
CHAPTER 2

Basic Concepts and Preliminaries

In this chapter, we recall and give some useful definitions, and results which

will be used in the later chapter.

2.1 Metric Spaces

Definition 2.1.1. [13] Let X be a nonempty set. A metric on X is a function D :

X ×X → [0,∞) which satisfies the following conditions

(MS1) D(x, y) ≥ 0 for each x, y ∈ X, and D(x, y) = 0 if and only if x = y,

(MS2) D(x, y) = D(y, x) for each x, y ∈ X,

(MS3) D(x, y) ≤ D(x, z) +D(z, y) for each x, y, z ∈ X.

Then D is called a distance or metric on X, and X together with D is called a metric

space which will be denoted by (X,D).

Example 2.1.2. [13]

1. Let D(x, y) = |x − y|, for all x, y ∈ R, where | · | denotes the absolute value. Then

D is a metric on R. The metric D is called the usual metric for R.

2. The Euclidian space Rn with

D(x, y) =

[
n∑

i=1

(xi − yi)
2

] 1
2

,

for each x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn, is a metric space. The metric

D is called the Euclidian metric for Rn. The next two mappings

ρ(x, y) = max
1≤i≤n

|xi − yi|, and σ(x, y) =
n∑

i=1

|xi − yi|,

for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn are also metrics on Rn.

3. Let X be a nonempty set and x, y ∈ X. Let D : X ×X → R be defined by

D(x, y) =


0 if x = y

1 if x ̸= y.

2



Then (X,D) is a metric space which is called a discrete space.

4. Let X be the set of all continuous functions from [a, b] to R. We define a metric D

by

D(f, g) = max
x∈[a,b]

|f(x)− g(x)| for all f, g ∈ X.

Then (X,D) is a metric space and usually denoted by C[a, b].

Definition 2.1.3. [13] Let (X,D) be a metric space. A sequence {xn} ⊂ X is said to be

• convergent if there exists x ∈ X such that lim
n→∞

D(xn, x) = 0,

• Cauchy if for ϵ > 0 there exists N ∈ N such that D(xm, xn) < ϵ for all m,n > N .

• The metric spaces (X,D) is complete if all Cauchy sequences in X is convergent in

X.

Note: From now on, we denote that the sequence {xn} converges to a point x ∈ X by

xn → x as n→ ∞.

Definition 2.1.4. [13] Let (X,D), (Y,D′) be metric spaces. We say that T : X → Y is

continuous at x0 ∈ X if for every ϵ > 0 there is a δ > 0 such that D′(Tx, Tx0) < ϵ for all

x ∈ X satisfying D(x, x0) < δ. Moreover, T is said to be continuous if it is continuous at

every point of X.

Theorem 2.1.5. [13] Let (X,D), (Y,D′) be metric spaces. T : X → Y is continuous at

x0 ∈ X if and only if xn → x0 as n→ ∞ ⇒ Txn → Tx0 as n→ ∞.

2.2 Generalized α-ψ-Geraghty Contraction Type Mapping

In 2014, Karapinar [12] presented the existence of fixed point generalized α-ψ-

Geraghty contraction type mapping in complete metric space. First, we recall the defini-

tion of auxiliary functions.

Definition 2.2.1. [12] Let Ψ be the family of all functions ψ : [0,∞) → [0,∞) which

satisfy these conditions

(ψ1) ψ is nondecreasing,

(ψ2) ψ is continuous,

(ψ3) ψ is subadditive, that is, ψ(s+ t) ≤ ψ(s) + ψ(t) for all s, t ∈ [0,∞),
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(ψ4) ψ(t) = 0 if and only if t = 0.

Example 2.2.2. For t ∈ [0,∞), ψ(t) = t
2 is a good example for ψ ∈ Ψ since it satisfies

all conditions (ψ1)− (ψ4). Indeed, for t1, t2 ∈ [0,∞)

(ψ1) if t1 ≤ t2, then ψ(t1) =
t1
2 ≤ t2

2 = ψ(t2),

(ψ2) given ϵ > 0, there exists δ = 2ϵ such that |t1 − t2| < δ implies

|ψ(t1)− ψ(t2)| = | t12 − t1
2 | =

1
2 |t1 − t2| < δ

2 = ϵ,

(ψ3) ψ(t1 + t2) =
t1+t2

2 = t1
2 + t2

2 = ψ(s) + ψ(t),

(ψ4) ψ(t1) =
t1
2 = 0 if and only if t = 0.

