
CHAPTER 3

Main Results

In semigroup theory, the main study approach is diverse some special elements in

semigroups such as regular elements, quasi-regular elements and idempotent elements. In

Chapter 2, we have that (HypG(τ), ◦G, σid) is a monoid. So we can characterize these

special elements on this monoid. Th. Changphas and K. Denecke characterized idempo-

tent elements and regular elements of the monoid of all hypersubstitutions of type τ [4].

W. Puninagool and S. Leeratanavalee [11] characterized the set of all regular elements of

the monoid of all generalized hypersubstitutions of type τ = (2). In 2010, they charac-

terized the set of all idempotent and regular elements of the monoid of all generalized

hypersubstitutions of type τ = (n) [12]. Furthermore, all idempotent and regular ele-

ments of the monoid of all generalized hypersubstitutions of type τ = (3) were studied

by S. Sudsanit and S. Leeratanavalee [13]. In 2013, S. Sudsanit, S. Leeratanavalee and

W. Puninagool characterized left-right regular elements of the monoid of all generalized

hypersubstitutions of type τ = (2) [14].

The main results of this thesis are to characterize the set of all maximal completely

regular submonoids of the monoid of all generalized hypersubstitutions of type τ = (2) and

determine all maximal completely regular submonoids of all generalized hypersubstitutions

of type τ = (n).

Henceforth, we introduce some notations which will be used throughout of this

thesis. For a type τ = (n) with an n-ary operation symbol f and t ∈ W(n)(X), we denote

σt := the generalized hypersubstitution of type τ = (n) which maps f to the

term t,

leftmost(t) := the first variable (from the left) occurring in t,

rightmost(t) := the last variable occurring in t,

var(t) := the set of all variables occurring in the term t.

For a type t ∈ W(n)(X) and 1 ≤ i ≤ n, an i−most(t) is defined indeuctively by:

(i) if t is a variable, then i−most(t) = t,

(ii) if t = f(t1, ..., tn), then i−most(t) = i−most(ti).

Notice that 1−most(t) = leftmost(t) and n−most(t) = rightmost(t).
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Example 3.0.1. Let τ = (3) be a type, t = f(x2, f(x8, x5, x3), f(x1, x6, x4)).

Then 1 − most(t) = x2, 2 − most(t) = 2 − most(f(x8, x5, x3)) = x5 and 3 − most(t) =

3−most(f(x1, x6, x4)) = x4.

3.1 All Maximal Completely Regular Submonoids of HypG(2)

In the monoid of all generalized hypersubstitutions of type τ = (n), all regular

elements were studied by W. Puninagool and S. Leeratanavalee in 2010 [12]. Moreover, in

2013, A. Boonmee and S. Leeratanavalee [3] characterized the set of all completely regular

element of the monoid of all generalized hypersubstitutions of type τ = (n).

In this section, we used the concept of a completely regular element as a tool to

determine the set of all maximal completely regular submonoids of the monoid of all

generalized hypersubstitutions of type τ = (n).

For a type τ = (n) with n-ary operation f , we denote:

R1 := {σxi |xi ∈ X};

R2 := {σt|t ∈ Wτ (X)\X and var(t) ∩Xn = ∅};

R3 := {σt|t = f(t1, ..., tn) where ti1 = xj1 , ..., tim = xjm for some i1, ..., im ∈

{1, ..., n} and for distinct j1, ..., jm ∈ {1, ..., n} and var(t) ∩Xn = {xj1 , ..., xjm}};

CR(R3) := {σt|t = f(t1, ..., tn) where ti1 = xπ(i1), ..., tim = xπ(im) and π is a bijec-

tive map on {i1, ..., im} for some i1, ..., im ∈ {1, ..., n} and var(t)∩Xn = {xπ(i1), ..., xπ(im)}}.

It is clearly that CR(R3) ⊂ R3. In 2010, W. Puninagool and S. Leeratanavalee [12]

showed that
∪3

i=1Ri is the set of all regular elements in HypG(n). In 2013, A. Boonmee

and S. Leeratanavalee [3] determined the set of all completely regular elements inHypG(n),

as the following theorems.

Theorem 3.1.1 ( [3]). For each σt ∈ CR(R3), σt is a completely regular element in

HypG(n).

Theorem 3.1.2 ([3]). Let CR(HypG(n)) := CR(R3) ∪R1 ∪R2. Then CR(HypG(n)) is

the set of all completely regular elements in HypG(n).

Next, we will consider in case of τ = (2) this means that we have only one binary

operation symbol, say that f , and then

R1 := {σxi |xi ∈ X};

R2 := {σt|t ∈ W(2)(X)\X and var(t) ∩X2 = ∅};

CR(R3) := {σt| t = f(t1, t2) where ti = xi for some i ∈ {1, 2} and var(t)∩X2 =

{xi}} ∪ {σf(x1,x2), σf(x2,x1)}.
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It is easily to see that R1, R2, CR(R3) are pairwise disjoint and R1, R2 are subsemi-

groups of HypG(2) but CR(R3) is not a submonoid of HypG(2) as the following example.

Example 3.1.3. Let σs, σt ∈ CR(R3) such that s = f(x1, f(x4, x1)) and t = f(x2, x1).

Consider

(σt ◦G σs)(f) = σ̂t[f(x1, f(x4, x1))]

= S2(σt(f), σ̂t[x1], σ̂t[f(x4, x1)])

= S2(σt(f), x1, S
2(σt(f), σ̂t[x4], σ̂t[x1]))

= S2(σt(f), x1, S
2(f(x2, x1), x4, x1))

= S2(σt(f), x1, f(x1, x4))

= S2(f(x2, x1), x1, f(x1, x4))

= f(f(x1, x4), x1).

So σt ◦G σs /∈ CR(R3).

Next, let σt ∈ HypG(2), we denote

CR1(R3) := {σt|t = f(x1, t
′) where t′ ∈ W(2)(X) and var(t) ∩X2 = {x1}},

CR2(R3) := {σt|t = f(t′, x2) where t′ ∈ W(2)(X) and var(t) ∩X2 = {x2}},

CR′
1(R3) := {σt|t = f(x1, t

′) where t′ ∈ W(2)(X), var(t) ∩X2 = {x1} and

rightmost(t′) ̸= x1},

CR′
2(R3) := {σt|t = f(t′, x2) where t′ ∈ W(2)(X) var(t) ∩X2 = {x2} and

lefttmost(t′) ̸= x2},

(MCR)HypG(2) := R1 ∪R2 ∪ CR′
1(R3) ∪ CR′

2(R3) ∪ {σid},

(MCR1)HypG(2) := R1 ∪R2 ∪ CR1(R3) ∪ {σid},

(MCR2)HypG(2) := R1 ∪R2 ∪ CR2(R3) ∪ {σid} and

(MCR3)HypG(2) := R1 ∪R2 ∪ {σid, σf(x2,x1), σf(x1,x1), σf(x2,x2)}.

Proposition 3.1.4. CR1(R3) ∪ {σid} and CR′
1(R3) ∪ {σid} are submonoids of HypG(2).

