)]
= SQ(US(f%UAS[xl]v JAS[t,])

where s is a new term derived by substituting x5 which occurs in s’ by ¢s[t/]. Since
x9 € var(s) and rightmost(t') = x1, we have x; € var(ds[t']). By Theorem 3.1.2, we have

05 o 0y is not completely regular.
Case 2: 0, € CRy(R3)\CR,(R3). Choose o5 € CR}(R3), then s = f(z1,s’) where s’ €
Wig)(X),var(s) N X2 = {z1} and rightmost(s') # x1. Consider

(05 0q o1)(f) = Is[f(t', x2)]
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= SQ(US(f)7‘fS[t/]a‘fS[x2])
= S2(f(1:lu S/)vés[t/]vx2)
= f(s[t], s")

where s” is a new term derived by substituting 21 which occurs in s’ by ¢s[t/]. Since
x1 € var(s) and leftmost(t') = xq, we have xo € var(ds[t']). By Theorem 3.1.2, we have
05 o 0y is not completely regular.

Case 3: 0y = 0f(3,4,)- Choose 0, € CR|(R3), then s = f(x1,5') where s €
Wig)(X),var(s) N Xz = {z1} and rightmost(s') # x1. Consider

where s” is a new term derived by substituting z; which occurs in s’ by z5. Since

x9 ¢ var(s') and the first input of the term f(x2, s’) is x2, by Theorem 3.1.2; we have gs0¢
ot is not completely regular. Therefore K' C (MCR) gyp,,(2) and thus K = (MCR) gy, (2)-
O

Theorem 3.1.10. (MCR1)pyp(2) and (MCR2) pyp2) are mazimal completely regular

submonoids of Hypa(2).

Proof. Let K be a proper completely regular submonoid of Hypg(2) such that
(MCR1)gype2) © K C Hypg(2). Let oy € K, then oy is completely regular.

Case 1: 0y = 0f(yy,)- Choose 05 € CR1(R3), then s = f(x1,s") where s’ €
Wig)(X) and wvar(s) N Xg = {x1}. Consider

(o106 0s)(f)

il f(z1,5)]
2(04(f), Felar), 6u[s'])
S2(f(x2,21), 21, 6[5])
= f(G[s'], z1).

I
N

Since xo ¢ var(t) and the second input of the term f(d:[s'], z1) is x1, by Theorem
3.1.2, we have o og 0; is not completely regular.

Case 2: 0y € CRy(R3). Then t = f(t',x2) where t' € W(9)(X) and var(t) N Xz =
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{z2}. Choose 05 € CR1(R3), then s= f(x1,8) where s € Wy (X)\ X,var(s)N Xy =

{z1} and rightmost(s’) = z1. Consider

(01 0c 05)(f) = e[ f (21, 5')]
= S%(04(f), Gelw1], 6e[s'])
= S2(f(t, x2), 31, 64[5])
= f(t",6:[s']),

where t” is a new term derived by substituting x5 which occurs in ¢ by dy[s']. Since
x9 € var(t), we have x1 € var(d[s]). Since x1 ¢ var(t), by Theorem 3.1.2, we have oi0q0
is not completely regular. Then oy € (MCR1)pyp,2)- Therefore K C (MCR1)pype(2)
and thus K = (MCR1) gyp,(2)- In case of (M CRg) pryp,, (2) is @ maximal completely regular

submonoid of Hypa(2), the proof is similar to the previous proof. ]

Theorem 3.1.11. (MCR3) gyp,,(2) s @ maximal completely reqular submonoid of Hypg(2).

Proof. Let K be a proper completely regular submonoid of Hypg(2) such that
(MCR3)Hrype2) © K C Hypg(2). Let oy € K, then oy is a completely regular element.
Case 1: 0, € CRy(R3). Then t = f(x1,t') where t' € Wy)(X) and var(t)NX; =

{z1}. Choose o5 = 0 (3, 4,), consider

(05 0c 01)(f) = Is[f(z1,t)]
= 5%(05(f), Gslar], G5[t'])
= S2(f(z9, 1), 71, Gs[t'])
= f(ds[t'], x1).

