
CHAPTER 3

Main Results

In this chapter, we study fixed point theorems for generalized α-ψ-Geraghty con-

traction type and JKS contraction in complete RS-generalized metric spaces.

3.1 Generalized α-ψ-Geraghty Contraction Type

In this section, we present the existence and the uniqueness of fixed points of gen-

eralized α − ψ-Geraghty contraction type in RS-generalized metric space. Now, we are

ready to state the first result.

Theorem 3.1.1. Let (X,D) be a complete RS-generalized metric space, α : X ×X → R

and T : X → X be a mapping. Suppose that the following conditions hold

1. T is a generalized α-ψ-Geraghty contractive type mapping,

2. T is triangular α-admissible,

3. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, α(x0, x0) ≥ 1 and δn0(D,T, x0) is

finite for some n0 ∈ N,

4. T is continuous.

Then T has a fixed point z ∈ X and {Tnx0} converges to z.

Proof. Define a sequence {xn} by xn = Tnx0. If xn′ = xn′+1 for some n′ ∈ N, then xn′

is a fixed point of T . Thus, we assume that xn ̸= xn+1 for all n ∈ N. This implies that

D(xn, xn+1) ̸= 0 for all n ∈ N.

First, we will show that lim
n→∞

D(xn, xn+1) = 0. By Proposition 2.2.10, we know that

α(xi, xj) ≥ 1 for all i ≤ j.

For n > n0

ψ(D(xn+1, Dxn+2)) = ψ(D(Txn, Txn+1))

≤ α(xn, xn+1)ψ(D(Txn, Txn+1))

≤ β(ψ(M(xn, xn+1)))ψ(M(xn, xn+1)), (3.1)
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where

M(xn, xn+1) = max{D(xn, xn+1), D(xn, Txn), D(xn+1, Txn+1)}

= max{D(xn, xn+1), D(xn+1, xn+2)}.

If M(xn, xn+1) = D(xn+1, xn+2), we have

ψ(D(xn+1, xn+2)) ≤ β(ψ(M(xn, xn+1)))ψ(M(xn, xn+1))

= β(ψ(D(xn+1, xn+2)))ψ(D(xn+1, xn+2))

< ψ(D(xn+1, xn+2))

which is a contradiction. It follows that M(xn, xn+1) = D(xn, xn+1) and

ψ(D(xn+1, xn+2)) ≤ β(ψ(D(xn, xn+1)))ψ(D(xn, xn+1)) < ψ(D(xn, xn+1)). (3.2)

Since ψ is nondecreasing, if we suppose that D(xn+1, xn+2) > D(xn, xn+1). Then we have

ψ(D(xn+1, xn+2)) ≥ ψ(D(xn, xn+1)) which is a contradiction to (3.2). Therefore, we have

D(xn+1, xn+2) ≤ D(xn, xn+1), for all n ≥ n0.

Since a sequence {D(xn, xn+1)}n≥n0 is nonincreasing and bounded below. Therefore

lim
n→∞

D(xn, xn+1) = ϵ for some ϵ ≥ 0. Suppose that ϵ > 0, from (3.2), we have

ψ(D(xn+1, xn+2))

ψ(D(xn, xn+1))
≤ β(ψ(D(xn, xn+1))) < 1. (3.3)

By definition of ψ, we have

lim
n→∞

ψ(D(xn+1, xn+2)) = ψ( lim
n→∞

D(xn+1, xn+2)) = ψ(ϵ) > 0

and

lim
n→∞

ψ(D(xn, xn+1)) = ψ( lim
n→∞

D(xn, xn+1)) = ψ(ϵ) > 0.

Taking limit over n in (3.3), we have

1 ≤ lim
n→∞

β(ψ(D(xn, xn+1))) ≤ 1.

Thus, we can conclude that

lim
n→∞

β(ψ(D(xn, xn+1))) = 1.

By property of β, we have

lim
n→∞

ψ(D(xn, xn+1)) = 0.

By property of ψ, we have
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lim
n→∞

D(xn, xn+1) = 0

as a contradiction. We thus conclude that limn→∞D(xn, xn+1) = 0.

Now, we claim that {xn} is Cauchy. Suppose on the contrary that there exist ϵ > 0

and subsequences {xmk
}, {xnk

} such that mk ≥ nk ≥ k and mk is the smallest index for

which

D(xnk
, xmk

) ≥ ϵ for all k ∈ N.

Consider when k ≥ n0, we have

ψ(ϵ) ≤ ψ(D(xnk
, xmk

))

= ψ(D(Txnk−1, Txmk−1))

≤ α(xnk−1, xmk−1)ψ(D(xnk−1, xmk−1))

≤ β(ψ(M(xnk−1, xmk−1)))ψ(M(xnk−1, xmk−1))

< ψ(M(xnk−1, xmk−1))

where

M(xnk−1, xmk−1) = max{D(xnk−1, xmk−1), D(xnk−1, Txnk−1), D(xmk−1, Txmk−1)}

= max{D(xnk−1, xmk−1), D(xnk−1, xnk
), D(xmk−1, xmk

)}.