Proof. It is clear that CR1(R3) ⊂ HypG(2). Next we show that CR1(R3) is closed under

◦G. Let σt, σs ∈ CR1(R3). Then t = f(x1, t
′), s = f(x1, s

′) where t′, s′ ∈ W(2)(X) and

var(t) ∩X2 = {x1}, var(s) ∩X2 = {x1}. Consider

(σt ◦G σs)(f) = σ̂t[f(x1, s
′)]

= S2(σt(f), σ̂t[x1], σ̂t[s
′])
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= S2(f(x1, t
′), x1, σ̂t[s

′])

= f(x1, t
′) since var(t) ∩X2 = {x1}

= σf(x1,t′)(f).

Then σt◦Gσs ∈ CR1(R3) and therefore CR1(R3) ∪ {σid} is a submonoid ofHypG(2).

In case of CR′
1(R3) ∪ {σid} is a submonoid of HypG(2), the proof is similar to the previous

proof.

Proposition 3.1.5. CR2(R3) ∪ {σid} and CR′
2(R3) ∪ {σid} are submonoids of HypG(2).

Proof. It is clear that CR2(R3) ⊂ HypG(2). Next we show that CR2(R3) is closed under

◦G. Let σt, σs ∈ CR2(R3). Then t = f(t′, x2), s = f(s′, x2) where t′, s′ ∈ W(2)(X) and

var(t) ∩X2 = {x2}, var(s) ∩X2 = {x2}. Consider

(σt ◦G σs)(f) = σ̂t[f(s
′, x2)]

= S2(σt(f), σ̂t[s
′], σ̂t[x2])

= S2(f(t′, x2), σ̂t[s
′], x2)

= f(t′, x2) since var(t) ∩X2 = {x2}

= σf(t′,x2)(f).

Then σt◦Gσs ∈ CR2(R3) and therefore CR2(R3) ∪ {σid} is a submonoid ofHypG(2).

In case of CR′
2(R3) ∪ {σid} is a submonoid of HypG(2), the proof is similar to the previous

proof.

Theorem 3.1.6. (MCR)HypG(2) is a completely regular submonoid of HypG(2).

Proof. By Theorem 3.1.2, we have every element in (MCR)HypG(2) is completely regular.

Next we show that (MCR)HypG(2) is closed under ◦G. Let σt, σs ∈ (MCR)HypG(2) =

R1 ∪R2 ∪ CR′
1(R3) ∪ CR′

2(R3) ∪ {σid}.

Case 1: σt ∈ R1. Then t = xi ∈ X.

Case 1.1: σs ∈ R1. It is obvious that σt ◦G σs ∈ R1 ⊂ (MCR)HypG(2).

Case 1.2: σs ∈ R2. Then s = f(s1, s2) where s1, s2 ∈ W(2)(X) and var(s) ∩

X2 = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, s2)]

= S2(σt(f), σ̂t[s1], σ̂t[s2])

= S2(xi, σ̂t[s1], σ̂t[s2])
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=

σ̂t[si], if i ∈ {1, 2};

xi, if i > 2

=


leftmost(s1), if i = 1;

rightmost(s2), if i = 2;

xi, if i > 2.

Then we have σt ◦G σs = σxj for some xj ∈ X. Hence (σt ◦G σs) ∈ R1 ⊂

(MCR)HypG(2).

Case 1.3: σs ∈ CR′
1(R3). Then s = f(x1, s

′) where s′ ∈ W(2)(X), var(s) ∩

X2 = {x1} and rightmost(s′) ̸= x1. Consider

(σt ◦G σs)(f) = σ̂t[f(x1, s
′)]

= S2(σt(f), σ̂t[x1], σ̂t[s
′])

= S2(xi, x1, σ̂t[s
′])

=


x1, if i = 1;

σ̂t[s
′] = rightmost(s′), if i = 2;

xi, if i > 2.

Then we have σt ◦G σs = σxj for some xj ∈ X. Hence (σt ◦G σs) ∈ R1 ⊂

(MCR)HypG(2).

Case 1.4: σs ∈ CR′
2(R3). Then s = f(s′, x2) where s′ ∈ W(2)(X), var(s) ∩

X2 = {x2} and leftmost(s′) ̸= x2. Consider

(σt ◦G σs)(f) = σ̂t[f(s
′, x2)]

= S2(σt(f), σ̂t[s
′], σ̂t[x2])

= S2(xi, σ̂t[s
′], x2)

=


x2, if i = 2;

σ̂t[s
′] = leftmost(s′), if i = 1;

xi, if i > 2.

Then we have σt ◦G σs = σxj for some xj ∈ X. Hence (σt ◦G σs) ∈ R1 ⊂

(MCR)HypG(2).
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Case 2: σt ∈ R2. Then t ∈ W(2)(X) \X and var(t) ∩X2 = ∅.

Case 2.1: σs ∈ R1. It is obvious that σt ◦G σs ∈ R1 ⊂ (MCR)HypG(2).

Case 2.2: σs ∈ R2. Then s ∈ W(2)(X) \X and var(s) ∩X2 = ∅. Since R2 is

a subsemigroup of HypG(2), so σt ◦G σs ∈ R2 ⊂ (MCR)HypG(2).

Case 2.3: σs ∈ CR′
1(R3). Then s = f(x1, s

′) where s′ ∈ W(2)(X), var(s) ∩

X2 = {x1} and rightmost(s′) ̸= x1. Consider

(σt ◦G σs)(f) = σ̂t[f(x1, s
′)]

= S2(σt(f), σ̂t[x1], σ̂t[s
′])

= S2(f(t1, t2), x1, σ̂t[s
′])

= f(t1, t2) since var(t) ∩X2 = ∅.

Then σt ◦G σs ∈ R2 ⊂ (MCR)HypG(2).

Case 2.4: σs ∈ CR′
2(R3). Then s = f(s′, x2) where s′ ∈ W(2)(X), var(s) ∩

X2 = {x2} and leftmost(s′) ̸= x2. We can prove in the same manner as in Case 2.3.

Case 3: σt ∈ CR′
1(R3). Then t = f(x1, t

′) where t′ ∈ W(2)(X), var(t) ∩X2 = {x1}

and rightmost(t′) ̸= x1.

Case 3.1: σs ∈ R1. It is obvious that σt ◦G σs ∈ R1 ⊂ (MCR)HypG(2).

Case 3.2: σs ∈ R2. Then s = f(s1, s2) where s1, s2 ∈ W(2)(X) and var(s) ∩

X2 = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, s2)]

= S2(σt(f), σ̂t[s1], σ̂t[s2])

= S2(f(x1, t
′), σ̂t[s1], σ̂t[s2])

= f(σ̂t[s1], t
′′) since var(t) ∩X2 = {x1},

where t′′ is a new term derived by substituting x1 which occurs in t′ by σ̂t[s1]. Then

σt ◦G σs ∈ R2 ⊆ (MCR)HypG(2).

Case 3.3: σs ∈ CR′
1(R3). By Proposition 3.1.4., we have that CR′

1(R3) ∪

{σid} is a submonoid of HypG(2). So σt ◦G σs ∈ CR′
1(R3) ⊂ (MCR)HypG(2).