Since xg ¢ var(t) and the second input of the term f(ds[t'], z1) is 1, by Theorem

3.1.2, we have 05 oG 0 is not completely regular. Then oy € (MCR2) fryp,, (2)-

Case 2: 0, € ORy(R3). Then t = f(t',r2) where t' € W5)(X) and var(t)NXs =
{z2}. We can prove in the same manner as in Case 1. Therefore K C (MCR3)pyp(2)

and thus K = (MCR3) gypg(2)- O

Corollary 3.1.12.

{(MCR) yps(2), (MCR1) ypg(2), (MCR2) ypg(2), (MCR3) Hype(2)

is the set of all mazimal completely regular submonoids of Hypg(2).
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3.2 All Maximal Completely Regular Submonoids of Hyps(n)

In this section, we determine the set of all completely regular submonoids of the
monoid of all generalized hypersubstitutions of type 7 = (n). Denote Ry, Ry and CR(R3)
as in Section 3.1. By Theorem 3.1.2, we have that Ry U Ry U CR(R3) is the set of all

completely regular elements in Hypg(n).

Next, let oy € Hypg(n), we denote
CRi(R3) == {o|t = f(Tr(1), s Tr(n)) Where 7 is a bijective map on {1,...,n}}.

E = {o|t = f(t1,...,tn) where t;, = zi,,....t;, = x;, for some iy,...,im € {1,...,n}

and var(t) N X, = {z;,...,x;, } and if x;, € var(ty) for some [ € {1,...,m} and k €
{1, ...,n}\{i1, ..., i }, then j — most(ty) # x;, for all j # 4;}.

For any @ # I C {1,...,n}, let

CRr(R3) := {o¢|t = f(t1,....,tn) where t; =z, ;¥ i €I and 7 is a bijective map
on I, var(t) N X, = {wy) | Vi € 1}}.

CR}(R3) := {o|]t = f(t1,....,tn) Where t; = 2,(); (i) € I for all i € I and
tk = Tk, V k€ {1,...,n} \ I and 7 is a bijective map on {1,...,n}}.
We let

(MCR)Hypg(n) =R URy U CRl(Rg),
(MCRI)HypG(n) = R{ URyUFE and
(MCRI)Hypg(n) =R URy U CR[(Rg) U CR}(Rg) U {Uz’d}-

Theorem 3.2.1. (MCR) ) s a completely regular submonoid of Hypg(n).

Hypg(n

Proof. By Theorem 3.1.2, we have every element in (M CR) gy, (n) is completely regular.
Next we show that (MCR)
R1 U Ry UCR;(R3).

Case 1: 0, € R;. Thent =z; € X.

Hypa(n) 18 closed under og. Let 04,05 € (MOR)gyp,(n) =

If o5 € Ry, then s = f(s1, ..., Sn) where var(s) N X, = &. Consider

(Ut oG US)(f) = Oét[f(slﬂ ey Sn)]

i, if i>n.

S
{U}[SZ’], if 1€ {1,...,??,};
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Since t = x;, we have d¢[s;] = i — most(s;) € X. Hence o1 og 05 € Ry C

(MCR)Hypc(n)'

If 0; € CR1(R3), then s = f(x(1), ..., Tn(n)) Where 7 is a bijective map on {1,...,n}.

Consider

(Ut °G US)(f) = 6t[f(xﬂ(1)7 RE) mﬂ(n))]
= Sn(gt(f)a 6t[£7r(1)]7 s &t[xﬂ(n)])
= Sn(l"iaxﬂ’(l)a "'3:'E7T(1'L))

Tr(i) if i € {1,...,n}

T; Af i > n.
So we have o, 0q 05 € R C (MCR)HypG(n).
Case 2: 0; € Ry. Then t € W(,,)(X) \ X and var(t) N X, = @.
If o, € Ry, then oio0q0s € Ry C (MC’R)HypG(n).
If 0; € CR1(R3), then s = f(x(1), ..., Tn(n)) Where 7 is a bijective map on {1,...,n}.

Consider

(010G 05)(f) = e[ f (Tr(1)s s Tr(n))]
= 5"(0u(f), Otz ()]s s Gt [Tr(m)])
= S"(f(t1s s tn), Tr(1)s s Tr(n))
= f(t1,...,tn)  since wvar(t)NX, = 2.

Then o4 0 o5 € Ry C (MCR)Hypg(n)-
Case 3: 0, € CRi(R3). Then t = f(zr 1), T, (n)) Where 7 is a bijective map

on {1,...,n}.