If M(xnk−1, xmk−1) ̸= D(xnk−1, xmk−1), we have

ψ(ϵ) ≤ lim
k→∞

ψ(M(xnk−1, xmk−1)) = ψ(0).

Since ψ is nondecreasing, we have ϵ ≤ 0 which is a contradiction. Therefore

M(xnk−1, xmk−1) = D(xnk−1, xmk−1) for all k ≥ n0.

This implies that, for all k ≥ n0

ψ(D(xnk
, xmk

)) = ψ(D(Txnk−1, xmk−1))

≤ α(xnk−1, xmk−1)ψ(D(xnk−1, xmk−1))

≤ β(ψ(D(xnk−1, xmk−1)))ψ(D(xnk−1, xmk−1)).

Repeating this argument, we have

ψ(ϵ) ≤ ψ(D(xnk
, xmk

))

≤ β(ψ(D(xnk−1, xmk−1))) · ψ(D(xnk−1, xmk−1))

≤ β(ψ(D(xnk−1, xmk−1))) · β(ψ(D(xnk−2, xmk−2))) · ψ(D(xnk−2, xmk−2))
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≤ . . .

≤
nk−n0∏
i=0

β(ψ(D(xn0+i, xmk−(nk−n0)+i))) · ψ(D(xn0 , xmk−(nk−n0)))

≤
nk−n0∏
i=0

β(ψ(D(xn0+i, xmk−(nk−n0)+i)))ψ(δn0(D,T, x0)).

For each k ≥ n0, define

βk = β(ψ(D(xn0+ik , xmk−(nk−n0)+ik))) = max
0≤i≤nk−n0

{β(ψ(D(xn0+i, xmk−(nk−n0)+i)))}.

Thus, for k ≥ n0

ψ(ϵ) ≤ ψ(D(xnk
, xmk

)) ≤ βnk−n0

k ψ(δn0(D,T, x0)).

If lim sup
k→∞

βk < 1, then lim
k→∞

βnk−n0

k = 0 which is a contradiction. If lim sup
k→∞

βk = 1, by

passing through a subsequence, we have

1 = lim
k→∞

βk = lim
k→∞

β(ψ(D(xn0+ik , xmk−(nk−n0)+ik))).

This implies that

lim
k→∞

ψ(D(xn0+ik , xmk−(nk−n0)+ik)) = 0.

Thus, there exists k0 ∈ N such that

ψ(D(xnk0
+ik0

, xmk0
−(nk0

−n0)+ik0
)) < ψ( ϵ2).

Therefore,

ψ(ϵ) ≤ ψ(D(xnk0
, xmk0

))

≤
ik0∏
i=1

β(ψ(D(xnk0
+k0 , xmk0

−(nk0
−n0)+i))) · ψ(D(xnk0

+ik0
, xmk0

−(nk0
−n0)+ik0

))

< ψ(D(xnk0
+ik0

, xmk0
−(nk0

−n0)+ik0
)) < ψ(

ϵ

2
)

which is a contradiction. Thus, {xn} is a Cauchy sequence. Since (X,D) is complete,

then xn → z ∈ X as n→ ∞.

By continuity of T , Txn → Tz as n → ∞. By Theorem 2.5.15, we have z = Tz as

required.

Lemma 3.1.2. From Theorem 3.1.1, if z is a fixed point of T , D(z, Tz) <∞ and α(a, b) ≥

1 for all a, b ∈ X such that a and b are fixed points of T then D(z, Tz) = 0.

18



Proof. Since z is a fixed point of T , M(z, z) = D(z, Tz) = D(z, z) = D(Tz, Tz) < ∞.

Suppose D(z, Tz) > 0. Using the contraction, we have

ψ(D(z, Tz)) = ψ(D(Tz, Tz))

≤ α(z, z)ψ(D(Tz, Tz))

≤ β(M(z, z))ψ(D(M(z, z)))

< ψ(D(z, Tz))

a contradiction. Thus D(z, Tz) = 0.

The following result present the uniqueness of fixed point.

Theorem 3.1.3. From Theorem 3.1.1, let z, z′ be fixed points of T . If α(a, b) ≥ 1 for all

a, b ∈ X such that a and b are fixed points of T and D(z, Tz), D(z′, T z′) and D(z, z′) are

finite, then z = z′.