Case 3.4: σs ∈ CR′
2(R3). Then s = f(s′, x2) where s′ ∈ W(2)(X), var(s) ∩

X2 = {x2} and leftmost(s′) ̸= x2. Consider

(σt ◦G σs)(f) = σ̂t[f(s
′, x2)]

= S2(σt(f), σ̂t[s
′], σ̂t[x2])
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= S2(f(x1, t
′), σ̂t[s

′], x2)

= f(σ̂t[s
′], t′′),

where t′′ is a new term derived by substituting x1 which occurs in t′ by σ̂t[s1]. Since

x1 /∈ var(s′) and leftmost(s′) ̸= x2, we have that x1, x2 /∈ var(σ̂t[s
′]). Since x2 /∈ var(t′)

and x1, x2 /∈ var(σ̂t[s
′]), we have σt ◦G σs ∈ R2 ⊂ (MCR)HypG(2).

Case 4: σt ∈ CR′
2(R3). Then t = f(t′, x2) where t′ ∈ W(2)(X), var(t) ∩X2 = {x2}

and leftmost(t′) ̸= x2. We can prove in the same manner as in Case 3. Therefore

(MCR)HypG(2) is a completely regular submonoid of HypG(2).

Theorem 3.1.7. (MCR1)HypG(2) and (MCR2)HypG(2) are completely regular submonoids

of HypG(2).

Proof. By Theorem 3.1.2., we have every element in (MCR1)HypG(2) is completely regular.

Next we show that (MCR1)HypG(2) is closed under ◦G. Let σt, σs ∈ (MCR1)HypG(2) =

R1 ∪R2 ∪ CR1(R3) ∪ {σid}.

Case 1: σt ∈ R1. Then t = xi ∈ X.

Case 1.1: σs ∈ R1. It is obvious that σt ◦G σs ∈ R1 ⊂ (MCR1)HypG(2).

Case 1.2: σs ∈ R2. Then s = f(s1, s2) where s1, s2 ∈ W(2)(X) and var(s) ∩

X2 = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, s2)]

= S2(σt(f), σ̂t[s1], σ̂t[s2])

= S2(xi, σ̂t[s1], σ̂t[s2])

=

σ̂t[si], if i ∈ {1, 2};

xi, if i > 2

=


leftmost(s1), if i = 1;

rightmost(s2), if i = 2;

xi, if i > 2.

Then we have σt ◦G σs = σxj for some xj ∈ X. Hence (σt ◦G σs) ∈ R1 ⊂

(MCR1)HypG(2).

Case 1.3: σs ∈ CR1(R3). Then s = f(x1, s
′) where s′ ∈ W(2)(X) and

var(s) ∩X2 = {x1}. Consider

(σt ◦G σs)(f) = σ̂t[f(x1, s
′)]
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= S2(σt(f), σ̂t[x1], σ̂t[s
′])

= S2(xi, x1, σ̂t[s
′])

=


x1, if i = 1;

σ̂t[s
′] = rightmost(s′), if i = 2;

xi, if i > 2.

Then we have σt ◦G σs = σxj for some xj ∈ X. Hence (σt ◦G σs) ∈ R1 ⊂

(MCR1)HypG(2).

Case 2: σt ∈ R2. Then t ∈ W(2)(X) \X and var(t) ∩X2 = ∅.

Case 2.1: σs ∈ R1. It is obvious that σt ◦G σs ∈ R1 ⊂ (MCR1)HypG(2).

Case 2.2: σs ∈ R2. Then s ∈ W(2)(X) \X and var(s) ∩X2 = ∅. Since R2 is

a subsemigroup of HypG(2), so σt ◦G σs ∈ R2 ⊂ (MCR1)HypG(2).

Case 2.3: σs ∈ CR1(R3). Then s = f(x1, s
′) where s′ ∈ W(2)(X) and var(s)∩

X2 = {x1}. Consider

(σt ◦G σs)(f) = σ̂t[f(x1, s
′)]

= S2(σt(f), σ̂t[x1], σ̂t[s
′])

= S2(f(t1, t2), x1, σ̂t[s
′])

= f(t1, t2) since var(t) ∩X2 = ∅.

Then σt ◦G σS ∈ R2 ⊂ (MCR1)HypG(2).

Case 3: σt ∈ CR1(R3). Then t = f(x1, t
′) where t′ ∈ W(2)(X), var(t)∩X2 = {x1}.

Case 3.1: σs ∈ R1. It is obvious that σt ◦G σs ∈ R1 ⊂ (MCR1)HypG(2).

Case 3.2: σs ∈ R2. Then s = f(s1, s2) where s1, s2 ∈ W(2)(X) and var(s) ∩

X2 = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, s2)]

= S2(σt(f), σ̂t[s1], σ̂t[s2])

= S2(f(x1, t
′), σ̂t[s1], σ̂t[s2])

= f(σ̂t[s1], t
′′) since var(t) ∩X2 = {x1},

where t′′ is a new term derived by substituting x1 which occurs in t′ by σ̂t[s1]. Then

σt ◦G σs ∈ R2 ⊆ (MCR1)HypG(2).

Case 3.3: σs ∈ CR1(R3). By Proposition 3.1.4., we have that CR1(R3) ∪
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{σid} is a submonoid of HypG(2). So σt ◦G σs ∈ CR1(R3) ⊂ (MCR1)HypG(2).

Therefore (MCR1)HypG(2) is a completely regular submonoid of HypG(2). In case of

(MCR2)HypG(2) is a completely regular submonoid of HypG(2), the proof is similar to the

previous proof.

Theorem 3.1.8. (MCR3)HypG(2) is a completely regular submonoid of HypG(2).

Proof. By Theorem 3.1.2, we have every element in (MCR3)HypG(2) is completely regular.

Next we show that (MCR3)HypG(2) is closed under ◦G. Let σt, σs ∈ (MCR3)HypG(2) =

R1 ∪R2 ∪ {σid, σf(x2,x1), σf(x1,x1), σf(x2,x2)}.

Case 1: σt ∈ R1. Then t = xi ∈ X.

Case 1.1: σs ∈ R1. It is obvious that σt ◦G σs ∈ R1 ⊂ (MCR2)HypG(2).

Case 1.2: σs ∈ R2. Then s = f(s1, s2) where s1, s2 ∈ W(2)(X) and var(s)∩

X2 = ∅. We can prove in the same manner as in Case 1.2 of Theorem 3.1.6. and conclude

that σt ◦G σs ∈ R1 ⊂ (MCR3)HypG(2).

Case 1.3: σs ∈ {σid, σf(x2,x1), σf(x1,x1), σf(x2,x2)}. It is obvious that

σt ◦G σs = σt if σs = f(x1, x2). If σs = f(x2, x1), then

(σt ◦G σs)(f) = σ̂t[f(x2, x1)]

= S2(σt(f), σ̂t[x2], σ̂t[x1])

= S2(xi, x2, x1)

=


x2, if i = 1;

x1, if i = 2;

xi, if i > 2.

If σs = f(x1, x1) or σs = f(x2, x2), we can prove similar to case of σs = f(x2, x1). Then

σt ◦G σs ∈ R1 ⊂ (MCR3)HypG(2).