If 05 € Ry, then 0,000, € R C (MCR)Hypg(n)-
If o5 € Ry, then s = f(s1, ..., sp) where var(s) N X, = @. Consider

(0t oc 05)(f) = Ge[f(s1, ..., 5n)]
= S™(4(f), G4[51]s oy Fel50])
— S™(f(@n(1)s o Ta(my)s Fels1], - Fe[s])
— f(wi, . wy)  where w; = §™ (i), 6els1], --v, Gr[s0])

for all i€ {1,..,n}.

Since var(di[s;]) N X, = @ Vi € {1,...,n}, we have var(f(wi,...,w,)) N X, = &.

Hence oy og 05 € Re C (MCR) gype,(n)-
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If 0 € CRi(R3), then s = f(Try1), -+ Tmy(n)) Where ma is a bijective map on

{1,...,n}.

Consider

(010G os)(f) = Gelf(s1,..s 8n)]
= S"(o1(f), Ge[s1], .., Ge[sn])
= S™(F( @y (1) - T (1)) Tma(1)s s Frp ()
= f(@ay (1)) 01 Ty (1 (n))

= (@ (ryom)(1)) > L(mzom) (m))-

Since 71 oy is a bijective map on {1, ...,n}, we have 0,0 05 € CR1(R3). Therefore

(MCR) is a completely regular submonoid of Hypg(n). O

Hypg(n)

Theorem 3.2.2. (MCR1)gyp,n) 95 a completely regular submonoid of Hypg(n).

Proof. By Theorem 3.1.2, we have every element in (M C R1) gyp,, (n) is completely regular.
Next we show that (MCR1)pypen) is closed under og. Let 04,05 € (MCR1) grype(n) =
RiURyUE.

Case 1: 0y € Ri. Thent=1z; € X.

If 05 € Ro, then s = f(sy, ..., 8p) where var(s) N X,, = &. Consider

(0t 0q 05)(f) = el f(s1, s sn)]
= S"(o¢(f), de[s1], ---s Tt[sn])
= S"(x4, F¢[s1], .. Tt[Sn])
alsi], if 1€{1,...,n};
i, if i >n.
Since t = x;, we have dy[s;] = i — most(s;) € X. Hence 0,00 05 € Ry C
(MCRl)HypG(N) :
If 0, € E, then s = f(ty,..., sp) where s;;, = x4y, ..., S;,, = Z;,, for some i1, ...,iy, €
{1,...,n} and var(s) N X,, = {z;,, ..., x;,, } and if z;, € var(sg) for some [ € {1,...,m} and

ke {l,...n}\{i1,....,im}, then j — most(sy) # x;, for all j # 4;. Consider

(01 0c 05)(f) = Gelf (51, 8n)]
= Sn(O't(f), OA‘t[Sl], ...,J}[sn])

= Sn(:L'Z, OA't[Sl], vy OA't[Sn])
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aisi] Jif i€ {l,...,n}
T Af 4> n.

Since t = m;, we have dy[s;] = i — most(s;) € X. Hence 0,05 05 € R C
(MCR1) type (n)-

Case 2: 0y € Ry. Then t € W(,,)(X) \ X and var(t) N X, = @.

If o, € Ry, then oy0005 € Ry C (MCRl)HypG(n)'

If o5 € E, then s = f(t1,..., s,) where s;;, = x;,, ..., 8i,, = x;,, for some i1, ...,7y, €

m

{1,...,n} and var(s) N X, = {z;,, ..., x;,, } and if z;, € var(sy) for some [ € {1,...,m} and
kEe{l,...n}\{i1,....,im}, then j — most(sy) # x;, for all j # 4;. Consider

(Ut e US)(f) - UAt[f(Slv s Sn)]

= S"(f(t1, s tn), Gi[Sn];s -y Gt[sn])

Then o; ogos € Ry C (MCRl)HypG(n)-

Case 3: 0, € E. Then t = f(t1,...,t,) where t;; = z;,...,t;,, = x;, for some
iy im € {1,...,n} and var(t) N X,, = {xi,,...,x;, } and if z;, € var(ty) for some | €
{1,...,m} and k € {1,...,n}\{i1, ..., im }, then j — most(tx) # x;, for all j # ;.

