CHAPTER 3

Main Results

In semigroup theory, the main study approach is diverse some special elements in semigroups such as regular elements, quasi-regular elements and idempotent elements. In Chapter 2, we have that $(Hyp_G(\tau), \circ_G, \sigma_{id})$ is a monoid. So we can characterize these special elements on this monoid. Th. Changphas and K. Denecke characterized idempotent elements and regular elements of the monoid of all hypersubstitutions of type τ [4]. W. Puninagool and S. Leeratanavalee [11] characterized the set of all regular elements of the monoid of all generalized hypersubstitutions of type τ = (2). In 2010, they characterized the set of all idempotent and regular elements of the monoid of all generalized hypersubstitutions of type τ = (3) were studied by S. Sudsanit and S. Leeratanavalee [13]. In 2013, S. Sudsanit, S. Leeratanavalee and W. Puninagool characterized left-right regular elements of the monoid of all generalized hypersubstitutions of type τ = (2) [14].

The main results of this thesis are to characterize the set of all maximal completely regular submonoids of the monoid of all generalized hypersubstitutions of type $\tau = (2)$ and determine all maximal completely regular submonoids of all generalized hypersubstitutions of type $\tau = (n)$.

Henceforth, we introduce some notations which will be used throughout of this thesis. For a type $\tau = (n)$ with an n-ary operation symbol f and $t \in W_{(n)}(X)$, we denote $\sigma_t :=$ the generalized hypersubstitution of type $\tau = (n)$ which maps f to the term t,

```
leftmost(t) := the first variable (from the left) occurring in t, rightmost(t) := the last variable occurring in t, var(t) := the set of all variables occurring in the term t.
```

For a type $t \in W_{(n)}(X)$ and $1 \le i \le n$, an i - most(t) is defined indeuctively by:

- (i) if t is a variable, then i most(t) = t,
- (ii) if $t = f(t_1, ..., t_n)$, then $i most(t) = i most(t_i)$. Notice that 1 - most(t) = leftmost(t) and n - most(t) = rightmost(t).

```
Example 3.0.1. Let \tau = (3) be a type, t = f(x_2, f(x_8, x_5, x_3), f(x_1, x_6, x_4)).
Then 1 - most(t) = x_2, 2 - most(t) = 2 - most(f(x_8, x_5, x_3)) = x_5 and 3 - most(t) = 3 - most(f(x_1, x_6, x_4)) = x_4.
```

3.1 All Maximal Completely Regular Submonoids of $Hyp_G(2)$

In the monoid of all generalized hypersubstitutions of type $\tau = (n)$, all regular elements were studied by W. Puninagool and S. Leeratanavalee in 2010 [12]. Moreover, in 2013, A. Boonmee and S. Leeratanavalee [3] characterized the set of all completely regular element of the monoid of all generalized hypersubstitutions of type $\tau = (n)$.

In this section, we used the concept of a completely regular element as a tool to determine the set of all maximal completely regular submonoids of the monoid of all generalized hypersubstitutions of type $\tau = (n)$.

For a type $\tau = (n)$ with n-ary operation f, we denote:

 $R_1 := \{ \sigma_{x_i} | x_i \in X \};$

 $R_2 := \{ \sigma_t | t \in W_\tau(X) \setminus X \text{ and } var(t) \cap X_n = \emptyset \};$

 $R_3 := \{ \sigma_t | t = f(t_1, ..., t_n) \text{ where } t_{i_1} = x_{j_1}, ..., t_{i_m} = x_{j_m} \text{ for some } i_1, ..., i_m \in \{1, ..., n\} \text{ and for distinct } j_1, ..., j_m \in \{1, ..., n\} \text{ and } var(t) \cap X_n = \{x_{j_1}, ..., x_{j_m}\}\};$

 $CR(R_3) := \{ \sigma_t | t = f(t_1, ..., t_n) \text{ where } t_{i_1} = x_{\pi(i_1)}, ..., t_{i_m} = x_{\pi(i_m)} \text{ and } \pi \text{ is a bijective map on } \{i_1, ..., i_m\} \text{ for some } i_1, ..., i_m \in \{1, ..., n\} \text{ and } var(t) \cap X_n = \{x_{\pi(i_1)}, ..., x_{\pi(i_m)}\} \}.$

It is clearly that $CR(R_3) \subset R_3$. In 2010, W. Puninagool and S. Leeratanavalee [12] showed that $\bigcup_{i=1}^3 R_i$ is the set of all regular elements in $Hyp_G(n)$. In 2013, A. Boonmee and S. Leeratanavalee [3] determined the set of all completely regular elements in $Hyp_G(n)$, as the following theorems.

Theorem 3.1.1 ([3]). For each $\sigma_t \in CR(R_3)$, σ_t is a completely regular element in $Hyp_G(n)$.

Theorem 3.1.2 ([3]). Let $CR(Hyp_G(n)) := CR(R_3) \cup R_1 \cup R_2$. Then $CR(Hyp_G(n))$ is the set of all completely regular elements in $Hyp_G(n)$.

Next, we will consider in case of $\tau = (2)$ this means that we have only one binary operation symbol, say that f, and then

 $R_1 := \{ \sigma_{x_i} | x_i \in X \};$

 $R_2 := \{ \sigma_t | t \in W_{(2)}(X) \backslash X \text{ and } var(t) \cap X_2 = \emptyset \};$

 $CR(R_3) := \{ \sigma_t | t = f(t_1, t_2) \text{ where } t_i = x_i \text{ for some } i \in \{1, 2\} \text{ and } var(t) \cap X_2 = \{x_i\} \} \cup \{ \sigma_{f(x_1, x_2)}, \sigma_{f(x_2, x_1)} \}.$

It is easily to see that $R_1, R_2, CR(R_3)$ are pairwise disjoint and $\underline{R_1}, \underline{R_2}$ are subsemigroups of $Hyp_G(2)$ but $CR(R_3)$ is not a submonoid of $Hyp_G(2)$ as the following example.

Example 3.1.3. Let $\sigma_s, \sigma_t \in CR(R_3)$ such that $s = f(x_1, f(x_4, x_1))$ and $t = f(x_2, x_1)$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(x_1, f(x_4, x_1))]$$

$$= S^2(\sigma_t(f), \hat{\sigma}_t[x_1], \hat{\sigma}_t[f(x_4, x_1)])$$

$$= S^2(\sigma_t(f), x_1, S^2(\sigma_t(f), \hat{\sigma}_t[x_4], \hat{\sigma}_t[x_1]))$$

$$= S^2(\sigma_t(f), x_1, S^2(f(x_2, x_1), x_4, x_1))$$

$$= S^2(\sigma_t(f), x_1, f(x_1, x_4))$$

$$= S^2(f(x_2, x_1), x_1, f(x_1, x_4))$$

$$= f(f(x_1, x_4), x_1).$$

So $\sigma_t \circ_G \sigma_s \notin CR(R_3)$.

Next, let $\sigma_t \in Hyp_G(2)$, we denote

$$CR_1(R_3) := \{ \sigma_t | t = f(x_1, t') \text{ where } t' \in W_{(2)}(X) \text{ and } var(t) \cap X_2 = \{x_1\} \},$$

$$CR_2(R_3) := \{ \sigma_t | t = f(t', x_2) \text{ where } t' \in W_{(2)}(X) \text{ and } var(t) \cap X_2 = \{x_2\} \},$$

$$CR'_1(R_3) := \{ \sigma_t | t = f(x_1, t') \text{ where } t' \in W_{(2)}(X), \text{ } var(t) \cap X_2 = \{x_1\} \text{ and } rightmost(t') \neq x_1 \},$$

 $CR'_2(R_3) := \{ \sigma_t | t = f(t', x_2) \text{ where } t' \in W_{(2)}(X) \text{ } var(t) \cap X_2 = \{ x_2 \} \text{ and } lefttmost(t') \neq x_2 \},$

$$(MCR)_{Hyp_G(2)} := R_1 \cup R_2 \cup CR'_1(R_3) \cup CR'_2(R_3) \cup \{\sigma_{id}\},\$$

$$(MCR_1)_{Hup_G(2)} := R_1 \cup R_2 \cup CR_1(R_3) \cup \{\sigma_{id}\},\$$

$$(MCR_2)_{Hup_G(2)} := R_1 \cup R_2 \cup CR_2(R_3) \cup \{\sigma_{id}\}$$
 and

$$(MCR_3)_{Hyp_G(2)} := R_1 \cup R_2 \cup \{\sigma_{id}, \sigma_{f(x_2, x_1)}, \sigma_{f(x_1, x_1)}, \sigma_{f(x_2, x_2)}\}.$$

Proposition 3.1.4. $CR_1(R_3) \cup \{\sigma_{id}\}$ and $CR'_1(R_3) \cup \{\sigma_{id}\}$ are submonoids of $Hyp_G(2)$.

Proof. It is clear that $CR_1(R_3) \subset Hyp_G(2)$. Next we show that $CR_1(R_3)$ is closed under \circ_G . Let $\sigma_t, \sigma_s \in CR_1(R_3)$. Then $t = f(x_1, t'), s = f(x_1, s')$ where $t', s' \in W_{(2)}(X)$ and $var(t) \cap X_2 = \{x_1\}, var(s) \cap X_2 = \{x_1\}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(x_1, s')]$$
$$= S^2(\sigma_t(f), \hat{\sigma}_t[x_1], \hat{\sigma}_t[s'])$$

$$= S^{2}(f(x_{1}, t'), x_{1}, \hat{\sigma}_{t}[s'])$$

$$= f(x_{1}, t') \quad \text{since } var(t) \cap X_{2} = \{x_{1}\}$$

$$= \sigma_{f(x_{1}, t')}(f).$$

Then $\sigma_t \circ_G \sigma_s \in CR_1(R_3)$ and therefore $\underline{CR_1(R_3) \cup \{\sigma_{id}\}}$ is a submonoid of $\underline{Hyp_G(2)}$. In case of $\underline{CR'_1(R_3) \cup \{\sigma_{id}\}}$ is a submonoid of $\underline{Hyp_G(2)}$, the proof is similar to the previous proof.