Case 2: σt ∈ R2. Then t ∈ W(2)(X) \ X and var(t) ∩ X2 = ∅. We can prove

similar to Case 2 of Theorem 3.1.6., then σt ◦G σs ∈ R2 ⊂ (MCR3)HypG(2).

Case 3: σt ∈ {σid, σf(x2,x1), σf(x1,x1), σf(x2,x2)}.

Case 3.1: σs ∈ R1. It is obvious that σt ◦G σs ∈ R1 ⊂ (MCR3)HypG(2).

Case 3.2: σs ∈ R2. Then s = f(s1, s2) where s1, s2 ∈ W(2)(X) and var(s)∩

X2 = ∅. It is clear that σt ◦G σs = σs, if t = f(x1, x2). If t = f(x2, x1), then

(σt ◦G σs)(f) = σ̂t[f(s1, s2)]

= S2(σt(f), σ̂t[s1], σ̂t[s2])
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= S2(f(x2, x1), σ̂t[s1], σ̂t[s2])

= f(σ̂t[s2], σ̂t[s1]).

Since var(f(σ̂t[s2], σ̂t[s1])) ∩X2 = ∅, then σf(x2,x1) ◦G σs ∈ R2 ⊂ (MCR2)HypG(2).

If σs = f(x1, x1) or σs = f(x2, x2), we can prove similar to case of σs = f(x2, x1). Then

σt ◦G σs ∈ R2 ⊂ (MCR3)HypG(2).

Case 3.3: σs ∈ {σid, σf(x2,x1), σf(x1,x1), σf(x2,x2)}.

If σt = σf(x1,x2), then σt ◦G σs = σs ∈ {σid, σf(x2,x1), σf(x1,x1), σf(x2,x2)}.

If σt = σf(x2,x1), then

σt ◦G σs =



σf(x2,x1), if s = f(x1, x2);

σf(x1,x2), if s = f(x2, x1);

σf(x1,x1), if s = f(x1, x1);

σf(x2,x2), if s = f(x2, x2).

If σt = σf(x1,x1) or σt = σf(x2,x2), we can prove similar to case of σs =

f(x2, x1). Then σt ◦G σs, σs ◦G σt ∈ {σid, σf(x2,x1), σf(x1,x1), σf(x2,x2)} ⊂ (MCR3)HypG(2).

Therefore, (MCR3)HypG(2) is a completely regular submonoid of HypG(2).

Theorem 3.1.9. (MCR)HypG(2) is a maximal completely regular submonoid of HypG(2).

Proof. Let K be a proper completely regular submonoid of HypG(2) such that

(MCR)HypG(2) ⊆ K ⊂ HypG(2). Let σt ∈ K, then σt is completely regular.

Case 1: σt ∈ CR1(R3)\CR′
1(R3). Choose σs ∈ CR′

2(R3), then s = f(s′, x2) where

s′ ∈ W(2)(X), var(s) ∩X2 = {x2} and leftmost(s′) ̸= x2. Consider

(σs ◦G σt)(f) = σ̂s[f(x1, t
′)]

= S2(σs(f), σ̂s[x1], σ̂s[t
′])

= S2(f(s′, x2), x1, σ̂s[t
′])

= f(s′′, σ̂s[t
′]),

where s′′ is a new term derived by substituting x2 which occurs in s′ by σ̂s[t
′]. Since

x2 ∈ var(s) and rightmost(t′) = x1, we have x1 ∈ var(σ̂s[t
′]). By Theorem 3.1.2, we have

σs ◦G σt is not completely regular.

Case 2: σt ∈ CR2(R3)\CR′
2(R3). Choose σs ∈ CR′

1(R3), then s = f(x1, s
′) where s′ ∈

W(2)(X), var(s) ∩X2 = {x1} and rightmost(s′) ̸= x1. Consider

(σs ◦G σt)(f) = σ̂s[f(t
′, x2)]
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= S2(σs(f), σ̂s[t
′], σ̂s[x2])

= S2(f(x1, s
′), σ̂s[t

′], x2)

= f(σ̂s[t
′], s′′)

where s′′ is a new term derived by substituting x1 which occurs in s′ by σ̂s[t
′]. Since

x1 ∈ var(s) and leftmost(t′) = x2, we have x2 ∈ var(σ̂s[t
′]). By Theorem 3.1.2, we have

σs ◦G σt is not completely regular.

Case 3: σt = σf(x2,x1). Choose σs ∈ CR′
1(R3), then s = f(x1, s

′) where s′ ∈

W(2)(X), var(s) ∩X2 = {x1} and rightmost(s′) ̸= x1. Consider

(σs ◦G σt)(f) = σ̂s[f(x2, x1)]

= S2(σs(f), σ̂s[x2], σ̂s[x1])

= S2(f(x1, s
′), x2, x1)

= f(x2, s
′′),

where s′′ is a new term derived by substituting x1 which occurs in s′ by x2. Since

x2 /∈ var(s′) and the first input of the term f(x2, s
′) is x2, by Theorem 3.1.2, we have σs◦G

σt is not completely regular. ThereforeK ⊆ (MCR)HypG(2) and thusK = (MCR)HypG(2).

Theorem 3.1.10. (MCR1)HypG(2) and (MCR2)HypG(2) are maximal completely regular

submonoids of HypG(2).

Proof. Let K be a proper completely regular submonoid of HypG(2) such that

(MCR1)HypG(2) ⊆ K ⊂ HypG(2). Let σt ∈ K, then σt is completely regular.

Case 1: σt = σf(x2,x1). Choose σs ∈ CR1(R3), then s = f(x1, s
′) where s′ ∈

W(2)(X) and var(s) ∩X2 = {x1}. Consider

(σt ◦G σs)(f) = σ̂t[f(x1, s
′)]

= S2(σt(f), σ̂t[x1], σ̂t[s
′])

= S2(f(x2, x1), x1, σ̂t[s
′])

= f(σ̂t[s
′], x1).

Since x2 /∈ var(t) and the second input of the term f(σ̂t[s
′], x1) is x1, by Theorem

3.1.2, we have σs ◦G σt is not completely regular.

Case 2: σt ∈ CR2(R3). Then t = f(t′, x2) where t′ ∈ W(2)(X) and var(t) ∩X2 =
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{x2}. Choose σs ∈ CR1(R3), then s = f(x1, s
′) where s′ ∈ W(2)(X) \X, var(s)∩X2 =

{x1} and rightmost(s′) = x1. Consider

(σt ◦G σs)(f) = σ̂t[f(x1, s
′)]

= S2(σt(f), σ̂t[x1], σ̂t[s
′])

= S2(f(t′, x2), x1, σ̂t[s
′])

= f(t′′, σ̂t[s
′]),

where t′′ is a new term derived by substituting x2 which occurs in t′ by σ̂t[s
′]. Since

x2 ∈ var(t), we have x1 ∈ var(σ̂t[s
′]). Since x1 /∈ var(t), by Theorem 3.1.2, we have σt◦Gσs

is not completely regular. Then σt ∈ (MCR1)HypG(2). Therefore K ⊆ (MCR1)HypG(2)

and thusK = (MCR1)HypG(2). In case of (MCR2)HypG(2) is a maximal completely regular

submonoid of HypG(2), the proof is similar to the previous proof.