If o05€ Ry, then o405 05 € Ry C (MCRy)

If o5 € Ry, then s = f(s1, ..., sp) where var(s) N X,, = @. Consider

Hypg(n):

(010G 05)(f) = Ge[f(s1, ..., 5n)]
= S™(4(f), 54|51, ovns Foln])
= S™(f(t1, s tn)s Gel51], orns Gt [5m])
= f(wy,...,wn) where w; = S"(ti,4[s1], ., Ge[sn])

for all i€ {1,..,n}.

Since var(di[si]) N X, = @ Vi € {1,...,n}, we have var(f(wi,...,wy)) N X, = @.
Hence 0, 0ogos € Ry C (MCR)Hypg(n)‘

Ifos € E, then s = f(s1,...,5,) where s, = xp,,..., 5, , = xp , for some py, ..., pp €
{1,...,n} and var(s) N X,, = {zp,, ..., 7, ,} and if x,, € var(sy) for some I € {1,...,m'}

and k" € {1,...,n}\{p1, ..., pp }, then j' — most(sp) # xp, for all j' # py. Consider
(010G 05)(f) = Ge[f (51, ..., sn)]
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_ Sn(o't(f),‘ft[sl]v"‘7ét[3”])
= S"(f(t1, ..oy tn), d¢[s1], -, Te[Sn])
= f(wy,...,wy) where w; = S"(t;, d¢[s1], ..., Tt[sn])

for all i€ {1,..,n}.

Case 1: var(ty) N X, = @ for all k € {1,...,n}\{i1,...,im} and var(spy) N X, = @
for all &’ € {1,...,n}\{p1, .., P/ }-
Case 1.1: 7 € {1,...,n}\{i1,....,im}. Then w; = S™(t;, d¢[s1], ..., Fe[sn]) = L.
Case 1.2: ¢ € {i1,...,im}. Then w; = S™(t;, 5¢[s1], ..., Tt[sn]) = T¢[si].
Ifi e {1,...n}\{p1, .-, P }, then var(w;) N X,, = @. If i € {p1,..., P}, then w; = x;.
By Case 1.1, 1.2, we have oy 005 € (Re UE) C (MCRy)
Case 2: var(ty) N X, = @ for all k € {1,...,n}\{i1, ..., %} and there exists x,, €

Hypg(n)-

var(sy) for some I € {1,..,m'}, for all ¥’ € {1,....,n}\{p1,-..,Pm}. It can be proved
similarly as in Case 1. Hence 0 0 05 € (R2 U E) C (MCRy) pryp,(n)-
Case 3: There exists z;, € var(t;) for some [ € {1, ..., m}, for all
ke {1,....,n}\{i1,....,%m} and there exists z;,, € var(sy) for some I’ € {1,...,m}, for all
Ee{l,..n\{p1, s Do }-
Case 3.1: i € {i1,...,ipm}. Then w; = d¢[s;].
For i € {p1,...,ppy}. Then w; = x;.
For ¢ = k'. Then w; = dy[s;]. If 44 = pp, then w;, = z;,. If iy # py, then
var(w;) N {z; } = @.
Fori e {1,...,n}\{p1, ..., pm, k'}. Then var(w;) N X,, = .
Case 3.2: i € {1,....n}\{i1, ..., im,k}. Then var(w;) N X,, = &. By Case
3.1,3.2, we have 0y 0 05 € (Re U E) C (MCR1)ype; (n)- O

Theorem 3.2.3. (MCRy) is a completely reqular submonoid of Hypg(n).

Hypg(n)

Proof. By Theorem 3.1.2, we have every element in (MCRy)
Next we show that (MCR;)pype(n) i closed under og. Let 04,05 € (MCRy)
Ry URy UCR(R3) UCRY(R3) U {044}

Case 1: 0, € Ry. Thent =1z; € X.

Hype(n) 18 completely regular.