Proof. To show that D(z, z′) = 0. Suppose D(z, z′) > 0. By Lemma 3.1.2, D(z, Tz) =

D(z′, T z′) = 0. Consider

ψ(D(z, z′)) = ψ(D(Tz, Tz′))

≤ α(z, z′)ψ(D(Tz, Tz′))

≤ β(ψ(M(z, z′))) · ψ(M(z, z′))

< ψ(M(z, z′))

where M(z, z′) = max{D(z, z′), D(z, Tz), D(z′, T z′)} = D(z, z′).

This implies that ψ(D(z, z′)) < ψ(D(z, z′)) which is a contradiction. ThusD(z, z′) =

0 implies z = z′.

The result from Theorem 3.1.1 has many consequences.

Corollary 3.1.4. Let (X,D) be a complete RS-generalized metric space, α : X ×X → R

and T : X → X be a mapping. Suppose that the following conditions hold

1. there exists β ∈ F such that for all x, y

α(x, y)D(Tx, Ty) ≤ β(M(x, y))M(x, y)

where M(x, y) = max{D(x, y), D(x, Tx), D(y, Ty)},
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2. T is triangular α-admissible,

3. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, α(x0, x0) ≥ 1 and δn0(D,T, x0) is

finite for some n0 ∈ N,

4. T is continuous.

Then T has a fixed point z ∈ X and {Tnx0} converges to z.

Proof. Let ψ(t) = t in Theorem 3.1.1 and obtain this result immediately.

Corollary 3.1.5. Let (X,D) be a complete RS-generalized metric space, α : X ×X → R

and T : X → X be a mapping. Suppose that the following conditions hold

1. there exists β ∈ F such that for all x, y

α(x, y)ψ(D(Tx, Ty)) ≤ β(ψ(D(x, y)))ψ((D(x, y))),

2. T is triangular α-admissible,

3. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, α(x0, x0) ≥ 1 and δn0(D,T, x0) is

finite for some n0 ∈ N,

4. T is continuous.

Then T has a fixed point z ∈ X and {Tnx0} converges to z.

Proof. Follow the proof in Theorem 3.1.1 and obtain this corollary instantly.

Corollary 3.1.6. Let (X,D) be a complete RS-generalized metric space, α : X ×X → R

and T : X → X be a mapping. Suppose that the following conditions hold

1. there exists β ∈ F such that for all x, y

α(x, y)D(Tx, Ty) ≤ β(D(x, y))D(x, y),

2. T is triangular α-admissible,

3. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, α(x0, x0) ≥ 1 and δn0(D,T, x0) is

finite for some n0 ∈ N,

4. T is continuous.

Then T has a fixed point z ∈ X and {Tnx0} converges to z.
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Proof. Let ψ(t) = t in Corollary 3.1.5 and obtain this result instantly.

Corollary 3.1.7. Let (X,D) be a complete RS-generalized metric space and T : X → X

be a mapping. Suppose that the following conditions hold

1. there exists β ∈ F such that for all x, y

D(Tx, Ty) ≤ β(D(x, y))D(x, y),

2. there exists x0 ∈ X such that δn0(D,T, x0) is finite for some n0 ∈ N,

3. T is continuous.

Then T has a fixed point z ∈ X and {Tnx0} converges to z.

Proof. Let α(x, y) = 1 for all x, y ∈ X in Corollary 3.1.6 and obtain the result directly.

Remark 3.1.8. 1. In [1], the authors proved Corollary 3.1.4 in the setting of metric

space.

2. In [12], the author proved Corollary 3.1.5 in the setting of metric space.

3. In [1], the authors proved Corollary 3.1.6 in the setting of metric space.

4. In [8], the author proved Corollary 3.1.7 in the setting of metric space.

3.2 JKS Contraction

Since the RS-generalized metric space can support the value of infinity, we modify

the JKS contraction for its compatibility on RS-generalized space.

Definition 3.2.1. Let Θ′ be the set of all functions θ : (0,∞] → (1,∞] satisfying the

following conditions

(θ′1) θ is nondecreasing,

(θ′2) for each sequence {tn} ⊂ (0,∞),

lim
n→∞

θ(tn) = 1 ⇐⇒ lim
n→∞

tn = 0,

(θ′3) θ is continuous.

Remark 3.2.2. Since θ is nondecreasing, we have θ(∞) = ∞. The example of θ ∈ Θ

from Example 2.4.2 is still usable in this case.
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The second main result in this thesis is shown below.