Theorem 3.1.11. (MCR3)HypG(2) is a maximal completely regular submonoid of HypG(2).

Proof. Let K be a proper completely regular submonoid of HypG(2) such that

(MCR3)HypG(2) ⊆ K ⊂ HypG(2). Let σt ∈ K, then σt is a completely regular element.

Case 1: σt ∈ CR1(R3). Then t = f(x1, t
′) where t′ ∈ W(2)(X) and var(t)∩X2 =

{x1}. Choose σs = σf(x2,x1), consider

(σs ◦G σt)(f) = σ̂s[f(x1, t
′)]

= S2(σs(f), σ̂s[x1], σ̂s[t
′])

= S2(f(x2, x1), x1, σ̂s[t
′])

= f(σ̂s[t
′], x1).

Since x2 /∈ var(t) and the second input of the term f(σ̂s[t
′], x1) is x1, by Theorem

3.1.2, we have σs ◦G σt is not completely regular. Then σt ∈ (MCR2)HypG(2).

Case 2: σt ∈ CR2(R3). Then t = f(t′, x2) where t′ ∈ W(2)(X) and var(t)∩X2 =

{x2}. We can prove in the same manner as in Case 1. Therefore K ⊆ (MCR3)HypG(2)

and thus K = (MCR3)HypG(2).

Corollary 3.1.12.

{(MCR)HypG(2), (MCR1)HypG(2), (MCR2)HypG(2), (MCR3)HypG(2)}

is the set of all maximal completely regular submonoids of HypG(2).
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3.2 All Maximal Completely Regular Submonoids of HypG(n)

In this section, we determine the set of all completely regular submonoids of the

monoid of all generalized hypersubstitutions of type τ = (n). Denote R1, R2 and CR(R3)

as in Section 3.1. By Theorem 3.1.2, we have that R1 ∪ R2 ∪ CR(R3) is the set of all

completely regular elements in HypG(n).

Next, let σt ∈ HypG(n), we denote

CR1(R3) := {σt|t = f(xπ(1), ..., xπ(n)) where π is a bijective map on {1, ..., n}}.

E := {σt|t = f(t1, ..., tn) where ti1 = xi1 , ..., tim = xim for some i1, ..., im ∈ {1, ..., n}

and var(t) ∩ Xn = {xi1 , ..., xim} and if xil ∈ var(tk) for some l ∈ {1, ...,m} and k ∈

{1, ..., n}\{i1, ..., im}, then j −most(tk) ̸= xil for all j ̸= il}.

For any ∅ ̸= I ⊂ {1, ..., n}, let

CRI(R3) := {σt|t = f(t1, ..., tn) where ti = xπ(i) ; ∀ i ∈ I and π is a bijective map

on I, var(t) ∩Xn = {xπ(i) | ∀ i ∈ I}}.

CR′
I(R3) := {σt|t = f(t1, ..., tn) where ti = xπ(i); π(i) ∈ I for all i ∈ I and

tk = xπ(k); ∀ k ∈ {1, ..., n} \ I and π is a bijective map on {1, ..., n}}.

We let

(MCR)HypG(n) := R1 ∪R2 ∪ CR1(R3),

(MCR1)HypG(n) := R1 ∪R2 ∪ E and

(MCRI)HypG(n) := R1 ∪R2 ∪ CRI(R3) ∪ CR′
I(R3) ∪ {σid}.

Theorem 3.2.1. (MCR)HypG(n) is a completely regular submonoid of HypG(n).

Proof. By Theorem 3.1.2, we have every element in (MCR)HypG(n) is completely regular.

Next we show that (MCR)HypG(n) is closed under ◦G. Let σt, σs ∈ (MCR)HypG(n) =

R1 ∪R2 ∪ CR1(R3).

Case 1: σt ∈ R1. Then t = xi ∈ X.

If σs ∈ R2, then s = f(s1, ..., sn) where var(s) ∩Xn = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]

= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])

= Sn(xi, σ̂t[s1], ..., σ̂t[sn])

=

σ̂t[si], if i ∈ {1, ..., n};

xi, if i > n.
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Since t = xi, we have σ̂t[si] = i − most(si) ∈ X. Hence σt ◦G σs ∈ R1 ⊂

(MCR)HypG(n).

If σs ∈ CR1(R3), then s = f(xπ(1), ..., xπ(n)) where π is a bijective map on {1, ..., n}.

Consider

(σt ◦G σs)(f) = σ̂t[f(xπ(1), ..., xπ(n))]

= Sn(σt(f), σ̂t[xπ(1)], ..., σ̂t[xπ(n)])

= Sn(xi, xπ(1), ..., xπ(n))

=

xπ(i) ,if i ∈ {1, ..., n}

xi ,if i > n.

So we have σt ◦G σs ∈ R1 ⊂ (MCR)HypG(n).

Case 2: σt ∈ R2. Then t ∈ W(n)(X) \X and var(t) ∩Xn = ∅.

If σs ∈ R1, then σt ◦G σs ∈ R1 ⊂ (MCR)HypG(n).

If σs ∈ CR1(R3), then s = f(xπ(1), ..., xπ(n)) where π is a bijective map on {1, ..., n}.

Consider

(σt ◦G σs)(f) = σ̂t[f(xπ(1), ..., xπ(n))]

= Sn(σt(f), σ̂t[xπ(1)], ..., σ̂t[xπ(n)])

= Sn(f(t1, ..., tn), xπ(1), ..., xπ(n))

= f(t1, ..., tn) since var(t) ∩Xn = ∅.

Then σt ◦G σs ∈ R2 ⊂ (MCR)HypG(n).

Case 3: σt ∈ CR1(R3). Then t = f(xπ1(1), ..., xπ1(n)) where π1 is a bijective map

on {1, ..., n}.

If σs ∈ R1, then σt ◦G σs ∈ R1 ⊂ (MCR)HypG(n).

If σs ∈ R2, then s = f(s1, ..., sn) where var(s) ∩Xn = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]

= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])

= Sn(f(xπ(1), ..., xπ(n)), σ̂t[s1], ..., σ̂t[sn])

= f(w1, ..., wn) where wi = Sn(xπ(i), σ̂t[s1], ..., σ̂t[sn])

for all i ∈ {1, .., n}.

Since var(σ̂t[si]) ∩ Xn = ∅ ∀i ∈ {1, ..., n}, we have var(f(w1, ..., wn)) ∩ Xn = ∅.

Hence σt ◦G σs ∈ R2 ⊂ (MCR)HypG(n).
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If σs ∈ CR1(R3), then s = f(xπ2(1), ..., xπ2(n)) where π2 is a bijective map on

{1, ..., n}.

Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]

= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])

= Sn(f(xπ1(1), ..., xπ1(n)), xπ2(1), ..., xπ2(n))

= f(xπ2(π1(1)), ..., xπ2(π1(n)))

= f(x(π2◦π1)(1), ..., x(π2◦π1)(n)).

Since π1 ◦π2 is a bijective map on {1, ..., n}, we have σt ◦G σs ∈ CR1(R3). Therefore

(MCR)HypG(n) is a completely regular submonoid of HypG(n).