Hypg(n)

If 05 € Ro, then s = f(sq, ..., 8p) where var(s) N X,, = &. Consider

(01 0c 05)(f) = Gelf (51, 50)]
= Sn(O't(f), OA't[Sl], ceey O%[SM)

= n(:L'Z', OA't[SlL ceey &t[sn])
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ailsi], if i€ {l,...,n};
T, if ¢>n.
Since t = m;, we have dy[s;] = i — most(s;) € X. Hence 0,05 05 € R C

(MCRI)HypG (n)-

If o5 € CR;(R3), then s = f(s1,...,5,) where s; = x,(;y;Vi € I and 7 is a bijective
map on I, var(s) N X, = {x) | Vi€ I}. Consider

(01 0¢ 035)(f) = e[ f (51, .-, 8n)]
= S"(0¢(f), d¢[s1], -5 Tt[sn])
= S"(x4, G¢[s1], s Ot[Sn])
ailsi], if i€ {l,...,n};
i, if i >n.
Since t = x;, we have dy[s;] = i — most(s;) € X. Hence o, 0505 € Ry C
(MCRI)HypG(n) :
If 0, € CR}(R3), then s = f(s1, ..., 8n) where s; = 25y ; 7(i) € [ foralli € I, s3 =
Trk); ¥k €{1,...,n} \ I and 7 is a bijective map on {1,...,n}. Consider

(Ut °G US)(f) = 6t[f($ﬂ(1)7 £ xﬂ(n))]
= Sn(at(f)7 6t[xw(1)]a ) 6t[$w(n)])
= Sn(xiaxﬂ*(l)u 7'r7r(n))

Tr(i) if i€ {1,...,n};

i, if ¢>n.
Since t = z;, then z(; = w; forl € {1,...,n}. Hence oyogos € Ry C (MCRy)
Case 2: 0y € Ry. Then t € W(,,)(X) \ X and var(t) N X, = @.
If 0, € Ry, then oy0005 € Ry C (MCRI)HypG(n)'

Hypg(n):

If o5 € CR;(R3), then s = f(s1,...,8,) where s; = ;) ;V i € I and 7 is a bijective
map on I, var(s) N Xy, = {x) | Vi€ I}. Consider

(O’t oG Us)(f) = §t[f(31’ ) Sn)]
= S"(o¢(f), d¢[s1], .., Tt[sn])
S (t1, s t)s Gels)s s el

= f(t1,...,tn)  since wvar(t)NX, = 2.
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Then 04 0g 05 € Ry C (MCRI) Hype (n)-
If 0, € CR}(R3), then s = f(s1, ..., 8n) where s; = 25;); 7(i) € [ foralli €I, s =
Trky; ¥V hk€{l,...,n}\ I and 7 is a bijective map on {1,...,n}. Consider
(010G 05)(f) = Gelf (Tr(1)s s Tr(n))]
= S"(o¢(f), UAt[l'w(l)]a e (ft[mw(n)])
= S"(f(t1, s tn), Tr(1), o Tr(n))
= f(t1,...,tn) since wvar(t)NX, = 2.
Then oy 0 05 € Ry C (MCR]) Hype (n)-
Case 3: 0y € CR[(R3). Then t = f(t1,...,t,) where t; =z ;) ;V i € [ and 7 is
a bijective map on I, var(t) N X, = {z) | Vi€ I}.
If 05 € Ry, then oogos € Ry C(MCRI)Hype(n)-
If o5 € Ry, then s = f(s1, ..., sp) where var(s) N X, = @. Consider
(01 0¢ 05)(f) = Gelf (51, 8n)]
= S"(o(f), G¢[s1], -, Tt[sn])
= S"(f(t1y s tn), 0e[s1], s Tt[Sn])
= f(wy,...,wy) where w; = S™(t;,d¢[s1], ..., Te[sn])
for all 7 € {1,..,n}.
Since var(c[s;])NX,, = & Vi € {1,...,n}, then var(f(wi,...,w,))NX, = &. Hence

0t 0G 0g € Ry C (MCR[)

If o5 € CRi(R3), then s = f(s1,...,S,) where s; = Tryiy 3V 4 € I and my is a

Hypg(n)-

bijective map on I, var(s) N Xy, = {Z,(;) | V i € I'}. Consider

(0t oG 05)(f) = el f(s1, s sn)]
= 5"(0e(f), Ge[s1], -, Ge[sn])
= S"(f(t1,...stn), Gt[s1], -, Tt[Sn])
= Flwi o w,) where w; = Sk, Gi[si], .. Galsnl)

for all 7 € {1,..,n}.