Proposition 3.1.5. $CR_2(R_3) \cup \{\sigma_{id}\}$ and $CR'_2(R_3) \cup \{\sigma_{id}\}$ are submonoids of $Hyp_G(2)$.

Proof. It is clear that $CR_2(R_3) \subset Hyp_G(2)$. Next we show that $CR_2(R_3)$ is closed under \circ_G . Let $\sigma_t, \sigma_s \in CR_2(R_3)$. Then $t = f(t', x_2), s = f(s', x_2)$ where $t', s' \in W_{(2)}(X)$ and $var(t) \cap X_2 = \{x_2\}, var(s) \cap X_2 = \{x_2\}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(s', x_2)]$$

$$= S^2(\sigma_t(f), \hat{\sigma}_t[s'], \hat{\sigma}_t[x_2])$$

$$= S^2(f(t', x_2), \hat{\sigma}_t[s'], x_2)$$

$$= f(t', x_2) \quad \text{since } var(t) \cap X_2 = \{x_2\}$$

$$= \sigma_{f(t', x_2)}(f).$$

Then $\sigma_t \circ_G \sigma_s \in CR_2(R_3)$ and therefore $\underline{CR_2(R_3) \cup \{\sigma_{id}\}}$ is a submonoid of $\underline{Hyp_G(2)}$. In case of $\underline{CR_2'(R_3) \cup \{\sigma_{id}\}}$ is a submonoid of $\underline{Hyp_G(2)}$, the proof is similar to the previous proof.

Theorem 3.1.6. $(MCR)_{Hyp_G(2)}$ is a completely regular submonoid of $\underline{Hyp_G(2)}$.

Proof. By Theorem 3.1.2, we have every element in $(MCR)_{Hyp_G(2)}$ is completely regular. Next we show that $(MCR)_{Hyp_G(2)}$ is closed under \circ_G . Let $\sigma_t, \sigma_s \in (MCR)_{Hyp_G(2)} = R_1 \cup R_2 \cup CR'_1(R_3) \cup CR'_2(R_3) \cup \{\sigma_{id}\}.$

Case 1: $\sigma_t \in R_1$. Then $t = x_i \in X$.

Case 1.1: $\sigma_s \in R_1$. It is obvious that $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR)_{Hyp_G(2)}$.

Case 1.2: $\sigma_s \in R_2$. Then $s = f(s_1, s_2)$ where $s_1, s_2 \in W_{(2)}(X)$ and $var(s) \cap X_2 = \emptyset$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(s_1, s_2)]$$

$$= S^2(\sigma_t(f), \hat{\sigma}_t[s_1], \hat{\sigma}_t[s_2])$$

$$= S^2(x_i, \hat{\sigma}_t[s_1], \hat{\sigma}_t[s_2])$$

$$= \begin{cases} \hat{\sigma_t}[s_i], & \text{if } i \in \{1, 2\}; \\ x_i, & \text{if } i > 2 \end{cases}$$

$$= \begin{cases} leftmost(s_1), & \text{if } i = 1; \\ rightmost(s_2), & \text{if } i = 2; \\ x_i, & \text{if } i > 2. \end{cases}$$

Then we have $\sigma_t \circ_G \sigma_s = \sigma_{x_j}$ for some $x_j \in X$. Hence $(\sigma_t \circ_G \sigma_s) \in R_1 \subset (MCR)_{Hyp_G(2)}$.

Case 1.3: $\sigma_s \in CR'_1(R_3)$. Then $s = f(x_1, s')$ where $s' \in W_{(2)}(X), var(s) \cap X_2 = \{x_1\}$ and $rightmost(s') \neq x_1$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(x_1, s')]$$

$$= S^2(\sigma_t(f), \hat{\sigma}_t[x_1], \hat{\sigma}_t[s'])$$

$$= S^2(x_i, x_1, \hat{\sigma}_t[s'])$$

$$\begin{cases} x_1, & \text{if } i = 1; \\ \hat{\sigma}_t[s'] = rightmost(s'), & \text{if } i = 2; \\ x_i, & \text{if } i > 2. \end{cases}$$

Then we have $\sigma_t \circ_G \sigma_s = \sigma_{x_j}$ for some $x_j \in X$. Hence $(\sigma_t \circ_G \sigma_s) \in R_1 \subset (MCR)_{Hyp_G(2)}$.

Case 1.4: $\sigma_s \in CR'_2(R_3)$. Then $s = f(s', x_2)$ where $s' \in W_{(2)}(X)$, $var(s) \cap X_2 = \{x_2\}$ and $leftmost(s') \neq x_2$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(s', x_2)]$$

$$= S^2(\sigma_t(f), \hat{\sigma}_t[s'], \hat{\sigma}_t[x_2])$$

$$= S^2(x_i, \hat{\sigma}_t[s'], x_2)$$

$$= \begin{cases} x_2, & \text{if } i = 2; \\ \hat{\sigma}_t[s'] = leftmost(s'), & \text{if } i = 1; \\ x_i, & \text{if } i > 2. \end{cases}$$

Then we have $\sigma_t \circ_G \sigma_s = \sigma_{x_j}$ for some $x_j \in X$. Hence $(\sigma_t \circ_G \sigma_s) \in R_1 \subset (MCR)_{Hyp_G(2)}$.

Case 2: $\sigma_t \in R_2$. Then $t \in W_{(2)}(X) \setminus X$ and $var(t) \cap X_2 = \emptyset$.

Case 2.1: $\sigma_s \in R_1$. It is obvious that $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR)_{Hyp_G(2)}$.

Case 2.2: $\sigma_s \in R_2$. Then $s \in W_{(2)}(X) \setminus X$ and $var(s) \cap X_2 = \emptyset$. Since $\underline{R_2}$ is a subsemigroup of $Hyp_G(2)$, so $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR)_{Hyp_G(2)}$.

Case 2.3: $\sigma_s \in CR'_1(R_3)$. Then $s = f(x_1, s')$ where $s' \in W_{(2)}(X), var(s) \cap X_2 = \{x_1\}$ and $rightmost(s') \neq x_1$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(x_1, s')]$$

$$= S^2(\sigma_t(f), \hat{\sigma}_t[x_1], \hat{\sigma}_t[s'])$$

$$= S^2(f(t_1, t_2), x_1, \hat{\sigma}_t[s'])$$

$$= f(t_1, t_2) \quad \text{since } var(t) \cap X_2 = \emptyset.$$

Then $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR)_{Hyp_G(2)}$.

Case 2.4: $\sigma_s \in CR'_2(R_3)$. Then $s = f(s', x_2)$ where $s' \in W_{(2)}(X), var(s) \cap X_2 = \{x_2\}$ and $leftmost(s') \neq x_2$. We can prove in the same manner as in Case 2.3.

Case 3: $\sigma_t \in CR'_1(R_3)$. Then $t = f(x_1, t')$ where $t' \in W_{(2)}(X)$, $var(t) \cap X_2 = \{x_1\}$ and $rightmost(t') \neq x_1$.

Case 3.1: $\sigma_s \in R_1$. It is obvious that $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR)_{Hyp_G(2)}$.

Case 3.2: $\sigma_s \in R_2$. Then $s = f(s_1, s_2)$ where $s_1, s_2 \in W_{(2)}(X)$ and $var(s) \cap X_2 = \emptyset$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(s_1, s_2)]$$

$$= S^2(\sigma_t(f), \hat{\sigma_t}[s_1], \hat{\sigma_t}[s_2])$$

$$= S^2(f(x_1, t'), \hat{\sigma_t}[s_1], \hat{\sigma_t}[s_2])$$

$$= f(\hat{\sigma_t}[s_1], t'') \quad \text{since } var(t) \cap X_2 = \{x_1\},$$

where t'' is a new term derived by substituting x_1 which occurs in t' by $\hat{\sigma_t}[s_1]$. Then $\sigma_t \circ_G \sigma_s \in R_2 \subseteq (MCR)_{Hup_G(2)}$.

Case 3.3: $\sigma_s \in CR'_1(R_3)$. By Proposition 3.1.4., we have that $\underline{CR'_1(R_3)} \cup \{\sigma_{id}\}$ is a submonoid of $Hyp_G(2)$. So $\sigma_t \circ_G \sigma_s \in CR'_1(R_3) \subset (MCR)_{Hyp_G(2)}$.

Case 3.4: $\sigma_s \in CR_2'(R_3)$. Then $s = f(s', x_2)$ where $s' \in W_{(2)}(X), var(s) \cap X_2 = \{x_2\}$ and $leftmost(s') \neq x_2$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(s', x_2)]$$
$$= S^2(\sigma_t(f), \hat{\sigma_t}[s'], \hat{\sigma_t}[x_2])$$

$$= S^{2}(f(x_{1}, t'), \hat{\sigma}_{t}[s'], x_{2})$$
$$= f(\hat{\sigma}_{t}[s'], t''),$$

where t'' is a new term derived by substituting x_1 which occurs in t' by $\hat{\sigma}_t[s_1]$. Since $x_1 \notin var(s')$ and $leftmost(s') \neq x_2$, we have that $x_1, x_2 \notin var(\hat{\sigma}_t[s'])$. Since $x_2 \notin var(t')$ and $x_1, x_2 \notin var(\hat{\sigma}_t[s'])$, we have $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR)_{Hyp_G(2)}$.

Case 4: $\sigma_t \in CR'_2(R_3)$. Then $t = f(t', x_2)$ where $t' \in W_{(2)}(X)$, $var(t) \cap X_2 = \{x_2\}$ and $leftmost(t') \neq x_2$. We can prove in the same manner as in Case 3. Therefore $(MCR)_{Hyp_G(2)}$ is a completely regular submonoid of $Hyp_G(2)$.

Theorem 3.1.7. $(MCR_1)_{Hyp_G(2)}$ and $(MCR_2)_{Hyp_G(2)}$ are completely regular submonoids of $Hyp_G(2)$.