Theorem 3.2.2. (MCR1)HypG(n) is a completely regular submonoid of HypG(n).

Proof. By Theorem 3.1.2, we have every element in (MCR1)HypG(n) is completely regular.

Next we show that (MCR1)HypG(n) is closed under ◦G. Let σt, σs ∈ (MCR1)HypG(n) =

R1 ∪R2 ∪ E.

Case 1: σt ∈ R1. Then t = xi ∈ X.

If σs ∈ R2, then s = f(s1, ..., sn) where var(s) ∩Xn = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]

= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])

= Sn(xi, σ̂t[s1], ..., σ̂t[sn])

=

σ̂t[si], if i ∈ {1, ..., n};

xi, if i > n.

Since t = xi, we have σ̂t[si] = i − most(si) ∈ X. Hence σt ◦G σs ∈ R1 ⊂

(MCR1)HypG(n).

If σs ∈ E, then s = f(t1, ..., sn) where si1 = xi1 , ..., sim = xim for some i1, ..., im ∈

{1, ..., n} and var(s) ∩Xn = {xi1 , ..., xim} and if xil ∈ var(sk) for some l ∈ {1, ...,m} and

k ∈ {1, ..., n}\{i1, ..., im}, then j −most(sk) ̸= xil for all j ̸= il. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]

= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])

= Sn(xi, σ̂t[s1], ..., σ̂t[sn])
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=

σ̂t[si] ,if i ∈ {1, ..., n}

xi ,if i > n.

Since t = xi, we have σ̂t[si] = i − most(si) ∈ X. Hence σt ◦G σs ∈ R1 ⊂

(MCR1)HypG(n).

Case 2: σt ∈ R2. Then t ∈ W(n)(X) \X and var(t) ∩Xn = ∅.

If σs ∈ R1, then σt ◦G σs ∈ R1 ⊂ (MCR1)HypG(n).

If σs ∈ E, then s = f(t1, ..., sn) where si1 = xi1 , ..., sim = xim for some i1, ..., im ∈

{1, ..., n} and var(s) ∩Xn = {xi1 , ..., xim} and if xil ∈ var(sk) for some l ∈ {1, ...,m} and

k ∈ {1, ..., n}\{i1, ..., im}, then j −most(sk) ̸= xil for all j ̸= il. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]

= Sn(σt(f), σ̂t[sn], ..., σ̂t[sn])

= Sn(f(t1, ..., tn), σ̂t[sn], ..., σ̂t[sn])

= f(t1, ..., tn) since var(t) ∩Xn = ∅.

Then σt ◦G σs ∈ R2 ⊂ (MCR1)HypG(n).

Case 3: σt ∈ E. Then t = f(t1, ..., tn) where ti1 = xi1 , ..., tim = xim for some

i1, ..., im ∈ {1, ..., n} and var(t) ∩ Xn = {xi1 , ..., xim} and if xil ∈ var(tk) for some l ∈

{1, ...,m} and k ∈ {1, ..., n}\{i1, ..., im}, then j −most(tk) ̸= xil for all j ̸= il.

If σs ∈ R1, then σt ◦G σs ∈ R1 ⊂ (MCR1)HypG(n).

If σs ∈ R2, then s = f(s1, ..., sn) where var(s) ∩Xn = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]

= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])

= Sn(f(t1, ..., tn), σ̂t[s1], ..., σ̂t[sn])

= f(w1, ..., wn) where wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn])

for all i ∈ {1, .., n}.

Since var(σ̂t[si]) ∩ Xn = ∅ ∀i ∈ {1, ..., n}, we have var(f(w1, ..., wn)) ∩ Xn = ∅.

Hence σt ◦G σs ∈ R2 ⊂ (MCR)HypG(n).

If σs ∈ E, then s = f(s1, ..., sn) where sp1 = xp1 , ..., spm′ = xpm′ for some p1, ..., pm′ ∈

{1, ..., n} and var(s) ∩Xn = {xp1 , ..., xpm′} and if xpl′ ∈ var(sk′) for some l′ ∈ {1, ...,m′}

and k′ ∈ {1, ..., n}\{p1, ..., pm′}, then j′ −most(sk′) ̸= xpl′ for all j
′ ̸= pl′ . Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]
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= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])

= Sn(f(t1, ..., tn), σ̂t[s1], ..., σ̂t[sn])

= f(w1, ..., wn) where wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn])

for all i ∈ {1, .., n}.

Case 1: var(tk) ∩Xn = ∅ for all k ∈ {1, ..., n}\{i1, ..., im} and var(sk′) ∩Xn = ∅

for all k′ ∈ {1, ..., n}\{p1, ..., pm′}.

Case 1.1: i ∈ {1, ..., n}\{i1, ..., im}. Then wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn]) = ti.

Case 1.2: i ∈ {i1, ..., im}. Then wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn]) = σ̂t[si].

If i ∈ {1, ..., n}\{p1, ..., pm′}, then var(wi) ∩ Xn = ∅. If i ∈ {p1, ..., pm′}, then wi = xi.

By Case 1.1, 1.2, we have σt ◦ σs ∈ (R2 ∪ E) ⊂ (MCR1)HypG(n).

Case 2: var(tk) ∩ Xn = ∅ for all k ∈ {1, ..., n}\{i1, ..., im} and there exists xpl′ ∈

var(sk′) for some l′ ∈ {1, ...,m′}, for all k′ ∈ {1, ..., n}\{p1, ..., pm′}. It can be proved

similarly as in Case 1. Hence σt ◦ σs ∈ (R2 ∪ E) ⊂ (MCR1)HypG(n).

Case 3: There exists xil ∈ var(tk) for some l ∈ {1, ...,m}, for all

k ∈ {1, ..., n}\{i1, ..., im} and there exists xpl′ ∈ var(sk′) for some l′ ∈ {1, ...,m′}, for all

k′ ∈ {1, ..., n}\{p1, ..., pm′}.

Case 3.1: i ∈ {i1, ..., im}. Then wi = σ̂t[si].

For i ∈ {p1, ..., pm′}. Then wi = xi.

For i = k′. Then wi = σ̂t[si]. If il = pl′ , then wil = xil . If il ̸= pl′ , then

var(wi) ∩ {xil} = ∅.

For i ∈ {1, ..., n}\{p1, ..., pm′ , k′}. Then var(wi) ∩Xn = ∅.

Case 3.2: i ∈ {1, ..., n}\{i1, ..., im, k}. Then var(wi) ∩ Xn = ∅. By Case

3.1,3.2, we have σt ◦ σs ∈ (R2 ∪ E) ⊂ (MCR1)HypG(n).

Theorem 3.2.3. (MCRI)HypG(n) is a completely regular submonoid of HypG(n).

Proof. By Theorem 3.1.2, we have every element in (MCRI)HypG(n) is completely regular.

Next we show that (MCRI)HypG(n) is closed under ◦G. Let σt, σs ∈ (MCRI)HypG(n) =

R1 ∪R2 ∪ CRI(R3) ∪ CR′
I(R3) ∪ {σid}.

Case 1: σt ∈ R1. Then t = xi ∈ X.