For any 4; € I, since 71, w2 are bijective maps on I there exist iy,7, € I such that

3

1(i1) = ip and ma(ip) = iq. Then w;, = S"(t;, Gt[s1], -, Fe[sn]) = S™ (71, (3,), Fe[51], -5 Tt[5n])

= Gt[si,] = Ot[Try,)] = Ti

For any j € {1,...,n} \ I, let t; = f(u1, ..., u,). Consider

q°

w; = S"(tj,(ft[sﬂ, veey OA't[Sn])
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= S"(f(u1, .., un), G¢[s1], ..., Ge[sn])

= f(w},...,w)) where wj = S™(t,¢[s1], .., Gt[sn])

for all ke {1,..,n}.

If var(ug) N X, = @, then wy, = ug. I up = x4, (;,) and 71(47) = ip, w2(ip) = i,
then wy, = S™(uk, Ge[s1], .., Gt[sn]) = S™(@r,(i))> Gtls1]s o, Ftlsn]) = Gilsi,] = Tryi,) =
Ti,;iq € I. Hence oy og 05 € CR(R3) C (MCRy) 5ype (n)-

If o, € CR}(R3), we can prove as in the previous proof. Hence .00, € CR(R3) C
(MOR) 1y
Case 4: o € CR}(R3). It can be proved similarly as in Case 3. Then we have
010G os € (MCRI)fyp(n)- Therefore (MCRp) frype (n) is a completely regular submonoid

of Hypg(n). O

Theorem 3.2.4. (MCR) is a mazximal completely reqular submonoid of Hypg(n).

Hypg(n)

Proof. Let K be a proper completely regular submonoid of Hypg(n) such that

(MCR)gypo(ny © K C Hypg(n). Let oy € K where o, € CR(R3) \ CR1(R3). Then
t=f(t1,....,tn) where t;; = z.;) ;Vi; € I and 7 is a bijective map on I, var(t) N X, =
{Zz@) | Vi € I}. Choose o5 € CR1(R3) such that s = f(2(1), -+ Tar(n)) Where 7’ is a

bijective map on {1,...,n} and 7’ = (7/(1)...7'(n)) is a cycle. Consider

(010G 05)(f) = e[ f(@r (1), s Trr(n))]
= S"(0¢(f), Gelrr)ls o Tt rr(m)])
= S"(f(t1s s tn)s Tar(1)s -0 Tt ()
= f(wi,...,w,) where w; = S"(tj, Tr 1), Tus(n))
for all j e {1,..,n}.
Since I C {1,...,n}, there exists i, € I, i, € {1,...,n} \ I such that n'(i,) = i, and
w(it) = ip, i1, ip € I, then

A

'U)il - Sn<til,d’\t[$ﬂ/(1)]7 "'70.15[9;71-’(”)])
= Sn(xﬁ(il)axwl(l), ...,[L'ﬂ_/(n))
O} x“’(ip)
= T,

By Theorem 3.1.2, 05 og 0y is not completely regular, so o € (MCR)gyp;(n)-
Therefore K C (MCR) and thus K = (MCR) gyp(n)- O

Hypg(n)
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Theorem 3.2.5. (MCR1)gyp,(n) is @ mazimal completely regular submonoid of Hypg(n).

Proof. Let K be a proper completely regular submonoid of Hypg(n) such that
(MCR1) Hypo(n) © K C Hypg(n). Let oy € K, then oy is a completely regular element.
Case 1: 0y € CR1(R3). Thent = f(zr(1), -, Tr(n)) Where 7 is a bijective map on {1, ..., n}.
Case 1.1: t = f(7r(1), .- Tn(n)) Where 7 is bijective map on {1,...,n} and
(m(1)...t(n)) is a cycle. Choose o5 € E then s = f(s1,..., S,) where s;; = ;, ..., S;

and sj € X\ Xp,, Vi €{1,....,n}\ {i1,...,im}. Consider

m _':U’im

(05 06 a)(f) = Fs[f(@r(1ys s Tr(m))]
= §%(0s(f), Fslxr(n)]; s Os[Tr(n)])
= S™(f(815 5 8n), Tr(1)s s Tr(n))
= f(w1,...,wn) where w; = S"(8j,Tr(1), - Tr(n))
for all j € {1,..,n}.