Proof. By Theorem 3.1.2., we have every element in $(MCR_1)_{Hyp_G(2)}$ is completely regular. Next we show that $(MCR_1)_{Hyp_G(2)}$ is closed under \circ_G . Let $\sigma_t, \sigma_s \in (MCR_1)_{Hyp_G(2)} = R_1 \cup R_2 \cup CR_1(R_3) \cup \{\sigma_{id}\}.$

Case 1: $\sigma_t \in R_1$. Then $t = x_i \in X$.

Case 1.1: $\sigma_s \in R_1$. It is obvious that $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_1)_{Hyp_G(2)}$.

Case 1.2: $\sigma_s \in R_2$. Then $s = f(s_1, s_2)$ where $s_1, s_2 \in W_{(2)}(X)$ and $var(s) \cap$

 $X_2 = \emptyset$. Consider

$$(\sigma_{t} \circ_{G} \sigma_{s})(f) = \hat{\sigma}_{t}[f(s_{1}, s_{2})]$$

$$= S^{2}(\sigma_{t}(f), \hat{\sigma_{t}}[s_{1}], \hat{\sigma_{t}}[s_{2}])$$

$$= S^{2}(x_{i}, \hat{\sigma_{t}}[s_{1}], \hat{\sigma_{t}}[s_{2}])$$

$$= \begin{cases} \hat{\sigma_{t}}[s_{i}], & \text{if } i \in \{1, 2\}; \\ x_{i}, & \text{if } i > 2 \end{cases}$$

$$= \begin{cases} leftmost(s_{1}), & \text{if } i = 1; \\ rightmost(s_{2}), & \text{if } i = 2; \\ x_{i}, & \text{if } i > 2. \end{cases}$$

Then we have $\sigma_t \circ_G \sigma_s = \sigma_{x_j}$ for some $x_j \in X$. Hence $(\sigma_t \circ_G \sigma_s) \in R_1 \subset (MCR_1)_{Hyp_G(2)}$.

Case 1.3: $\sigma_s \in CR_1(R_3)$. Then $s = f(x_1, s')$ where $s' \in W_{(2)}(X)$ and $var(s) \cap X_2 = \{x_1\}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(x_1, s')]$$

$$= S^{2}(\sigma_{t}(f), \hat{\sigma}_{t}[x_{1}], \hat{\sigma}_{t}[s'])$$

$$= S^{2}(x_{i}, x_{1}, \hat{\sigma}_{t}[s'])$$

$$= \begin{cases} x_{1}, & \text{if } i = 1; \\ \hat{\sigma}_{t}[s'] = rightmost(s'), & \text{if } i = 2; \\ x_{i}, & \text{if } i > 2. \end{cases}$$

Then we have $\sigma_t \circ_G \sigma_s = \sigma_{x_j}$ for some $x_j \in X$. Hence $(\sigma_t \circ_G \sigma_s) \in R_1 \subset (MCR_1)_{Hyp_G(2)}$.

Case 2: $\sigma_t \in R_2$. Then $t \in W_{(2)}(X) \setminus X$ and $var(t) \cap X_2 = \emptyset$.

Case 2.1: $\sigma_s \in R_1$. It is obvious that $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_1)_{Hyp_G(2)}$.

Case 2.2: $\sigma_s \in R_2$. Then $s \in W_{(2)}(X) \setminus X$ and $var(s) \cap X_2 = \emptyset$. Since $\underline{R_2}$ is a subsemigroup of $Hyp_G(2)$, so $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR_1)_{Hyp_G(2)}$.

Case 2.3: $\sigma_s \in CR_1(R_3)$. Then $s = f(x_1, s')$ where $s' \in W_{(2)}(X)$ and $var(s) \cap X_2 = \{x_1\}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(x_1, s')]$$

$$= S^2(\sigma_t(f), \hat{\sigma}_t[x_1], \hat{\sigma}_t[s'])$$

$$= S^2(f(t_1, t_2), x_1, \hat{\sigma}_t[s'])$$

$$= f(t_1, t_2) \quad \text{since } var(t) \cap X_2 = \varnothing.$$

Then $\sigma_t \circ_G \sigma_S \in R_2 \subset (MCR_1)_{Hyp_G(2)}$.

Case 3: $\sigma_t \in CR_1(R_3)$. Then $t = f(x_1, t')$ where $t' \in W_{(2)}(X)$, $var(t) \cap X_2 = \{x_1\}$. Case 3.1: $\sigma_s \in R_1$. It is obvious that $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_1)_{Hyp_G(2)}$. Case 3.2: $\sigma_s \in R_2$. Then $s = f(s_1, s_2)$ where $s_1, s_2 \in W_{(2)}(X)$ and $var(s) \cap X_2 = \emptyset$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(s_1, s_2)]$$

$$= S^2(\sigma_t(f), \hat{\sigma}_t[s_1], \hat{\sigma}_t[s_2])$$

$$= S^2(f(x_1, t'), \hat{\sigma}_t[s_1], \hat{\sigma}_t[s_2])$$

$$= f(\hat{\sigma}_t[s_1], t'') \quad \text{since } var(t) \cap X_2 = \{x_1\},$$

where t'' is a new term derived by substituting x_1 which occurs in t' by $\hat{\sigma_t}[s_1]$. Then $\sigma_t \circ_G \sigma_s \in R_2 \subseteq (MCR_1)_{Hyp_G(2)}$.

Case 3.3: $\sigma_s \in CR_1(R_3)$. By Proposition 3.1.4., we have that $\underline{CR_1(R_3)} \cup$

 $\underline{\{\sigma_{id}\}}$ is a submonoid of $\underline{Hyp_G(2)}$. So $\sigma_t \circ_G \sigma_s \in CR_1(R_3) \subset (MCR_1)_{Hyp_G(2)}$. Therefore $\underline{(MCR_1)_{Hyp_G(2)}}$ is a completely regular submonoid of $\underline{Hyp_G(2)}$. In case of $\underline{(MCR_2)_{Hyp_G(2)}}$ is a completely regular submonoid of $\underline{Hyp_G(2)}$, the proof is similar to the previous proof.

Theorem 3.1.8. $(MCR_3)_{Hyp_G(2)}$ is a completely regular submonoid of $Hyp_G(2)$.

Proof. By Theorem 3.1.2, we have every element in $(MCR_3)_{Hyp_G(2)}$ is completely regular. Next we show that $(MCR_3)_{Hyp_G(2)}$ is closed under \circ_G . Let $\sigma_t, \sigma_s \in (MCR_3)_{Hyp_G(2)} = R_1 \cup R_2 \cup \{\sigma_{id}, \sigma_{f(x_2,x_1)}, \sigma_{f(x_1,x_1)}, \sigma_{f(x_2,x_2)}\}.$

Case 1: $\sigma_t \in R_1$. Then $t = x_i \in X$.

Case 1.1: $\sigma_s \in R_1$. It is obvious that $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_2)_{Hyp_G(2)}$.

Case 1.2: $\sigma_s \in R_2$. Then $s = f(s_1, s_2)$ where $s_1, s_2 \in W_{(2)}(X)$ and $var(s) \cap X_2 = \emptyset$. We can prove in the same manner as in Case 1.2 of Theorem 3.1.6. and conclude that $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_3)_{Hyp_G(2)}$.

Case 1.3: $\sigma_s \in \{\sigma_{id}, \sigma_{f(x_2, x_1)}, \sigma_{f(x_1, x_1)}, \sigma_{f(x_2, x_2)}\}$. It is obvious that $\sigma_t \circ_G \sigma_s = \sigma_t$ if $\sigma_s = f(x_1, x_2)$. If $\sigma_s = f(x_2, x_1)$, then

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(x_2, x_1)]$$

$$= S^2(\sigma_t(f), \hat{\sigma}_t[x_2], \hat{\sigma}_t[x_1])$$

$$= S^2(x_i, x_2, x_1)$$

$$= \begin{cases} x_2, & \text{if } i = 1; \\ x_1, & \text{if } i = 2; \\ x_i, & \text{if } i > 2. \end{cases}$$

If $\sigma_s = f(x_1, x_1)$ or $\sigma_s = f(x_2, x_2)$, we can prove similar to case of $\sigma_s = f(x_2, x_1)$. Then $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_3)_{Hyp_G(2)}$.

Case 2: $\sigma_t \in R_2$. Then $t \in W_{(2)}(X) \setminus X$ and $var(t) \cap X_2 = \emptyset$. We can prove similar to Case 2 of Theorem 3.1.6., then $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR_3)_{Hyp_G(2)}$.

Case 3: $\sigma_t \in \{\sigma_{id}, \sigma_{f(x_2, x_1)}, \sigma_{f(x_1, x_1)}, \sigma_{f(x_2, x_2)}\}.$

Case 3.1: $\sigma_s \in R_1$. It is obvious that $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_3)_{Hyp_G(2)}$.

Case 3.2: $\sigma_s \in R_2$. Then $s = f(s_1, s_2)$ where $s_1, s_2 \in W_{(2)}(X)$ and $var(s) \cap X_2 = \emptyset$. It is clear that $\sigma_t \circ_G \sigma_s = \sigma_s$, if $t = f(x_1, x_2)$. If $t = f(x_2, x_1)$, then

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(s_1, s_2)]$$
$$= S^2(\sigma_t(f), \hat{\sigma_t}[s_1], \hat{\sigma_t}[s_2])$$

$$= S^{2}(f(x_{2}, x_{1}), \hat{\sigma}_{t}[s_{1}], \hat{\sigma}_{t}[s_{2}])$$

= $f(\hat{\sigma}_{t}[s_{2}], \hat{\sigma}_{t}[s_{1}]).$

Since $var(f(\hat{\sigma}_t[s_2], \hat{\sigma}_t[s_1])) \cap X_2 = \emptyset$, then $\sigma_{f(x_2, x_1)} \circ_G \sigma_s \in R_2 \subset (MCR_2)_{Hyp_G(2)}$. If $\sigma_s = f(x_1, x_1)$ or $\sigma_s = f(x_2, x_2)$, we can prove similar to case of $\sigma_s = f(x_2, x_1)$. Then $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR_3)_{Hyp_G(2)}$.