If σs ∈ R2, then s = f(s1, ..., sn) where var(s) ∩Xn = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]

= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])

= Sn(xi, σ̂t[s1], ..., σ̂t[sn])
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=

σ̂t[si], if i ∈ {1, ..., n};

xi, if i > n.

Since t = xi, we have σ̂t[si] = i − most(si) ∈ X. Hence σt ◦G σs ∈ R1 ⊂

(MCRI)HypG(n).

If σs ∈ CRI(R3), then s = f(s1, ..., sn) where si = xπ(i) ; ∀ i ∈ I and π is a bijective

map on I, var(s) ∩Xn = {xπ(i) | ∀ i ∈ I}. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]

= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])

= Sn(xi, σ̂t[s1], ..., σ̂t[sn])

=

σ̂t[si], if i ∈ {1, ..., n};

xi, if i > n.

Since t = xi, we have σ̂t[si] = i − most(si) ∈ X. Hence σt ◦G σs ∈ R1 ⊂

(MCRI)HypG(n).

If σs ∈ CR′
I(R3), then s = f(s1, ..., sn) where si = xπ(i) ; π(i) ∈ I for all i ∈ I, sk =

xπ(k); ∀ k ∈ {1, ..., n} \ I and π is a bijective map on {1, ..., n}. Consider

(σt ◦G σs)(f) = σ̂t[f(xπ(1), ..., xπ(n))]

= Sn(σt(f), σ̂t[xπ(1)], ..., σ̂t[xπ(n)])

= Sn(xi, xπ(1), ..., xπ(n))

=

xπ(i), if i ∈ {1, ..., n};

xi, if i > n.

Since t = xi, then xπ(i) = xl for l ∈ {1, ..., n}. Hence σt◦Gσs ∈ R1 ⊂ (MCRI)HypG(n).

Case 2: σt ∈ R2. Then t ∈ W(n)(X) \X and var(t) ∩Xn = ∅.

If σs ∈ R1, then σt ◦G σs ∈ R1 ⊂ (MCRI)HypG(n).

If σs ∈ CRI(R3), then s = f(s1, ..., sn) where si = xπ(i) ; ∀ i ∈ I and π is a bijective

map on I, var(s) ∩Xn = {xπ(i) | ∀ i ∈ I}. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]

= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])

= Sn(f(t1, ..., tn), σ̂t[s1], ..., σ̂t[sn])

= f(t1, ..., tn) since var(t) ∩Xn = ∅.
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Then σt ◦G σs ∈ R2 ⊂ (MCRI)HypG(n).

If σs ∈ CR′
I(R3), then s = f(s1, ..., sn) where si = xπ(i); π(i) ∈ I for all i ∈ I, sk =

xπ(k); ∀ k ∈ {1, ..., n} \ I and π is a bijective map on {1, ..., n}. Consider

(σt ◦G σs)(f) = σ̂t[f(xπ(1), ..., xπ(n))]

= Sn(σt(f), σ̂t[xπ(1)], ..., σ̂t[xπ(n)])

= Sn(f(t1, ..., tn), xπ(1), ..., xπ(n))

= f(t1, ..., tn) since var(t) ∩Xn = ∅.

Then σt ◦G σs ∈ R2 ⊂ (MCRI)HypG(n).

Case 3: σt ∈ CRI(R3). Then t = f(t1, ..., tn) where ti = xπ1(i) ; ∀ i ∈ I and π1 is

a bijective map on I, var(t) ∩Xn = {xπ(i) | ∀ i ∈ I}.

If σs ∈ R1, then σt ◦G σs ∈ R1 ⊂ (MCRI)HypG(n).

If σs ∈ R2, then s = f(s1, ..., sn) where var(s) ∩Xn = ∅. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]

= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])

= Sn(f(t1, ..., tn), σ̂t[s1], ..., σ̂t[sn])

= f(w1, ..., wn) where wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn])

for all i ∈ {1, .., n}.

Since var(σ̂t[si])∩Xn = ∅ ∀i ∈ {1, ..., n}, then var(f(w1, ..., wn))∩Xn = ∅. Hence

σt ◦G σs ∈ R2 ⊂ (MCRI)HypG(n).

If σs ∈ CRI(R3), then s = f(s1, ..., sn) where si = xπ2(i) ;∀ i ∈ I and π2 is a

bijective map on I, var(s) ∩Xn = {xπ2(i) | ∀ i ∈ I}. Consider

(σt ◦G σs)(f) = σ̂t[f(s1, ..., sn)]

= Sn(σt(f), σ̂t[s1], ..., σ̂t[sn])

= Sn(f(t1, ..., tn), σ̂t[s1], ..., σ̂t[sn])

= f(w1, ..., wn) where wi = Sn(ti, σ̂t[s1], ..., σ̂t[sn])

for all i ∈ {1, .., n}.

For any il ∈ I, since π1, π2 are bijective maps on I there exist ip, iq ∈ I such that

π1(il) = ip and π2(ip) = iq. Then wil = Sn(til , σ̂t[s1], ..., σ̂t[sn]) = Sn(xπ1(il), σ̂t[s1], ..., σ̂t[sn])

= σ̂t[sip ] = σ̂t[xπ2(ip)] = xiq .

For any j ∈ {1, ..., n} \ I, let tj = f(u1, ..., un). Consider

wj = Sn(tj , σ̂t[s1], ..., σ̂t[sn])
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= Sn(f(u1, .., un), σ̂t[s1], ..., σ̂t[sn])

= f(w′
1, ..., w

′
n) where w′

k = Sn(tk, σ̂t[s1], ..., σ̂t[sn])

for all k ∈ {1, .., n}.

If var(uk)∩Xn = ∅, then w′
k = uk. If uk = xπ1(il) and π1(il) = ip, π2(ip) = iq,

then w′
k = Sn(uk, σ̂t[s1], ..., σ̂t[sn]) = Sn(xπ1(il), σ̂t[s1], ..., σ̂t[sn]) = σ̂t[sip ] = xπ2(ip) =

xiq ; iq ∈ I. Hence σt ◦G σs ∈ CRI(R3) ⊂ (MCRI)HypG(n).

If σs ∈ CR′
I(R3), we can prove as in the previous proof. Hence σt◦Gσs ∈ CRI(R3) ⊂

(MCRI)HypG(n).

Case 4: σt ∈ CR′
I(R3). It can be proved similarly as in Case 3. Then we have

σt ◦G σs ∈ (MCRI)HypG(n). Therefore (MCRI)HypG(n) is a completely regular submonoid

of HypG(n).

Theorem 3.2.4. (MCR)HypG(n) is a maximal completely regular submonoid of HypG(n).

Proof. Let K be a proper completely regular submonoid of HypG(n) such that

(MCR)HypG(n) ⊆ K ⊂ HypG(n). Let σt ∈ K where σt ∈ CR(R3) \ CR1(R3). Then

t = f(t1, ..., tn) where til = xπ(il) ; ∀il ∈ I and π is a bijective map on I, var(t) ∩Xn =

{xπ(il) | ∀ il ∈ I}. Choose σs ∈ CR1(R3) such that s = f(xπ′(1), ..., xπ′(n)) where π′ is a

bijective map on {1, ..., n} and π′ = (π′(1)...π′(n)) is a cycle. Consider

(σt ◦G σs)(f) = σ̂t[f(xπ′(1), ..., xπ′(n))]

= Sn(σt(f), σ̂t[xπ′(1)], ..., σ̂t[xπ′(n)])

= Sn(f(t1, ..., tn), xπ′(1), ..., xπ′(n))

= f(w1, ..., wn) where wj = Sn(tj , xπ′(1), ..., xπ′(n))

for all j ∈ {1, .., n}.