The following class of functions was defined by Geraghty [8].

Definition 2.2.3. Let F be the family of all functions β : [0,∞) → [0, 1) such that for

any {tn} ⊂ [0,∞)

if lim
n→∞

β(tn) = 1 then lim
n→∞

tn = 0.

Example 2.2.4. For t ∈ [0,∞), β(t) = 2t is a good example of β ∈ F since for any

{tn} ⊂ [0,∞),

lim
n→∞

2tn = 1 implies lim
n→∞

tn = 0.

Now, we recall the notion of generalized α-ψ-Geraghty contraction type.

Definition 2.2.5. [12] Let (X,D) be a metric space and α : X ×X → R be a function.

A mapping T : X → X is said to be a generalized α-ψ-Geraghty contraction type if there

exists β ∈ F such that for all x, y ∈ X,

α(x, y)ψ(D(Tx, Ty)) ≤ β(ψ(M(x, y))) · ψ(M(x, y)), (2.1)

where M(x, y) = max{D(x, y), D(x, Tx), D(y, Ty)} and ψ ∈ Ψ.

Example 2.2.6. Let X = [0,∞) and D(x, y) = |x− y| for all x, y ∈ X. Then (X,D) is a

metric space. Let T : X → X be defined by

T (x) =


1
3x, if x ∈ [0, 1],

3x, otherwise.
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Also, we define a function α : X ×X → R in a following way

α(x, y) =


1, if x, y ∈ [0, 1],

0, otherwise.

If x /∈ [0, 1] or y /∈ [0, 1], then it is obvious that the inequality (2.1) holds.

If x, y ∈ [0, 1], then let β(t) = 1
3 and ψ(t) = t

2 for all t ∈ [0,∞). It is clear that β ∈ F

and ψ ∈ Ψ. Consider

β(ψ(M(x, y))) · ψ(M(x, y))− α(x, y)ψ(D(Tx, Ty))

=
1

3
· M(x, y)

2
− |x− y|

6

≥ M(x, y)

6
− M(x, y)

6

= 0.

Hence, for x, y ∈ [0, 1], the inequality (2.1) holds. Therefore T is a generalized α-ψ-

Geraghty contraction type.

Definition 2.2.7. [12] Let T : X → X be a self mapping on a nonempty set X and

α : X ×X → R. We say that T is triangular α-admissible if these conditions hold

1. for any x, y ∈ X, if α(x, y) ≥ 1 then α(Tx, Ty) ≥ 1,

2. for any x, u, y ∈ X, if α(x, u) ≥ 1 and α(u, y) ≥ 1 then α(x, y) ≥ 1.

Example 2.2.8. Let T (x) = x2 for x ∈ [0,∞). Define α : X ×X → R by:

α(x, y) =


1 if x, y ∈ [0, 1]

0 otherwise.

Let x, y ∈ X. We can see that if α(x, y) ≥ 1, then x, y ∈ [0, 1]. Thus x2, y2 ∈ [0, 1]

which implies that α(Tx, Ty) = α(x2, y2) ≥ 1.

If α(x, u) ≥ 1 and α(u, y) ≥ 1, then x, u, y ∈ [0, 1] which implies that α(x, y) ≥ 1.

Thus T is triangular α-admissible.

Proposition 2.2.9. [16] Let X be a nonempty set and T : X → X be triangular α-

admissible. Assume that there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Define a sequence

{xn} by xn = Tnx0 for all n ∈ N, we have α(xn, xm) ≥ 1 for all m,n ∈ N such that

n < m.
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Proposition 2.2.10. Let X be a nonempty set and T : X → X be triangular α-admissible.

Assume that there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(x0, x0) ≥ 1. Define a

sequence {xn} by xn = Tnx0 for all n ∈ N, we have α(xn, xm) ≥ 1 for all m,n ∈ N such

that n ≤ m.