If iy € {i1, ..., im}, then w; = ;). Since (7(1)...m(n)) is a cycle, we have that
Tr(i) = Tig 3iq € {i1, - im\{0}. I j € {1, ...;n}\{i1, ..., im}, then w; = s;. By Theorem
3.1.2, we have o, og 0y is not completely regular.

Case 1.2: t = f(Zx(1); - Tr(n)) Where 7 is bijective map on {1,...,n} and there
is P = {Ri,...,R;} is a partition of {1,...,n} such that Ry = {ri1,...,rif},.... R =
{rin,...,rn} and (r11..71¢).. (i, o, min). Let d € Ry 5 3 k€ {1,...,1} and |Rg| > 1.
Choose 05 € E, then s = f(s1,...,5,) where sq = x4 and s, € X\ X,,, Vg € {1,...,n}\{d}.

Consider
(05 06 a)(f) = Fs[f(@r(1ys s Tr(m))]
= S"(0s5(f), Fs[Tr))s o Ts[Tr(m)])
= S"(f(81, 5 80), Tr(1)s -+ Tr(n))
= f(w1,...,wn) where wj = S"(8j,Tr(1), - Tr(n))
for all j € {1,..,n}.

Then w; = wr¢;) ;9 € {1,...,n}\{i}. Sinced € Ry ; 3 k€ {l,...,1} and |Rg| > 1,
we have 7 (;) = 14 and w; = s;, 1 € {1,...,n}\{d}. By Theorem 3.1.2, we have o5 og 0 is
not completely regular.

Case 2: 0, € CR;(R3)\E. Then t = f(ty,...,t,) where t; = Tri) 3V 4 € I and 7 is
a bijective map on I, var(t) N X, = {xy; |V i € I}. Choose 05 € E where s =
f@p,mre); 3 ke{l,.,ni\I, @ # 24 ; V i € 1. Consider

(010G 05)(f) = Gelf (wks oo k)]
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= Sn(O't(f), &t[$k], ceey a}[xk])
= S"(f(t1y s tn), Thy vy Tk)
= f(wq,...,wn) where w; = S"(tj,zk, ..., Tk)

for all je{1,..,n}.

Then wy, = t) where t} is a new term derived by substituting z;, V 4, € I which
occurs in tg by x. By Theore 3.1.2, we have 05050y is not completely regular. Hence o, €

(MCRy) . Therefore K C (MCR1)pype(n) and thus K = (MCR;) O

Hypg(n) Hypg(n):

Theorem 3.2.6. (M CRy) is a maximal completely reqular submonoid of Hypg(n).

Hypg(n)

Proof. Let K be a proper completely regular submonoid of Hypg(n) such that
(MCR)fype(n) € K C Hypa(n). Let 0y € K where 0y € CR(R3)\(CR;(R3)UCR}(R3))
then ¢ = f(t1,...,tn) where t; = 2, and 7 is a bijective map on {1,...,n}. Choose
os € CRr(R3) then s = f(s1,...,8pn) where s; = x(;y ;V i € I and 7' is a bijective map
on I, var(s) N Xy, = {zG) | Vi€ I} and s; € X\ Xy, Vj € {1,...,n}\ I. Consider

(050G 0¢)(f) = Tl f(Tr(1)s s Trn))]
= S"(0s(f), Fs[zr)], s Ts[Trm)])
= S"(f (51, 8n)s Tr(1)s -+ Tr(n))
= f(w1,...,wn) where wj = S"(sj,Tr(1)s > Tr(n))

for all j € {1,..,n}.

Since I C {1,...,n} there exist i, € I, i € {1,...,n} \ I such that n(i,) = i, and

7' (iy) = ip; ir,ip € I, Then

Wi, = Sn(sir>x7r(l)7 Soc xw(n))
—~ Sn(xip7 xﬂ‘(l)? ey xﬂ‘(n))
> xl”(%)

q°

By Theorem 3.1.2, o og o, is not completely regular, so o, € (MCRy)
Therefore K C (MCRy) and thus K = (MCRy)

Hypg(n)-

O

Hypg(n) Hypg(n):

Corollary 3.2.7. {(MCR)pyp,mn): (MCR1)mypen)} U {MCR) gypomy | @ # 1 C

{1,...,n}} is the set of all maximal completely reqular submonoids of Hypg(n).
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