Since I ⊂ {1, ..., n}, there exists ip ∈ I, iq ∈ {1, ..., n} \ I such that π′(ip) = iq and

π(il) = ip, il, ip ∈ I, then

wil = Sn(til , σ̂t[xπ′(1)], ..., σ̂t[xπ′(n)])

= Sn(xπ(il), xπ′(1), ..., xπ′(n))

= xπ′(ip)

= xiq .

By Theorem 3.1.2, σs ◦G σt is not completely regular, so σt ∈ (MCR)HypG(n).

Therefore K ⊆ (MCR)HypG(n) and thus K = (MCR)HypG(n).
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Theorem 3.2.5. (MCR1)HypG(n) is a maximal completely regular submonoid of HypG(n).

Proof. Let K be a proper completely regular submonoid of HypG(n) such that

(MCR1)HypG(n) ⊆ K ⊂ HypG(n). Let σt ∈ K, then σt is a completely regular element.

Case 1: σt ∈ CR1(R3). Then t = f(xπ(1), ..., xπ(n)) where π is a bijective map on {1, ..., n}.

Case 1.1: t = f(xπ(1), ..., xπ(n)) where π is bijective map on {1, ..., n} and

(π(1)...π(n)) is a cycle. Choose σs ∈ E then s = f(s1, ..., sn) where si1 = xi1 , ..., sim = xim

and sj ∈ X \Xn, ∀ j ∈ {1, ..., n} \ {i1, ..., im}. Consider

(σs ◦G σt)(f) = σ̂s[f(xπ(1), ..., xπ(n))]

= Sn(σs(f), σ̂s[xπ(1)], ..., σ̂s[xπ(n)])

= Sn(f(s1, ..., sn), xπ(1), ..., xπ(n))

= f(w1, ..., wn) where wj = Sn(sj , xπ(1), ..., xπ(n))

for all j ∈ {1, .., n}.

If il ∈ {i1, ..., im}, then wil = xπ(il). Since (π(1)...π(n)) is a cycle, we have that

xπ(il) = xiq ; iq ∈ {i1, ...im}\{il}. If j ∈ {1, ..., n}\{i1, ..., im}, then wj = sj . By Theorem

3.1.2, we have σs ◦G σt is not completely regular.

Case 1.2: t = f(xπ(1), ..., xπ(n)) where π is bijective map on {1, ..., n} and there

is P = {R1, ..., Rl} is a partition of {1, ..., n} such that R1 = {r11, ..., r1f}, ..., Rl =

{rl1, ..., rlh} and (r11...r1f )...(rl1, ..., rlh). Let d ∈ Rk ; ∃ k ∈ {1, ..., l} and |Rk| > 1.

Choose σs ∈ E, then s = f(s1, ..., sn) where sd = xd and sq ∈ X \Xn, ∀q ∈ {1, ..., n}\{d}.

Consider

(σs ◦G σt)(f) = σ̂s[f(xπ(1), ..., xπ(n))]

= Sn(σs(f), σ̂s[xπ(1)], ..., σ̂s[xπ(n)])

= Sn(f(s1, ..., sn), xπ(1), ..., xπ(n))

= f(w1, ..., wn) where wj = Sn(sj , xπ(1), ..., xπ(n))

for all j ∈ {1, .., n}.

Then wj = xπ(j) ; q ∈ {1, ..., n}\{i}. Since d ∈ Rk ; ∃ k ∈ {1, ..., l} and |Rk| > 1,

we have xπ(j) = xq and wi = si, i ∈ {1, ..., n}\{d}. By Theorem 3.1.2, we have σs ◦G σt is

not completely regular.

Case 2: σt ∈ CRI(R3)\E. Then t = f(t1, ..., tn) where ti = xπ(i) ; ∀ i ∈ I and π is

a bijective map on I, var(t) ∩ Xn = {xπ(i) | ∀ i ∈ I}. Choose σs ∈ E where s =

f(xk, ..., xk) ; ∃ k ∈ {1, ..., n}\I, xk ̸= xπ(i) ; ∀ i ∈ I. Consider

(σt ◦G σs)(f) = σ̂t[f(xk, ..., xk)]
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= Sn(σt(f), σ̂t[xk], ..., σ̂t[xk])

= Sn(f(t1, ..., tn), xk, ..., xk)

= f(w1, ..., wn) where wj = Sn(tj , xk, ..., xk)

for all j ∈ {1, .., n}.

Then wk = t′k where t′k is a new term derived by substituting xil ∀ il ∈ I which

occurs in tk by xk. By Theore 3.1.2, we have σs◦Gσt is not completely regular. Hence σt ∈

(MCR1)HypG(n). Therefore K ⊆ (MCR1)HypG(n) and thus K = (MCR1)HypG(n).

Theorem 3.2.6. (MCRI)HypG(n) is a maximal completely regular submonoid of HypG(n).

Proof. Let K be a proper completely regular submonoid of HypG(n) such that

(MCRI)HypG(n) ⊆ K ⊂ HypG(n). Let σt ∈ K where σt ∈ CR(R3)\(CRI(R3)∪CR′
I(R3))

then t = f(t1, ..., tn) where ti = xπ(i) and π is a bijective map on {1, ..., n}. Choose

σs ∈ CRI(R3) then s = f(s1, ..., sn) where si = xπ′(i) ; ∀ i ∈ I and π′ is a bijective map

on I, var(s) ∩Xn = {xπ′(i) | ∀ i ∈ I} and sj ∈ X \Xn, ∀ j ∈ {1, ..., n} \ I. Consider

(σs ◦G σt)(f) = σ̂s[f(xπ(1), ..., xπ(n))]

= Sn(σs(f), σ̂s[xπ(1)], ..., σ̂s[xπ(n)])

= Sn(f(s1, ..., sn), xπ(1), ..., xπ(n))

= f(w1, ..., wn) where wj = Sn(sj , xπ(1), ..., xπ(n))

for all j ∈ {1, .., n}.

Since I ⊂ {1, ..., n} there exist ip ∈ I, iq ∈ {1, ..., n} \ I such that π(ip) = iq and

π′(ir) = ip; ir, ip ∈ I, Then

wir = Sn(sir , xπ(1), ..., xπ(n))

= Sn(xip , xπ(1), ..., xπ(n))

= xπ(ip)

= xiq .

By Theorem 3.1.2, σs ◦G σt is not completely regular, so σt ∈ (MCRI)HypG(n).

Therefore K ⊆ (MCRI)HypG(n) and thus K = (MCRI)HypG(n).

Corollary 3.2.7. {(MCR)HypG(n), (MCR1)HypG(n)} ∪ {(MCRI)HypG(n) | ∅ ̸= I ⊂

{1, ..., n}} is the set of all maximal completely regular submonoids of HypG(n).
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