Proof. By Proposition 2.2.9, α(xn, xm) ≥ 1 for allm,n such that n < m. From hypothesis,

we have α(x0, x0) ≥ 1. Assume that α(xn, xn) ≥ 1. By triangular α-admissible of T ,

α(xn+1, xn+1) = α(Txn, Txn) ≥ 1. Thus, by mathematical induction, α(xn, xn) ≥ 1 for

all n ∈ N.

Definition 2.2.11. [12] Let α : X ×X → R be a function. A sequence {xn} in X is said

to be α-regular if it satisfies the following condition

If {xn} is a sequence such that α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x as n→ ∞,

then there exists a subsequence {xnk
} of {xn} such that α(xnk

, x) ≥ 1 for all k ∈ N.

In 2014, Karapinar proved the following result in his paper.

Example 2.2.12. [12] Let (X,D) be a complete metric space, α : X × X → R and

T : X → X be a mapping. If these conditions hold

1. T is a generalized α-ψ-Geraghty contraction type map,

2. T is triangular α-admissible,

3. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

4. either T is continuous or {xn} is α-regular.

Then T has a fixed point x∗ ∈ X and {Tnx0} converges to x∗.

The first objective of this thesis is to establish fixed point theorem of generalized

α-ψ-Geraghty in an RS-generalized metric spaces which is an extension of Theorem 2.2.12.

2.3 Rectangular Metric Spaces and BN -Spaces

In 2000, Branciari [3] generalized metric space by replacing the triangle inequality

with a weaker condition.

Definition 2.3.1. Let X be a nonempty set and N ∈ N. A mapping D : X×X → [0,∞)

is said to be a Branciari N -metric if it fits to these conditions

(BN1) D(x, y) = 0 if and only if x = y,

6



(BN2) D(x, y) = D(y, x),

(BN3) D(x, y) ≤ D(x, z1) +D(z1, z2) + · · ·+D(zN−1, zN ) +D(zN , y)

for all x, y, z1, z2, . . . , zN−1, zN ∈ X are all different.

The pair (X,D) is called a BN -space. If N = 2, then the pair (X,D) is called a rectangular

metric space.

Example 2.3.2. Let A = {0, 2}, B = { 1
n : n ∈ N} and X = A ∪B. Define D : X ×X →

[0, 1] by

D(x, y) =



0, if x = y,

1, if x, y ∈ A or x, y ∈ B,

y, if x ∈ A and y ∈ B.

A pair (X,D) is a rectangular metric space.

It is easy to see that the condition (BN1) and (BN2) hold. For the last condition of

the rectangular metric, let x, y, z1, z2 ∈ X and distinct from each other. If x = y then it

is obvious that (BN3) holds. If x ̸= y and x, y are in the same set then

D(x, y) = 1 ≤ D(x, z1) +D(z1, z2) +D(z2, y).

Because D(z1, z2) = 1 if z1, z2 are in the same set and D(x, z1) = 1 or D(z2, y) = 1 if z1, z2

are in the different set. If x ̸= y and x, y are in the different set, assume that x ∈ A and

y ∈ B then

D(x, y) = y ≤ 1 ≤ D(x, z1) +D(z1, z2) +D(z2, y).

Because D(z1, z2) = 1 if z1, z2 are in the same set and D(x, z1) = 1 or D(z2, y) = 1 if z1, z2

are in the different set. Therefore, (X,D) is a rectangular metric space.

2.4 JKS Contraction

In 2014, Jleli, Karapinar and Samet [10] defined an interesting class of auxiliary

functions to extend the Bananch contraction principle to the wider class of mapping.

Definition 2.4.1. [10] Let Θ be the set of all functions θ : (0,∞) → (1,∞) satisfying

the following conditions

(θ1) θ is nondecreasing,
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(θ2) for each sequence {tn} ⊂ (0,∞),

lim
n→∞

θ(tn) = 1 ⇐⇒ lim
n→∞

tn = 0,

(θ3) there exists r ∈ (0, 1) and l ∈ (0,∞] such that lim
t→0+

θ(t)− 1

tr
= l,

(θ4) θ is continuous.