> Case 3.3: $\sigma_s \in \{\sigma_{id}, \sigma_{f(x_2, x_1)}, \sigma_{f(x_1, x_1)}, \sigma_{f(x_2, x_2)}\}$. If $\sigma_t = \sigma_{f(x_1, x_2)}$, then $\sigma_t \circ_G \sigma_s = \sigma_s \in \{\sigma_{id}, \sigma_{f(x_2, x_1)}, \sigma_{f(x_1, x_1)}, \sigma_{f(x_2, x_2)}\}$. If $\sigma_t = \sigma_{f(x_2, x_1)}$, then

$$\sigma_t \circ_G \sigma_s = \begin{cases} \sigma_{f(x_2, x_1)}, & \text{if } s = f(x_1, x_2); \\ \sigma_{f(x_1, x_2)}, & \text{if } s = f(x_2, x_1); \\ \sigma_{f(x_1, x_1)}, & \text{if } s = f(x_1, x_1); \\ \sigma_{f(x_2, x_2)}, & \text{if } s = f(x_2, x_2). \end{cases}$$

If $\sigma_t = \sigma_{f(x_1,x_1)}$ or $\sigma_t = \sigma_{f(x_2,x_2)}$, we can prove similar to case of $\sigma_s = f(x_2,x_1)$. Then $\sigma_t \circ_G \sigma_s$, $\sigma_s \circ_G \sigma_t \in \{\sigma_{id},\sigma_{f(x_2,x_1)},\sigma_{f(x_1,x_1)},\sigma_{f(x_2,x_2)}\} \subset (MCR_3)_{Hyp_G(2)}$. Therefore, $(MCR_3)_{Hyp_G(2)}$ is a completely regular submonoid of $\underline{Hyp_G(2)}$.

Theorem 3.1.9. $(MCR)_{Hyp_G(2)}$ is a maximal completely regular submonoid of $\underline{Hyp_G(2)}$.

Proof. Let \underline{K} be a proper completely regular submonoid of $\underline{Hyp_G(2)}$ such that $(MCR)_{Hyp_G(2)} \subseteq K \subset Hyp_G(2)$. Let $\sigma_t \in K$, then σ_t is completely regular.

Case 1: $\sigma_t \in CR_1(R_3) \setminus CR'_1(R_3)$. Choose $\sigma_s \in CR'_2(R_3)$, then $s = f(s', x_2)$ where $s' \in W_{(2)}(X), var(s) \cap X_2 = \{x_2\}$ and $leftmost(s') \neq x_2$. Consider

$$(\sigma_s \circ_G \sigma_t)(f) = \hat{\sigma_s}[f(x_1, t')]$$

$$= S^2(\sigma_s(f), \hat{\sigma_s}[x_1], \hat{\sigma_s}[t'])$$

$$= S^2(f(s', x_2), x_1, \hat{\sigma_s}[t'])$$

$$= f(s'', \hat{\sigma_s}[t']),$$

where s'' is a new term derived by substituting x_2 which occurs in s' by $\hat{\sigma_s}[t']$. Since $x_2 \in var(s)$ and $rightmost(t') = x_1$, we have $x_1 \in var(\hat{\sigma_s}[t'])$. By Theorem 3.1.2, we have $\sigma_s \circ_G \sigma_t$ is not completely regular.

Case 2: $\sigma_t \in CR_2(R_3) \setminus CR_2'(R_3)$. Choose $\sigma_s \in CR_1'(R_3)$, then $s = f(x_1, s')$ where $s' \in W_{(2)}(X)$, $var(s) \cap X_2 = \{x_1\}$ and $rightmost(s') \neq x_1$. Consider

$$(\sigma_s \circ_G \sigma_t)(f) = \hat{\sigma_s}[f(t', x_2)]$$

$$= S^{2}(\sigma_{s}(f), \hat{\sigma_{s}}[t'], \hat{\sigma_{s}}[x_{2}])$$

$$= S^{2}(f(x_{1}, s'), \hat{\sigma_{s}}[t'], x_{2})$$

$$= f(\hat{\sigma_{s}}[t'], s'')$$

where s'' is a new term derived by substituting x_1 which occurs in s' by $\hat{\sigma_s}[t']$. Since $x_1 \in var(s)$ and $leftmost(t') = x_2$, we have $x_2 \in var(\hat{\sigma_s}[t'])$. By Theorem 3.1.2, we have $\sigma_s \circ_G \sigma_t$ is not completely regular.

Case 3: $\sigma_t = \sigma_{f(x_2,x_1)}$. Choose $\sigma_s \in CR'_1(R_3)$, then $s = f(x_1,s')$ where $s' \in W_{(2)}(X), var(s) \cap X_2 = \{x_1\}$ and $rightmost(s') \neq x_1$. Consider

$$(\sigma_s \circ_G \sigma_t)(f) = \hat{\sigma_s}[f(x_2, x_1)]$$

$$= S^2(\sigma_s(f), \hat{\sigma_s}[x_2], \hat{\sigma_s}[x_1])$$

$$= S^2(f(x_1, s'), x_2, x_1)$$

$$= f(x_2, s''),$$

where s'' is a new term derived by substituting x_1 which occurs in s' by x_2 . Since $x_2 \notin var(s')$ and the first input of the term $f(x_2, s')$ is x_2 , by Theorem 3.1.2, we have $\sigma_s \circ_G \sigma_t$ is not completely regular. Therefore $K \subseteq (MCR)_{Hyp_G(2)}$ and thus $\underline{K} = (MCR)_{Hyp_G(2)}$.

Theorem 3.1.10. $(MCR_1)_{Hyp_G(2)}$ and $(MCR_2)_{Hyp_G(2)}$ are maximal completely regular submonoids of $Hyp_G(2)$.

Proof. Let \underline{K} be a proper completely regular submonoid of $\underline{Hyp_G(2)}$ such that $(MCR_1)_{Hyp_G(2)} \subseteq K \subset Hyp_G(2)$. Let $\sigma_t \in K$, then σ_t is completely regular.

Case 1: $\sigma_t = \sigma_{f(x_2,x_1)}$. Choose $\sigma_s \in CR_1(R_3)$, then $s = f(x_1,s')$ where $s' \in W_{(2)}(X)$ and $var(s) \cap X_2 = \{x_1\}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(x_1, s')]$$

$$= S^2(\sigma_t(f), \hat{\sigma}_t[x_1], \hat{\sigma}_t[s'])$$

$$= S^2(f(x_2, x_1), x_1, \hat{\sigma}_t[s'])$$

$$= f(\hat{\sigma}_t[s'], x_1).$$

Since $x_2 \notin var(t)$ and the second input of the term $f(\hat{\sigma}_t[s'], x_1)$ is x_1 , by Theorem 3.1.2, we have $\sigma_s \circ_G \sigma_t$ is not completely regular.

Case 2: $\sigma_t \in CR_2(R_3)$. Then $t = f(t', x_2)$ where $t' \in W_{(2)}(X)$ and $var(t) \cap X_2 =$

 $\{x_2\}$. Choose $\sigma_s \in CR_1(R_3)$, then $s = f(x_1, s')$ where $s' \in W_{(2)}(X) \setminus X, var(s) \cap X_2 = \{x_1\}$ and $rightmost(s') = x_1$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(x_1, s')]$$

$$= S^2(\sigma_t(f), \hat{\sigma}_t[x_1], \hat{\sigma}_t[s'])$$

$$= S^2(f(t', x_2), x_1, \hat{\sigma}_t[s'])$$

$$= f(t'', \hat{\sigma}_t[s']),$$

where t'' is a new term derived by substituting x_2 which occurs in t' by $\hat{\sigma}_t[s']$. Since $x_2 \in var(t)$, we have $x_1 \in var(\hat{\sigma}_t[s'])$. Since $x_1 \notin var(t)$, by Theorem 3.1.2, we have $\sigma_t \circ_G \sigma_s$ is not completely regular. Then $\sigma_t \in (MCR_1)_{Hyp_G(2)}$. Therefore $K \subseteq (MCR_1)_{Hyp_G(2)}$ and thus $\underline{K} = (MCR_1)_{Hyp_G(2)}$. In case of $(MCR_2)_{Hyp_G(2)}$ is a maximal completely regular submonoid of $Hyp_G(2)$, the proof is similar to the previous proof.

Theorem 3.1.11. $(MCR_3)_{Hyp_G(2)}$ is a maximal completely regular submonoid of $Hyp_G(2)$.

Proof. Let \underline{K} be a proper completely regular submonoid of $\underline{Hyp_G(2)}$ such that $(MCR_3)_{Hyp_G(2)} \subseteq K \subset Hyp_G(2)$. Let $\sigma_t \in K$, then σ_t is a completely regular element.

Case 1: $\sigma_t \in CR_1(R_3)$. Then $t = f(x_1, t')$ where $t' \in W_{(2)}(X)$ and $var(t) \cap X_2 = \{x_1\}$. Choose $\sigma_s = \sigma_{f(x_2, x_1)}$, consider

$$(\sigma_s \circ_G \sigma_t)(f) = \hat{\sigma_s}[f(x_1, t')]$$

$$= S^2(\sigma_s(f), \hat{\sigma_s}[x_1], \hat{\sigma_s}[t'])$$

$$= S^2(f(x_2, x_1), x_1, \hat{\sigma_s}[t'])$$

$$= f(\hat{\sigma_s}[t'], x_1).$$

Since $x_2 \notin var(t)$ and the second input of the term $f(\hat{\sigma_s}[t'], x_1)$ is x_1 , by Theorem 3.1.2, we have $\sigma_s \circ_G \sigma_t$ is not completely regular. Then $\sigma_t \in (MCR_2)_{Hyp_G(2)}$.

