CHAPTER 4

Conclusion

In this chapter, we conclude all main results of the thesis.

Let $\sigma_t \in Hyp_G(2)$. We denote

$$R_1 := \{ \sigma_{x_i} | x_i \in X \};$$

$$R_2 := \{ \sigma_t | t \notin X \text{ and } var(t) \cap X_2 = \emptyset \};$$

$$CR(R_3) := \{ \sigma_t | t = f(t_1, t_2) \text{ where } t_i = x_i \text{ for some } i \in \{1, 2\} \text{ and } var(t) \cap X_2 = \{x_i\} \} \cup \{ \sigma_{f(x_1, x_2)}, \sigma_{f(x_2, x_1)} \}.$$

It is easily to see that $R_1, R_2, CR(R_3)$ are pairwise disjoint and $\underline{R_1}, \underline{R_2}$ are subsemigroups of $Hyp_G(2)$ but $CR(R_3)$ is not a submonoid of $Hyp_G(2)$.

So we partition $CR_3(R_3)$ by $\{CR_1(R_3), CR_2(R_3)\}$ as follow.

$$CR_1(R_3) := \{ \sigma_t | t = f(x_1, t') \text{ where } t' \in W_{(2)}(X) \text{ and } var(t) \cap X_2 = \{x_1\} \},$$

$$CR_2(R_3) := \{ \sigma_t | t = f(t', x_2) \text{ where } t' \in W_{(2)}(X) \text{ and } var(t) \cap X_2 = \{x_2\} \}$$

and denote

$$CR'_1(R_3) := \{ \sigma_t | t = f(x_1, t') \text{ where } t' \in W_{(2)}(X), \text{ } var(t) \cap X_2 = \{x_1\} \text{ and } rightmost(t') \neq x_1 \},$$

$$CR'_2(R_3) := \{ \sigma_t | t = f(t', x_2) \text{ where } t' \in W_{(2)}(X) \text{ } var(t) \cap X_2 = \{x_2\} \text{ and } lefttmost(t') \neq x_2 \},$$

$$(MCR)_{Hyp_G(2)} = R_1 \cup R_2 \cup CR'_1(R_3) \cup CR'_2(R_3) \cup \{\sigma_{id}\},\$$

$$(MCR_1)_{Hyp_G(2)} = R_1 \cup R_2 \cup CR_1(R_3) \cup \{\sigma_{id}\},\$$

$$(MCR_2)_{Hyp_G(2)} = R_1 \cup R_2 \cup CR_2(R_3) \cup \{\sigma_{id}\}$$
 and

$$(MCR_3)_{Hyp_G(2)} = R_1 \cup R_2 \cup \{\sigma_{id}, \sigma_{f(x_2, x_1)}, \sigma_{f(x_1, x_1)}, \sigma_{f(x_2, x_2)}\}.$$

Then we have:

- (1) $\underline{CR_1(R_3)}, \underline{CR_1'(R_3)}, \underline{CR_2(R_3)}, \underline{CR_2'(R_3)}$ are completely regular subsemigroups of $Hyp_G(2)$.
- (2) $\{\underline{(MCR)_{Hyp_G(2)}}, \underline{(MCR_1)_{Hyp_G(2)}}, \underline{(MCR_2)_{Hyp_G(2)}}, \underline{(MCR_3)_{Hyp_G(2)}}\}$ is the set of all maximal completely regular submonoids of $Hyp_G(2)$.

From the obtained results in $\underline{Hyp_G(2)}$, we extend and determine all maximal completely regular submonoids of $Hyp_G(n)$.

Next, let $\sigma_t \in Hyp_G(n)$, we denote

$$CR_1(R_3) := \{ \sigma_t | t = f(x_{\pi(1)}, ..., x_{\pi(n)}) \text{ where } \pi \text{ is a bijective map on } \{1, ..., n\} \}.$$

 $E := \{ \sigma_t | t = f(t_1, ..., t_n) \text{ where } t_{i_1} = x_{i_1}, ..., t_{i_m} = x_{i_m} \text{ for some } i_1, ..., i_m \in \{1, ..., n\}$ and $var(t) \cap X_n = \{x_{i_1}, ..., x_{i_m}\} \text{ and if } x_{i_l} \in var(t_k) \text{ for some } l \in \{1, ..., m\} \text{ and } k \in \{1, ..., n\} \setminus \{i_1, ..., i_m\}, \text{ then } j - most(t_k) \neq x_{i_l} \text{ for all } j \neq i_l\}.$

For any $\emptyset \neq I \subset \{1, ..., n\}$, let

 $CR_I(R_3) := \{ \sigma_t | t = f(t_1, ..., t_n) \text{ where } t_i = x_{\pi(i)} ; \pi(i) \in I \text{ for all } i \in I \text{ and } \pi \text{ is a bijective map on } I, var(t) \cap X_n = \{x_{\pi(i)} \mid \forall i \in I\} \}.$

 $CR'_{I}(R_{3}) := \{\sigma_{t} | t = f(t_{1},...,t_{n}) \text{ where } t_{i} = x_{\pi(i)}; \ \forall i, \pi(i) \in I \text{ and } t_{k} = x_{\pi(k)}; \forall k \in \{1,...,n\} \setminus I \text{ and } \pi \text{ is a bijective map on } \{1,...,n\} \},$

$$(MCR)_{Hyp_G(n)} = R_1 \cup R_2 \cup CR_1(R_3),$$

$$(MCR_1)_{Hyp_G(n)} = R_1 \cup R_2 \cup E$$
 and

$$(MCR_I)_{Hyp_G(n)} = R_1 \cup R_2 \cup CR_I(R_3) \cup CR'_I(R_3) \cup \{\sigma_{id}\}.$$

Then we have:

- (1) $(MCR)_{Hyp_G(n)}$ is a completely regular submonoid of $\underline{Hyp_G(n)}$.
- (2) $(MCR_1)_{Hyp_G(n)}$ is a completely regular submonoid of $\underline{Hyp_G(n)}$.
- (3) $(MCR_I)_{Hyp_G(n)}$ is a completely regular submonoid of $Hyp_G(n)$.
- (4) $\{\underline{(MCR)_{Hyp_G(n)}}, \underline{(MCR_1)_{Hyp_G(n)}}\} \cup \{\underline{(MCR_I)_{Hyp_G(n)}} \mid \varnothing \neq I \subset \{1, ..., n\}\}$ is the set of all maximal completely regular submonoids of $Hyp_G(n)$.