Example 2.4.2. For t ∈ (0,∞), θ(t) = et
1
2 is an example for θ ∈ Θ since it satisfies all

conditions as follows

(θ1) For any a, b ∈ (0,∞) such that a ≤ b, we have θ(a) = ea
1
2 ≤ eb

1
2 = θ(b).

(θ2) For each sequence {tn} ⊂ (0,∞),

lim
n→∞

θ(tn) = lim
n→∞

et
1
2
n = 1 ⇐⇒ ln( lim

n→∞
et

1
2
n ) = ln(1)

⇐⇒ lim
n→∞

ln(et
1
2
n ) = 0

⇐⇒ lim
n→∞

t
1
2
n = 0

⇐⇒ lim
n→∞

tn = 0.

(θ3) Given r = 1
2 , we have

lim
t→0+

t
1
2 = 0 and lim

t→0+
(et

1
2 − 1) = 0.

Using L’Hospital’s rule, we will obtain

l = lim
t→0+

θ(t)− 1

tr
= lim

t→0+

et
1
2 − 1

t
1
2

= lim
t→0+

et
1
2 · d

dt(t
1
2 )

d
dt(t

1
2 )

= lim
t→0+

et
1
2 = ∞.

(θ4) Since exponential and square root function are continuous, its composition must be

continuous.

After Jleli, Karapinar and Samet introduced the new class of mapping, they proved

the following theorem in the setting of rectangular metric space.

Example 2.4.3. [10] Let (X,D) be a complete rectangular metric space and T : X → X

be a given map. Suppose that there exists θ ∈ Θ and k ∈ (0, 1) such that

x, y ∈ X,D(Tx, Ty) ̸= 0 ⇒ θ(D(Tx, Ty)) ≤ (θ(M(x, y)))k

where M(x, y) = max{D(x, y), D(x, Tx), D(y, Ty)}. Then T has a unique fixed point.

The second purpose of this thesis is to extend Theorem 2.4.3 to the framework of

RS-generalized metric space.
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2.5 Generalized Metric Spaces

In 1985, Matthews [14] was the first one who studied metric domain.

Definition 2.5.1. Let X be a nonempty set. A mapping D : X ×X → [0,∞) is said to

be a metric domain if it fits to these conditions for all x, y, z ∈ X

(DS1) if D(x, y) = 0 then x = y,

(DS2) D(x, y) = D(y, x),

(DS3) D(x, y) ≤ D(x, z) +D(z, y).

The pair (X,D) is called a dislocated metric space.

Later, Hitzler and Seda [9] defined its topology and renamed it to dislocated metric.

The notion of dislocated topologies has useful applications in context of logic programming

semantics.

Example 2.5.2. Let X = R and D(x, y) = x2 + y2 for all x, y ∈ X. Then (X,D) is a

dislocated metric space. Indeed, for all x, y, z ∈ X

(DS1) If D(x, y) = x2 + y2 = 0 then x = y = 0. However, the converse does not hold

since D(1, 1) = 12 + 12 = 2 ̸= 0.

(DS2) D(x, y) = x2 + y2 = y2 + x2 = D(y, x).

(DS3) D(x, y) = x2 + y2 ≤ (x2 + z2) + (z2 + y2) = D(x, z) +D(z, y).

In 1993 and 1998, Czerwik [6, 7] presented this new class of spaces as follows.

Definition 2.5.3. Let X be a nonempty set. A mapping D : X ×X → [0,∞) is said to

be a b-metric if it fits to these conditions for all x, y, z ∈ X

(BS1) D(x, y) = 0 if and only if x = y,

(BS2) D(x, y) = D(y, x),

(BS3) there exists s ≥ 1 such that D(x, y) ≤ s(D(x, z) +D(z, y)).

The pair (X,D) is called a b-metric space.

Example 2.5.4. Let X = R and D(x, y) = (x − y)2 for all x, y ∈ X. We will show that

(X,D) is a b-metric space with s = 2. Let x, y, z ∈ R then
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(BS1) D(x, y) = (x− y)2 = 0 ⇐⇒ (x− y) = 0 ⇐⇒ x = y

(BS2) D(x, y) = (x− y)2 = (y − x)2 = D(y, x).