Case 2: $\sigma_t \in CR_2(R_3)$. Then $t = f(t', x_2)$ where $t' \in W_{(2)}(X)$ and $var(t) \cap X_2 = \{x_2\}$. We can prove in the same manner as in Case 1. Therefore $K \subseteq (MCR_3)_{Hyp_G(2)}$ and thus $\underline{K} = (MCR_3)_{Hyp_G(2)}$.

Corollary 3.1.12.

$$\{\underline{(MCR)_{Hyp_G(2)}},\underline{(MCR_1)_{Hyp_G(2)}},\underline{(MCR_2)_{Hyp_G(2)}},\underline{(MCR_3)_{Hyp_G(2)}}\}$$

is the set of all maximal completely regular submonoids of $Hyp_G(2)$.

3.2 All Maximal Completely Regular Submonoids of $Hyp_G(n)$

In this section, we determine the set of all completely regular submonoids of the monoid of all generalized hypersubstitutions of type $\tau = (n)$. Denote R_1, R_2 and $CR(R_3)$ as in Section 3.1. By Theorem 3.1.2, we have that $R_1 \cup R_2 \cup CR(R_3)$ is the set of all completely regular elements in $Hyp_G(n)$.

Next, let $\sigma_t \in Hyp_G(n)$, we denote

 $CR_1(R_3) := \{ \sigma_t | t = f(x_{\pi(1)}, ..., x_{\pi(n)}) \text{ where } \pi \text{ is a bijective map on } \{1, ..., n\} \}.$

 $E := \{ \sigma_t | t = f(t_1, ..., t_n) \text{ where } t_{i_1} = x_{i_1}, ..., t_{i_m} = x_{i_m} \text{ for some } i_1, ..., i_m \in \{1, ..., n\}$ and $var(t) \cap X_n = \{x_{i_1}, ..., x_{i_m}\} \text{ and if } x_{i_l} \in var(t_k) \text{ for some } l \in \{1, ..., m\} \text{ and } k \in \{1, ..., n\} \setminus \{i_1, ..., i_m\}, \text{ then } j - most(t_k) \neq x_{i_l} \text{ for all } j \neq i_l\}.$

For any $\emptyset \neq I \subset \{1, ..., n\}$, let

 $CR_I(R_3) := \{ \sigma_t | t = f(t_1, ..., t_n) \text{ where } t_i = x_{\pi(i)} ; \forall i \in I \text{ and } \pi \text{ is a bijective map}$ on $I, var(t) \cap X_n = \{x_{\pi(i)} \mid \forall i \in I\} \}.$

 $CR'_{I}(R_{3}) := \{\sigma_{t} | t = f(t_{1},...,t_{n}) \text{ where } t_{i} = x_{\pi(i)}; \ \pi(i) \in I \text{ for all } i \in I \text{ and } t_{k} = x_{\pi(k)}; \forall k \in \{1,...,n\} \setminus I \text{ and } \pi \text{ is a bijective map on } \{1,...,n\} \}.$

We let

$$(MCR)_{Hyp_G(n)} := R_1 \cup R_2 \cup CR_1(R_3),$$

 $(MCR_1)_{Hyp_G(n)} := R_1 \cup R_2 \cup E \text{ and}$
 $(MCR_I)_{Hyp_G(n)} := R_1 \cup R_2 \cup CR_I(R_3) \cup CR'_I(R_3) \cup \{\sigma_{id}\}.$

Theorem 3.2.1. $(MCR)_{Hyp_G(n)}$ is a completely regular submonoid of $\underline{Hyp_G(n)}$.

Proof. By Theorem 3.1.2, we have every element in $(MCR)_{Hyp_G(n)}$ is completely regular. Next we show that $(MCR)_{Hyp_G(n)}$ is closed under \circ_G . Let $\sigma_t, \sigma_s \in (MCR)_{Hyp_G(n)} = R_1 \cup R_2 \cup CR_1(R_3)$.

Case 1: $\sigma_t \in R_1$. Then $t = x_i \in X$.

If $\sigma_s \in R_2$, then $s = f(s_1, ..., s_n)$ where $var(s) \cap X_n = \emptyset$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(s_1, ..., s_n)]$$

$$= S^n(\sigma_t(f), \hat{\sigma_t}[s_1], ..., \hat{\sigma_t}[s_n])$$

$$= S^n(x_i, \hat{\sigma_t}[s_1], ..., \hat{\sigma_t}[s_n])$$

$$= \begin{cases} \hat{\sigma_t}[s_i], & \text{if } i \in \{1, ..., n\}; \\ x_i, & \text{if } i > n. \end{cases}$$

Since $t = x_i$, we have $\hat{\sigma}_t[s_i] = i - most(s_i) \in X$. Hence $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR)_{Hyp_G(n)}$.

If $\sigma_s \in CR_1(R_3)$, then $s = f(x_{\pi(1)}, ..., x_{\pi(n)})$ where π is a bijective map on $\{1, ..., n\}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(x_{\pi(1)}, ..., x_{\pi(n)})]$$

$$= S^n(\sigma_t(f), \hat{\sigma}_t[x_{\pi(1)}], ..., \hat{\sigma}_t[x_{\pi(n)}])$$

$$= S^n(x_i, x_{\pi(1)}, ..., x_{\pi(n)})$$

$$= \begin{cases} x_{\pi(i)} & \text{if } i \in \{1, ..., n\} \\ x_i & \text{if } i > n. \end{cases}$$

So we have $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR)_{Hyp_G(n)}$.

Case 2: $\sigma_t \in R_2$. Then $t \in W_{(n)}(X) \setminus X$ and $var(t) \cap X_n = \emptyset$.

If $\sigma_s \in R_1$, then $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR)_{Hyp_G(n)}$.

If $\sigma_s \in CR_1(R_3)$, then $s = f(x_{\pi(1)}, ..., x_{\pi(n)})$ where π is a bijective map on $\{1, ..., n\}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(x_{\pi(1)}, ..., x_{\pi(n)})]$$

$$= S^n(\sigma_t(f), \hat{\sigma_t}[x_{\pi(1)}], ..., \hat{\sigma_t}[x_{\pi(n)}])$$

$$= S^n(f(t_1, ..., t_n), x_{\pi(1)}, ..., x_{\pi(n)})$$

$$= f(t_1, ..., t_n) \quad \text{since } var(t) \cap X_n = \varnothing.$$

Then $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR)_{Hyp_G(n)}$.

Case 3: $\sigma_t \in CR_1(R_3)$. Then $t = f(x_{\pi_1(1)}, ..., x_{\pi_1(n)})$ where π_1 is a bijective map on $\{1, ..., n\}$.

If $\sigma_s \in R_1$, then $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR)_{Hyp_G(n)}$.

If $\sigma_s \in R_2$, then $s = f(s_1, ..., s_n)$ where $var(s) \cap X_n = \emptyset$. Consider

$$(\sigma_{t} \circ_{G} \sigma_{s})(f) = \hat{\sigma}_{t}[f(s_{1}, ..., s_{n})]$$

$$= S^{n}(\sigma_{t}(f), \hat{\sigma}_{t}[s_{1}], ..., \hat{\sigma}_{t}[s_{n}])$$

$$= S^{n}(f(x_{\pi(1)}, ..., x_{\pi(n)}), \hat{\sigma}_{t}[s_{1}], ..., \hat{\sigma}_{t}[s_{n}])$$

$$= f(w_{1}, ..., w_{n}) \quad \text{where} \quad w_{i} = S^{n}(x_{\pi(i)}, \hat{\sigma}_{t}[s_{1}], ..., \hat{\sigma}_{t}[s_{n}])$$
for all $i \in \{1, ..., n\}$.

Since $var(\hat{\sigma}_t[s_i]) \cap X_n = \emptyset \quad \forall i \in \{1,...,n\}, \text{ we have } var(f(w_1,...,w_n)) \cap X_n = \emptyset.$ Hence $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR)_{Hyp_G(n)}.$ If $\sigma_s \in CR_1(R_3)$, then $s = f(x_{\pi_2(1)}, ..., x_{\pi_2(n)})$ where π_2 is a bijective map on $\{1, ..., n\}$.

Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(s_1, ..., s_n)]$$

$$= S^n(\sigma_t(f), \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n])$$

$$= S^n(f(x_{\pi_1(1)}, ..., x_{\pi_1(n)}), x_{\pi_2(1)}, ..., x_{\pi_2(n)})$$

$$= f(x_{\pi_2(\pi_1(1))}, ..., x_{\pi_2(\pi_1(n))})$$

$$= f(x_{(\pi_2 \circ \pi_1)(1)}, ..., x_{(\pi_2 \circ \pi_1)(n)}).$$

Since $\pi_1 \circ \pi_2$ is a bijective map on $\{1, ..., n\}$, we have $\sigma_t \circ_G \sigma_s \in CR_1(R_3)$. Therefore $(MCR)_{Hyp_G(n)}$ is a completely regular submonoid of $\underline{Hyp_G(n)}$.

Theorem 3.2.2. $(MCR_1)_{Hyp_G(n)}$ is a completely regular submonoid of $Hyp_G(n)$.

Proof. By Theorem 3.1.2, we have every element in $(MCR_1)_{Hyp_G(n)}$ is completely regular. Next we show that $(MCR_1)_{Hyp_G(n)}$ is closed under \circ_G . Let $\sigma_t, \sigma_s \in (MCR_1)_{Hyp_G(n)} = R_1 \cup R_2 \cup E$.

Case 1: $\sigma_t \in R_1$. Then $t = x_i \in X$.

If $\sigma_s \in R_2$, then $s = f(s_1, ..., s_n)$ where $var(s) \cap X_n = \emptyset$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(s_1, ..., s_n)]$$

$$= S^n(\sigma_t(f), \hat{\sigma_t}[s_1], ..., \hat{\sigma_t}[s_n])$$

$$= S^n(x_i, \hat{\sigma_t}[s_1], ..., \hat{\sigma_t}[s_n])$$

$$= \begin{cases} \hat{\sigma_t}[s_i], & \text{if } i \in \{1, ..., n\}; \\ x_i, & \text{if } i > n. \end{cases}$$

Since $t = x_i$, we have $\hat{\sigma_t}[s_i] = i - most(s_i) \in X$. Hence $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_1)_{Hyp_G(n)}$.