(BS3) Since 0 ≤ ((x− z)− (z − y))2,

0 ≤ (x− z)2 − 2(x− z)(z − y) + (z − y)2.

We have that

2(x− z)(z − y) ≤ (x− z)2 + (z − y)2 = D(x, z) +D(z, y).

Consider

D(x, y) = (x− y)2

= ((x− z) + (z − y))2

= (x− z)2 + 2(x− z)(z − y) + (z − y)2

≤ 2[(x− z)2 + (z − y)2]

= 2[D(x, z) +D(z, y)].

Therefore, (X,D) is a b-metric space but it is not a metric space since for x = 1, y = −2

and z = 1
2 , we have

D(x, y) = 9 > 61
2 = 1

4 + 25
4 = D(x, z) +D(z, y).

In 2015, Jleli and Samet [11] introduced a new class of generalized metric called

JS-generalized metric space.

Definition 2.5.5. Let X be a space equipped with generalized metric D and x ∈ X. A

sequence {xn} ⊆ X is said to be

1. D-Cauchy if lim
m,n→∞

D(xm, xn) = 0,

2. D-converge to x if lim
n→∞

D(xn, x) = 0.

Definition 2.5.6. Let X be a nonempty set. A mapping D : X ×X → [0,∞] is said to

be a JS-generalized metric if it fits to these conditions for all x, y ∈ X

(JS1) if D(x, y) = 0 then x = y,

(JS2) D(x, y) = D(y, x),
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(JS3) there exists K > 0 such that if (x, y) ∈ X ×X and xn D-converges to x then,

D(x, y) ≤ K lim sup
n→∞

D(xn, y).

The pair (X,D) is called a JS-generalized metric space.

Example 2.5.7. Let X = [0,∞]. Define D(x, y) = (x+y)2 where x, y <∞ and D(x, y) =

∞ where x or y = ∞. Then, (X,D) is a JS-generalized metric space with K = 1. Indeed,

for all x, y ∈ X

(JS1) if D(x, y) = (x+ y)2 = 0 then x = y = 0. The converse doesn’t hold. The example

is D(1, 1) = (1 + 1)2 = 4 ̸= 0.

(JS2) D(x, y) = (x+ y)2 = (y + x)2 = D(y, x).

(JS3) Let {xn} ⊆ X such that lim
n→∞

D(xn, x) = 0, that is

0 = lim
n→∞

D(xn, x) = lim
n→∞

(xn + x)2

This implies that x = 0 and lim
n→∞

xn = 0.

Since D(x, y) = D(0, y) = y2 ≤ (xn + y)2 = D(xn, y) for all n ∈ N, we have

D(x, y) ≤ (1) lim sup
n→∞

D(xn, y).

This JS-generalized metric space has a limit uniqueness property.

Proposition 2.5.8. [11] Let (X,D) be a JS-generalized metric space. Let {xn} be a

sequence in X and x, y ∈ X. If {xn} D-converges to x and y, then x = y.

In 2016, Roldán and Shahzad [17] introduced the new class of generalized metric

space called RS-generalized metric space.

Definition 2.5.9. Let X be a nonempty set, x0 ∈ X and let T : X → X. The sequence

{xn} in X is said to be

1. infinite if xn ̸= xm for all n,m ∈ N such that n ̸= m.

2. almost periodic if there exists n0 ∈ N and N ∈ N such that

xn0+r+Nk = xn0+r for all k ∈ N and r ∈ {0, 1, 2, ..., N − 1}

3. Picard if xn = Tnx0 for all n ∈ N.
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Denote the set of all elements in the Picard sequence as OT (x0) where x0 is the

starter of the sequence.

Proposition 2.5.10. [17] Every Picard sequence is either infinite or almost periodic.

Definition 2.5.11. Let (X,D), (Y,D′) be generalized metric spaces. T is said to be

continuous if for any sequences xn → x as n→ ∞, we have Txn → Tx as n→ ∞.

Definition 2.5.12. [17] Let X be a nonempty set and D : X × X → [0,∞] be a

function. We call a pair (X,D) RS-generalized metric space if the function D satisfies

these conditions

(RS1) for all x, y ∈ X. If D(x, y) = 0 then x = y,

(RS2) for all x, y ∈ X, D(x, y) = D(y, x),

(RS3) there exists C > 0 such that if x, y ∈ X are two points and {xn} is a D - Cauchy

infinite sequence in X such that {xn} → x in D then

D(x, y) ≤ C lim sup
n→∞

D(xn, y).

The space is said to be complete if for any D-Cauchy sequence D-converges to a point in

X.

Remark 2.5.13. This class of space covers standard metric space, b-metric space, dislo-

cated metric space, JS-generalized metric space, BN -space.

Example 2.5.14. [17] Let (Y, d) be a BN -space contain a sequence that D-converges to

two different points and Z = {z0, z1, . . . , zN , zN+1} be a set with N +2 members disjoints

from Y . Let X = Y ∪ Z and define D : X ×X → [0,∞] by

D(x, y) =



d(x, y), if x, y ∈ Y

∞, if x ∈ Y and y ∈ Z or viceversa

0, if x = y ∈ Z

3, if x ̸= y and z1 ∈ {x, y}

M, if x, y = {z0, zN+1}

2, otherwise (x, y ∈ Z and x ̸= y)

where 2 ≤M ≤ 3N + 2. Then (X,D) is a real RS-generalized space. Indeed for x, y ∈ X
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(RS1) If D(x, y) = 0, then d(x, y) = 0 or x = y ∈ Z. Both cases lead to x = y.

(RS2) We can easily see that D(x, y) = D(y, x).

(RS3) Now, let {xn} be a D-Cauchy infinite sequence such that xn → x as n→ ∞. Since

{xn} is infinite and Z ∪ {x, y} is a finite set, for ϵ > 0 we can find k ∈ N such that

xn ∈ X\(Z ∪ {x, y}) = Y \{x, y} and D(xn, x) < ϵ for all n ≥ k

This implies that x ∈ Y .

Case 1: If y /∈ Y , then for all C > 0

D(x, y) = ∞ = C lim sup
n→∞

D(xn, y).

Case 2: If y ∈ Y , we have D(xn, y) = d(xn, y) for all n ≥ k. Since (Y, d) is a BN -space,

we have

d(x, y) ≤ d(x, xk+1) + d(xk+1, xk+2) + · · ·+ d(xk+N−1, xk+N ) + d(xk+N , y).

Taking lim sup over k both sides, since {xn} D-Cauchy and D-converge to x as

n→ ∞, then we have

D(x, y) = d(x, y) ≤ (1) lim sup
k→∞

d(xk, y) = lim sup
k→∞

D(xk, y).

This shows that (X,D) is an RS-generalized space. Since there exists a sequence

with two different limits in Y , (X,D) is not a JS-generalized space. Since D(x, y) can be

infinity, (X,D) is not a BN -space.

Although the limit of convergent sequences is not unique, we still have the following

property.

Proposition 2.5.15. [17] Let {xn} be a D-Cauchy sequence in an RS-generalized metric

space (X,D) such that {xn} is infinite or Picard. If {xn} D-converges to x and y in X,

then x = y.

Definition 2.5.16. [17] Let {xn} be a Picard sequence in X with T : X → X and

x0 ∈ X. We define

δk(D,T, x0) = sup
a,b≥k

{D(xa, xb)}.

For k = 0, we denote δ(D,T, x0) instead of δ0(D,T, x0).

13



Example 2.5.17. Given X = [0, 1] and D(x, y) = |x − y| for all x, y ∈ X. Then (X,D)

is a metric space. Let x0 = 1 and T (x) = x
2 for all x ∈ X. For k ∈ N, we have

δk{D,T, x0} = sup
a,b≥k

{D(xa, xb)} =
1

2k
and δ(D,T, x0) = 1.

14


	math8117sasri_full 10
	math8117sasri_full 11
	math8117sasri_full 12
	math8117sasri_full 13
	math8117sasri_full 14
	math8117sasri_full 15
	math8117sasri_full 16
	math8117sasri_full 17
	math8117sasri_full 18
	math8117sasri_full 19
	math8117sasri_full 20
	math8117sasri_full 21
	math8117sasri_full 22