If $\sigma_s \in E$, then $s = f(t_1, ..., s_n)$ where $s_{i_1} = x_{i_1}, ..., s_{i_m} = x_{i_m}$ for some $i_1, ..., i_m \in \{1, ..., n\}$ and $var(s) \cap X_n = \{x_{i_1}, ..., x_{i_m}\}$ and if $x_{i_l} \in var(s_k)$ for some $l \in \{1, ..., m\}$ and $k \in \{1, ..., n\} \setminus \{i_1, ..., i_m\}$, then $j - most(s_k) \neq x_{i_l}$ for all $j \neq i_l$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(s_1, ..., s_n)]$$

$$= S^n(\sigma_t(f), \hat{\sigma_t}[s_1], ..., \hat{\sigma_t}[s_n])$$

$$= S^n(x_i, \hat{\sigma_t}[s_1], ..., \hat{\sigma_t}[s_n])$$

$$= \begin{cases} \hat{\sigma_t}[s_i] & \text{if } i \in \{1, ..., n\} \\ x_i & \text{if } i > n. \end{cases}$$

Since $t = x_i$, we have $\hat{\sigma_t}[s_i] = i - most(s_i) \in X$. Hence $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_1)_{Hyp_G(n)}$.

Case 2: $\sigma_t \in R_2$. Then $t \in W_{(n)}(X) \setminus X$ and $var(t) \cap X_n = \emptyset$.

If $\sigma_s \in R_1$, then $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_1)_{Hyp_G(n)}$.

If $\sigma_s \in E$, then $s = f(t_1, ..., s_n)$ where $s_{i_1} = x_{i_1}, ..., s_{i_m} = x_{i_m}$ for some $i_1, ..., i_m \in \{1, ..., n\}$ and $var(s) \cap X_n = \{x_{i_1}, ..., x_{i_m}\}$ and if $x_{i_l} \in var(s_k)$ for some $l \in \{1, ..., m\}$ and $k \in \{1, ..., n\} \setminus \{i_1, ..., i_m\}$, then $j - most(s_k) \neq x_{i_l}$ for all $j \neq i_l$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(s_1, ..., s_n)]$$

$$= S^n(\sigma_t(f), \hat{\sigma}_t[s_n], ..., \hat{\sigma}_t[s_n])$$

$$= S^n(f(t_1, ..., t_n), \hat{\sigma}_t[s_n], ..., \hat{\sigma}_t[s_n])$$

$$= f(t_1, ..., t_n) \quad \text{since } var(t) \cap X_n = \emptyset.$$

Then $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR_1)_{Hyp_G(n)}$.

Case 3: $\sigma_t \in E$. Then $t = f(t_1, ..., t_n)$ where $t_{i_1} = x_{i_1}, ..., t_{i_m} = x_{i_m}$ for some $i_1, ..., i_m \in \{1, ..., n\}$ and $var(t) \cap X_n = \{x_{i_1}, ..., x_{i_m}\}$ and if $x_{i_l} \in var(t_k)$ for some $l \in \{1, ..., m\}$ and $k \in \{1, ..., n\} \setminus \{i_1, ..., i_m\}$, then $j - most(t_k) \neq x_{i_l}$ for all $j \neq i_l$.

If $\sigma_s \in R_1$, then $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_1)_{Hyp_G(n)}$.

If $\sigma_s \in R_2$, then $s = f(s_1, ..., s_n)$ where $var(s) \cap X_n = \emptyset$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(s_1, ..., s_n)]$$

$$= S^n(\sigma_t(f), \hat{\sigma_t}[s_1], ..., \hat{\sigma_t}[s_n])$$

$$= S^n(f(t_1, ..., t_n), \hat{\sigma_t}[s_1], ..., \hat{\sigma_t}[s_n])$$

$$= f(w_1, ..., w_n) \quad \text{where} \quad w_i = S^n(t_i, \hat{\sigma_t}[s_1], ..., \hat{\sigma_t}[s_n])$$
for all $i \in \{1, ..., n\}$.

Since $var(\hat{\sigma}_t[s_i]) \cap X_n = \emptyset$ $\forall i \in \{1, ..., n\}$, we have $var(f(w_1, ..., w_n)) \cap X_n = \emptyset$. Hence $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR)_{Hyp_G(n)}$.

If $\sigma_s \in E$, then $s = f(s_1, ..., s_n)$ where $s_{p_1} = x_{p_1}, ..., s_{p_{m'}} = x_{p_{m'}}$ for some $p_1, ..., p_{m'} \in \{1, ..., n\}$ and $var(s) \cap X_n = \{x_{p_1}, ..., x_{p_{m'}}\}$ and if $x_{p_{l'}} \in var(s_{k'})$ for some $l' \in \{1, ..., m'\}$ and $k' \in \{1, ..., n\} \setminus \{p_1, ..., p_{m'}\}$, then $j' - most(s_{k'}) \neq x_{p_{l'}}$ for all $j' \neq p_{l'}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(s_1, ..., s_n)]$$

$$= S^{n}(\sigma_{t}(f), \hat{\sigma}_{t}[s_{1}], ..., \hat{\sigma}_{t}[s_{n}])$$

$$= S^{n}(f(t_{1}, ..., t_{n}), \hat{\sigma}_{t}[s_{1}], ..., \hat{\sigma}_{t}[s_{n}])$$

$$= f(w_{1}, ..., w_{n}) \quad \text{where} \quad w_{i} = S^{n}(t_{i}, \hat{\sigma}_{t}[s_{1}], ..., \hat{\sigma}_{t}[s_{n}])$$
for all $i \in \{1, ..., n\}$.

Case 1: $var(t_k) \cap X_n = \emptyset$ for all $k \in \{1, ..., n\} \setminus \{i_1, ..., i_m\}$ and $var(s_{k'}) \cap X_n = \emptyset$ for all $k' \in \{1, ..., n\} \setminus \{p_1, ..., p_{m'}\}$.

> Case 1.1: $i \in \{1, ..., n\} \setminus \{i_1, ..., i_m\}$. Then $w_i = S^n(t_i, \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n]) = t_i$. Case 1.2: $i \in \{i_1, ..., i_m\}$. Then $w_i = S^n(t_i, \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n]) = \hat{\sigma}_t[s_i]$.

If $i \in \{1, ..., n\} \setminus \{p_1, ..., p_{m'}\}$, then $var(w_i) \cap X_n = \emptyset$. If $i \in \{p_1, ..., p_{m'}\}$, then $w_i = x_i$. By Case 1.1, 1.2, we have $\sigma_t \circ \sigma_s \in (R_2 \cup E) \subset (MCR_1)_{Hyp_G(n)}$.

Case 2: $var(t_k) \cap X_n = \emptyset$ for all $k \in \{1,...,n\} \setminus \{i_1,...,i_m\}$ and there exists $x_{p_{l'}} \in$ $var(s_{k'})$ for some $l' \in \{1, ..., m'\}$, for all $k' \in \{1, ..., n\} \setminus \{p_1, ..., p_{m'}\}$. It can be proved similarly as in Case 1. Hence $\sigma_t \circ \sigma_s \in (R_2 \cup E) \subset (MCR_1)_{Hyp_G(n)}$.

Case 3: There exists $x_{i_l} \in var(t_k)$ for some $l \in \{1, ..., m\}$, for all $k \in \{1,...,n\} \setminus \{i_1,...,i_m\}$ and there exists $x_{p_{l'}} \in var(s_{k'})$ for some $l' \in \{1,...,m'\}$, for all $k' \in \{1, ..., n\} \setminus \{p_1, ..., p_{m'}\}.$

Case 3.1: $i \in \{i_1, ..., i_m\}$. Then $w_i = \hat{\sigma_t}[s_i]$.

For $i \in \{p_1, ..., p_{m'}\}$. Then $w_i = x_i$.

For i = k'. Then $w_i = \hat{\sigma}_t[s_i]$. If $i_l = p_{l'}$, then $w_{i_l} = x_{i_l}$. If $i_l \neq p_{l'}$, then $var(w_i) \cap \{x_{i_l}\} = \varnothing.$

For $i \in \{1, ..., n\} \setminus \{p_1, ..., p_{m'}, k'\}$. Then $var(w_i) \cap X_n = \emptyset$.

Case 3.2: $i \in \{1,...,n\}\setminus\{i_1,...,i_m,k\}$. Then $var(w_i) \cap X_n = \emptyset$. By Case 3.1,3.2, we have $\sigma_t \circ \sigma_s \in (R_2 \cup E) \subset (MCR_1)_{Hup_G(n)}$.

Theorem 3.2.3. $(MCR_I)_{Hyp_G(n)}$ is a completely regular submonoid of $Hyp_G(n)$.

Proof. By Theorem 3.1.2, we have every element in $(MCR_I)_{Hyp_G(n)}$ is completely regular. Next we show that $(MCR_I)_{Hyp_G(n)}$ is closed under \circ_G . Let $\sigma_t, \sigma_s \in (MCR_I)_{Hyp_G(n)} =$ $R_1 \cup R_2 \cup CR_I(R_3) \cup CR'_I(R_3) \cup \{\sigma_{id}\}.$

Case 1: $\sigma_t \in R_1$. Then $t = x_i \in X$.

If $\sigma_s \in R_2$, then $s = f(s_1, ..., s_n)$ where $var(s) \cap X_n = \emptyset$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(s_1, ..., s_n)]$$

$$= S^n(\sigma_t(f), \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n])$$

$$= S^n(x_i, \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n])$$

$$= \begin{cases} \hat{\sigma}_t[s_i], & \text{if } i \in \{1, ..., n\}; \\ x_i, & \text{if } i > n. \end{cases}$$

Since $t = x_i$, we have $\hat{\sigma_t}[s_i] = i - most(s_i) \in X$. Hence $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_I)_{Hyp_G(n)}$.

If $\sigma_s \in CR_I(R_3)$, then $s = f(s_1, ..., s_n)$ where $s_i = x_{\pi(i)}$; $\forall i \in I$ and π is a bijective map on I, $var(s) \cap X_n = \{x_{\pi(i)} \mid \forall i \in I\}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(s_1, ..., s_n)]$$

$$= S^n(\sigma_t(f), \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n])$$

$$= S^n(x_i, \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n])$$

$$= \begin{cases} \hat{\sigma}_t[s_i], & \text{if } i \in \{1, ..., n\}; \\ x_i, & \text{if } i > n. \end{cases}$$

Since $t = x_i$, we have $\hat{\sigma_t}[s_i] = i - most(s_i) \in X$. Hence $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_I)_{Hyp_G(n)}$.

If $\sigma_s \in CR'_I(R_3)$, then $s = f(s_1, ..., s_n)$ where $s_i = x_{\pi(i)}$; $\pi(i) \in I$ for all $i \in I$, $s_k = x_{\pi(k)}$; $\forall k \in \{1, ..., n\} \setminus I$ and π is a bijective map on $\{1, ..., n\}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(x_{\pi(1)}, ..., x_{\pi(n)})]$$

$$= S^n(\sigma_t(f), \hat{\sigma_t}[x_{\pi(1)}], ..., \hat{\sigma_t}[x_{\pi(n)}])$$

$$= S^n(x_i, x_{\pi(1)}, ..., x_{\pi(n)})$$

$$= \begin{cases} x_{\pi(i)}, & \text{if } i \in \{1, ..., n\}; \\ x_i, & \text{if } i > n. \end{cases}$$

Since $t = x_i$, then $x_{\pi(i)} = x_l$ for $l \in \{1, ..., n\}$. Hence $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_I)_{Hyp_G(n)}$. Case 2: $\sigma_t \in R_2$. Then $t \in W_{(n)}(X) \setminus X$ and $var(t) \cap X_n = \emptyset$.

If $\sigma_s \in R_1$, then $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_I)_{Hyp_G(n)}$.

If $\sigma_s \in CR_I(R_3)$, then $s = f(s_1, ..., s_n)$ where $s_i = x_{\pi(i)}$; $\forall i \in I$ and π is a bijective map on I, $var(s) \cap X_n = \{x_{\pi(i)} \mid \forall i \in I\}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(s_1, ..., s_n)]$$

$$= S^n(\sigma_t(f), \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n])$$

$$= S^n(f(t_1, ..., t_n), \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n])$$

$$= f(t_1, ..., t_n) \quad \text{since } var(t) \cap X_n = \emptyset.$$

Then $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR_I)_{Hyp_G(n)}$.

If $\sigma_s \in CR'_I(R_3)$, then $s = f(s_1, ..., s_n)$ where $s_i = x_{\pi(i)}$; $\pi(i) \in I$ for all $i \in I$, $s_k = x_{\pi(k)}$; $\forall k \in \{1, ..., n\} \setminus I$ and π is a bijective map on $\{1, ..., n\}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(x_{\pi(1)}, ..., x_{\pi(n)})]$$

$$= S^n(\sigma_t(f), \hat{\sigma}_t[x_{\pi(1)}], ..., \hat{\sigma}_t[x_{\pi(n)}])$$

$$= S^n(f(t_1, ..., t_n), x_{\pi(1)}, ..., x_{\pi(n)})$$

$$= f(t_1, ..., t_n) \quad \text{since } var(t) \cap X_n = \emptyset.$$

Then $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR_I)_{Hyp_G(n)}$.

Case 3: $\sigma_t \in CR_I(R_3)$. Then $t = f(t_1, ..., t_n)$ where $t_i = x_{\pi_1(i)}$; $\forall i \in I$ and π_1 is a bijective map on I, $var(t) \cap X_n = \{x_{\pi(i)} \mid \forall i \in I\}$.

If $\sigma_s \in R_1$, then $\sigma_t \circ_G \sigma_s \in R_1 \subset (MCR_I)_{Hyp_G(n)}$.

If $\sigma_s \in R_2$, then $s = f(s_1, ..., s_n)$ where $var(s) \cap X_n = \emptyset$. Consider

$$(\sigma_{t} \circ_{G} \sigma_{s})(f) = \hat{\sigma}_{t}[f(s_{1},...,s_{n})]$$

$$= S^{n}(\sigma_{t}(f), \hat{\sigma}_{t}[s_{1}], ..., \hat{\sigma}_{t}[s_{n}])$$

$$= S^{n}(f(t_{1},...,t_{n}), \hat{\sigma}_{t}[s_{1}], ..., \hat{\sigma}_{t}[s_{n}])$$

$$= f(w_{1},...,w_{n}) \quad \text{where} \quad w_{i} = S^{n}(t_{i}, \hat{\sigma}_{t}[s_{1}], ..., \hat{\sigma}_{t}[s_{n}])$$
for all $i \in \{1,...,n\}$.

Since $var(\hat{\sigma}_t[s_i]) \cap X_n = \emptyset \ \forall i \in \{1,...,n\}$, then $var(f(w_1,...,w_n)) \cap X_n = \emptyset$. Hence $\sigma_t \circ_G \sigma_s \in R_2 \subset (MCR_I)_{Hyp_G(n)}$.

If $\sigma_s \in CR_I(R_3)$, then $s = f(s_1, ..., s_n)$ where $s_i = x_{\pi_2(i)}$; $\forall i \in I$ and π_2 is a bijective map on I, $var(s) \cap X_n = \{x_{\pi_2(i)} \mid \forall i \in I\}$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma}_t[f(s_1, ..., s_n)]$$

$$= S^n(\sigma_t(f), \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n])$$

$$= S^n(f(t_1, ..., t_n), \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n])$$

$$= f(w_1, ..., w_n) \text{ where } w_i = S^n(t_i, \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n])$$
for all $i \in \{1, ..., n\}$.

For any $i_l \in I$, since π_1, π_2 are bijective maps on I there exist $i_p, i_q \in I$ such that $\pi_1(i_l) = i_p$ and $\pi_2(i_p) = i_q$. Then $w_{i_l} = S^n(t_{i_l}, \hat{\sigma_t}[s_1], ..., \hat{\sigma_t}[s_n]) = S^n(x_{\pi_1(i_l)}, \hat{\sigma_t}[s_1], ..., \hat{\sigma_t}[s_n]) = \hat{\sigma_t}[s_{i_p}] = \hat{\sigma_t}[x_{\pi_2(i_p)}] = x_{i_q}$.

For any $j \in \{1, ..., n\} \setminus I$, let $t_j = f(u_1, ..., u_n)$. Consider

$$w_j = S^n(t_j, \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n])$$

$$= S^{n}(f(u_{1},...,u_{n}), \hat{\sigma_{t}}[s_{1}],...,\hat{\sigma_{t}}[s_{n}])$$

$$= f(w'_{1},...,w'_{n}) \text{ where } w'_{k} = S^{n}(t_{k}, \hat{\sigma_{t}}[s_{1}],...,\hat{\sigma_{t}}[s_{n}])$$
for all $k \in \{1,...,n\}$.

If $var(u_k) \cap X_n = \emptyset$, then $w'_k = u_k$. If $u_k = x_{\pi_1(i_l)}$ and $\pi_1(i_l) = i_p$, $\pi_2(i_p) = i_q$, then $w'_k = S^n(u_k, \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n]) = S^n(x_{\pi_1(i_l)}, \hat{\sigma}_t[s_1], ..., \hat{\sigma}_t[s_n]) = \hat{\sigma}_t[s_{i_p}] = x_{\pi_2(i_p)} = x_{i_q}; i_q \in I$. Hence $\sigma_t \circ_G \sigma_s \in CR_I(R_3) \subset (MCR_I)_{Hyp_G(n)}$.

If $\sigma_s \in CR'_I(R_3)$, we can prove as in the previous proof. Hence $\sigma_t \circ_G \sigma_s \in CR_I(R_3) \subset (MCR_I)_{Hyp_G(n)}$.

Case 4: $\sigma_t \in CR'_I(R_3)$. It can be proved similarly as in Case 3. Then we have $\sigma_t \circ_G \sigma_s \in (MCR_I)_{Hyp_G(n)}$. Therefore $\underline{(MCR_I)_{Hyp_G(n)}}$ is a completely regular submonoid of $Hyp_G(n)$.

Theorem 3.2.4. $(MCR)_{Hyp_G(n)}$ is a maximal completely regular submonoid of $Hyp_G(n)$.

Proof. Let \underline{K} be a proper completely regular submonoid of $\underline{Hyp_G(n)}$ such that $(MCR)_{Hyp_G(n)} \subseteq K \subset Hyp_G(n)$. Let $\sigma_t \in K$ where $\sigma_t \in CR(R_3) \setminus CR_1(R_3)$. Then $t = f(t_1, ..., t_n)$ where $t_{i_l} = x_{\pi(i_l)}$; $\forall i_l \in I$ and π is a bijective map on I, $var(t) \cap X_n = \{x_{\pi(i_l)} \mid \forall i_l \in I\}$. Choose $\sigma_s \in CR_1(R_3)$ such that $s = f(x_{\pi'(1)}, ..., x_{\pi'(n)})$ where π' is a bijective map on $\{1, ..., n\}$ and $\pi' = (\pi'(1)...\pi'(n))$ is a cycle. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(x_{\pi'(1)}, ..., x_{\pi'(n)})]$$

$$= S^n(\sigma_t(f), \hat{\sigma_t}[x_{\pi'(1)}], ..., \hat{\sigma_t}[x_{\pi'(n)}])$$

$$= S^n(f(t_1, ..., t_n), x_{\pi'(1)}, ..., x_{\pi'(n)})$$

$$= f(w_1, ..., w_n) \quad \text{where} \quad w_j = S^n(t_j, x_{\pi'(1)}, ..., x_{\pi'(n)})$$
for all $j \in \{1, ..., n\}$.

Since $I \subset \{1,...,n\}$, there exists $i_p \in I$, $i_q \in \{1,...,n\} \setminus I$ such that $\pi'(i_p) = i_q$ and $\pi(i_l) = i_p, i_l, i_p \in I$, then

$$w_{i_{l}} = S^{n}(t_{i_{l}}, \hat{\sigma_{t}}[x_{\pi'(1)}], ..., \hat{\sigma_{t}}[x_{\pi'(n)}])$$

$$= S^{n}(x_{\pi(i_{l})}, x_{\pi'(1)}, ..., x_{\pi'(n)})$$

$$= x_{\pi'(i_{p})}$$

$$= x_{i_{q}}.$$

By Theorem 3.1.2, $\sigma_s \circ_G \sigma_t$ is not completely regular, so $\sigma_t \in (MCR)_{Hyp_G(n)}$. Therefore $K \subseteq (MCR)_{Hyp_G(n)}$ and thus $\underline{K} = (MCR)_{Hyp_G(n)}$.

Theorem 3.2.5. $(MCR_1)_{Hyp_G(n)}$ is a maximal completely regular submonoid of $Hyp_G(n)$.

Proof. Let \underline{K} be a proper completely regular submonoid of $\underline{Hyp_G(n)}$ such that $(MCR_1)_{Hyp_G(n)} \subseteq K \subset Hyp_G(n)$. Let $\sigma_t \in K$, then σ_t is a completely regular element.

Case 1: $\sigma_t \in CR_1(R_3)$. Then $t = f(x_{\pi(1)}, ..., x_{\pi(n)})$ where π is a bijective map on $\{1, ..., n\}$.

Case 1.1: $t = f(x_{\pi(1)}, ..., x_{\pi(n)})$ where π is bijective map on $\{1, ..., n\}$ and $(\pi(1)...\pi(n))$ is a cycle. Choose $\sigma_s \in E$ then $s = f(s_1, ..., s_n)$ where $s_{i_1} = x_{i_1}, ..., s_{i_m} = x_{i_m}$ and $s_j \in X \setminus X_n, \forall j \in \{1, ..., n\} \setminus \{i_1, ..., i_m\}$. Consider

$$(\sigma_s \circ_G \sigma_t)(f) = \hat{\sigma_s}[f(x_{\pi(1)}, ..., x_{\pi(n)})]$$

$$= S^n(\sigma_s(f), \hat{\sigma_s}[x_{\pi(1)}], ..., \hat{\sigma_s}[x_{\pi(n)}])$$

$$= S^n(f(s_1, ..., s_n), x_{\pi(1)}, ..., x_{\pi(n)})$$

$$= f(w_1, ..., w_n) \quad \text{where} \quad w_j = S^n(s_j, x_{\pi(1)}, ..., x_{\pi(n)})$$
for all $j \in \{1, ..., n\}$.

If $i_l \in \{i_1, ..., i_m\}$, then $w_{i_l} = x_{\pi(i_l)}$. Since $(\pi(1)...\pi(n))$ is a cycle, we have that $x_{\pi(i_l)} = x_{i_q}$; $i_q \in \{i_1, ..., i_m\} \setminus \{i_l\}$. If $j \in \{1, ..., n\} \setminus \{i_1, ..., i_m\}$, then $w_j = s_j$. By Theorem 3.1.2, we have $\sigma_s \circ_G \sigma_t$ is not completely regular.

Case 1.2: $t = f(x_{\pi(1)}, ..., x_{\pi(n)})$ where π is bijective map on $\{1, ..., n\}$ and there is $P = \{R_1, ..., R_l\}$ is a partition of $\{1, ..., n\}$ such that $R_1 = \{r_{11}, ..., r_{1f}\}, ..., R_l = \{r_{l1}, ..., r_{lh}\}$ and $(r_{11}...r_{1f})...(r_{l1}, ..., r_{lh})$. Let $d \in R_k$; $\exists k \in \{1, ..., l\}$ and $|R_k| > 1$. Choose $\sigma_s \in E$, then $s = f(s_1, ..., s_n)$ where $s_d = x_d$ and $s_q \in X \setminus X_n, \forall q \in \{1, ..., n\} \setminus \{d\}$. Consider

$$\begin{split} (\sigma_s \circ_G \sigma_t)(f) &= \hat{\sigma_s}[f(x_{\pi(1)}, ..., x_{\pi(n)})] \\ &= S^n(\sigma_s(f), \hat{\sigma_s}[x_{\pi(1)}], ..., \hat{\sigma_s}[x_{\pi(n)}]) \\ &= S^n(f(s_1, ..., s_n), x_{\pi(1)}, ..., x_{\pi(n)}) \\ &= f(w_1, ..., w_n) \quad \text{where} \quad w_j = S^n(s_j, x_{\pi(1)}, ..., x_{\pi(n)}) \\ &\text{for all} \quad j \in \{1, ..., n\}. \end{split}$$

Then $w_j = x_{\pi(j)}$; $q \in \{1, ..., n\} \setminus \{i\}$. Since $d \in R_k$; $\exists k \in \{1, ..., l\}$ and $|R_k| > 1$, we have $x_{\pi(j)} = x_q$ and $w_i = s_i$, $i \in \{1, ..., n\} \setminus \{d\}$. By Theorem 3.1.2, we have $\sigma_s \circ_G \sigma_t$ is not completely regular.

Case 2: $\sigma_t \in CR_I(R_3)\backslash E$. Then $t = f(t_1, ..., t_n)$ where $t_i = x_{\pi(i)}$; $\forall i \in I$ and π is a bijective map on I, $var(t) \cap X_n = \{x_{\pi(i)} \mid \forall i \in I\}$. Choose $\sigma_s \in E$ where $s = f(x_k, ..., x_k)$; $\exists k \in \{1, ..., n\}\backslash I$, $x_k \neq x_{\pi(i)}$; $\forall i \in I$. Consider

$$(\sigma_t \circ_G \sigma_s)(f) = \hat{\sigma_t}[f(x_k, ..., x_k)]$$

$$= S^{n}(\sigma_{t}(f), \hat{\sigma}_{t}[x_{k}], ..., \hat{\sigma}_{t}[x_{k}])$$

$$= S^{n}(f(t_{1}, ..., t_{n}), x_{k}, ..., x_{k})$$

$$= f(w_{1}, ..., w_{n}) \quad \text{where} \quad w_{j} = S^{n}(t_{j}, x_{k}, ..., x_{k})$$
for all $j \in \{1, ..., n\}$.

Then $w_k = t'_k$ where t'_k is a new term derived by substituting $x_{i_l} \, \forall i_l \in I$ which occurs in t_k by x_k . By Theore 3.1.2, we have $\sigma_s \circ_G \sigma_t$ is not completely regular. Hence $\sigma_t \in (MCR_1)_{Hyp_G(n)}$. Therefore $K \subseteq (MCR_1)_{Hyp_G(n)}$ and thus $\underline{K} = (MCR_1)_{Hyp_G(n)}$.

Theorem 3.2.6. $(MCR_I)_{Hyp_G(n)}$ is a maximal completely regular submonoid of $\underline{Hyp_G(n)}$.

Proof. Let \underline{K} be a proper completely regular submonoid of $\underline{Hyp_G(n)}$ such that $(MCR_I)_{Hyp_G(n)} \subseteq K \subset Hyp_G(n)$. Let $\sigma_t \in K$ where $\sigma_t \in CR(R_3) \setminus (CR_I(R_3) \cup CR'_I(R_3))$ then $t = f(t_1, ..., t_n)$ where $t_i = x_{\pi(i)}$ and π is a bijective map on $\{1, ..., n\}$. Choose $\sigma_s \in CR_I(R_3)$ then $s = f(s_1, ..., s_n)$ where $s_i = x_{\pi'(i)}$; $\forall i \in I$ and π' is a bijective map on I, $var(s) \cap X_n = \{x_{\pi'(i)} \mid \forall i \in I\}$ and $s_j \in X \setminus X_n, \forall j \in \{1, ..., n\} \setminus I$. Consider

$$(\sigma_{s} \circ_{G} \sigma_{t})(f) = \hat{\sigma_{s}}[f(x_{\pi(1)}, ..., x_{\pi(n)})]$$

$$= S^{n}(\sigma_{s}(f), \hat{\sigma_{s}}[x_{\pi(1)}], ..., \hat{\sigma_{s}}[x_{\pi(n)}])$$

$$= S^{n}(f(s_{1}, ..., s_{n}), x_{\pi(1)}, ..., x_{\pi(n)})$$

$$= f(w_{1}, ..., w_{n}) \quad where \quad w_{j} = S^{n}(s_{j}, x_{\pi(1)}, ..., x_{\pi(n)})$$
for all $j \in \{1, ..., n\}$.

Since $I \subset \{1,...,n\}$ there exist $i_p \in I$, $i_q \in \{1,...,n\} \setminus I$ such that $\pi(i_p) = i_q$ and $\pi'(i_r) = i_p$; $i_r, i_p \in I$, Then

$$w_{i_r} = S^n(s_{i_r}, x_{\pi(1)}, ..., x_{\pi(n)})$$

$$= S^n(x_{i_p}, x_{\pi(1)}, ..., x_{\pi(n)})$$

$$= x_{\pi(i_p)}$$

$$= x_{i_q}.$$

By Theorem 3.1.2, $\sigma_s \circ_G \sigma_t$ is not completely regular, so $\sigma_t \in (MCR_I)_{Hyp_G(n)}$. Therefore $K \subseteq (MCR_I)_{Hyp_G(n)}$ and thus $\underline{K} = (MCR_I)_{Hyp_G(n)}$.

Corollary 3.2.7. $\{(MCR)_{Hyp_G(n)}, (MCR_1)_{Hyp_G(n)}\} \cup \{(MCR_I)_{Hyp_G(n)} \mid \varnothing \neq I \subset \{1,...,n\}\}$ is the set of all maximal completely regular submonoids of $Hyp_G(n)$.