Theorem 3.2.3. Let (X,D) be a complete RS-generalized metric space and T : X → X

be a mapping. Suppose that these conditions hold

1. T is a modified JKS contraction, that is, there exist θ ∈ Θ′ and k ∈ (0, 1) such that

x, y ∈ X,D(Tx, Ty) ̸= 0 ⇒ θ(D(Tx, Ty)) ≤ (θ(M(x, y)))k

where M(x, y) = max{D(x, y), D(x, Tx), D(y, Ty)},

2. there exists x0 ∈ X such that δn0(D,T, x0) is finite for some n0 ∈ N,

then the Picard sequence {xn} converges to some point x∗ ∈ X. Moreover, if D(x∗, Tx∗) <

∞, then x∗ is a fixed point of T . Moreover, if x′, x∗ are the fixed points of T and D(x′, x∗)

is finite, then x′ = x∗.

Proof. Define a sequence {xn} by xn = Tnx0.. If xn∗ = xn∗+1 for some n∗ ∈ N, that xn∗

is a fixed point. Thus, we assume xn ̸= xn+1 for all n ∈ N. By Proposition 2.5.10 a Picard

sequence must be infinite or almost periodic.

Suppose that {xn} is almost periodic. Then, there exists n′ ≥ n0 such that {xn}n≥n∗ =

{xn′ , xn′+1, ..., xn′+q} for some q ∈ N. Consider

θ(D(xn′+2q, xn′+2q+1)) = θ(D(Txn′+2q−1), Txn′+2q)

≤ [θ(M(xn′+2q−1, xn′+2q))]
k

< θ(M(xn′+2q−1, xn′+2q)),

where

M(xn′+2q−1, xn′+2q) = max{D(xn′+2q−1, xn′+2q), D(xn′+2q−1, Txn′+2q−1), D(xn′+2q, Txn′+2q)}

= max{D(xn′+2q−1, xn′+2q), D(xn′+2q, xn′+2q+1)}.

If M(xn′+2q−1, xn′+2q) = D(xn′+2q, xn′+2q+1), we have

θ(D(xn′+2q, xn′+2q+1)) < θ(M(xn′+2q−1, xn′+2q)) = θ(D(xn′+2q, xn′+2q+1))

as a contradiction. Thus,

M(xn′+2q−1, xn′+2q) = D(xn′+2q−1, xn′+2q)

and

θ(D(xn′+2q, xn′+2q+1)) ≤ [θ(D(xn′+2q−1, xn′+2q))]
k.
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Repeat this argument for q times, we have

θ(D(xn′+2q, xn′+2q+1)) ≤ [θ(D(xn′+2q−1, xn′+2q))]
k

≤ [θ(D(xn′+2q−2, xn′+2q−1))]
k2

≤ . . .

≤ [θ(D(xn′+q, xn′+q+1))]
kq

= [θ(D(xn′+2q, xn′+2q+1))]
kq

< θ(D(xn′+2q, xn′+2q+1))

as a contradiction. Therefore, a sequence {xn} is infinite.

Next, we will show that D(xn+1, xn) → 0 as n→ ∞. For any n ≥ n0, consider

θ(D(xn+1, xn+2)) = θ(D(Txn, Txn+1))

≤ [θ(M(xn, xn+1))]
k

< θ(M(xn, xn+1)),

where

M(xn, xn+1) = max{D(xn, xn+1), D(xn+1, Txn+1), D(xn, Txn)}

= max{D(xn, xn+1), D(xn+1, xn+2)}.

If M(xn, xn+1) = D(xn+1, xn+2), we have

θ(D(xn+1, xn+2)) < θ(M(xn, xn+1)) = θ(D(xn+1, xn+2))

as a contradiction. Thus, M(xn, xn+1) = D(xn, xn+1) for n ≥ n0.

Therefore, for any n ≥ n0,

θ(D(xn+1, xn+2)) < θ(D(xn, xn+1)).

Since θ is nondecreasing, if D(xn+1, xn+2) > D(xn, xn+1), then θ(D(xn+1, xn+2)) ≥

θ(D(xn, xn+1)) which is a contradiction. Therefore

D(xn+1, xn+2) ≤ D(xn, xn+1) for n ≥ n0.

Thus, {D(xn+1, xn)}n≥n0 is a nonincreasing sequence. Since D is nonnegative, the

limit of {D(xn+1, xn)}n≥n0 exists, we can suppose that lim
n→∞

D(xn+1, xn) = ϵ > 0. Con-

sider when p > n0,

θ(D(xp, xp−1)) = θ(D(Txp−1, Txp−2))
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≤ θ(M(xp−1, xp−2))
k

< θ(M(xp−1, xp−2))

where

M(xp−1, xp−2) = max{D(xp−1, xp−2), D(xp−1, Txp−1), D(xp−2, Txp−2)}

= max{D(xp−1, xp−2), D(xp, xp−1)}.

If M(xp−1, xp−2) = D(xp, xp−1), we reach a contradiction since θ(D(xp, xp−1)) <

θ(D(xp, xp−1)). Therefore, M(xp−1, xp−2) = D(xp−1, xp−2) for p > n0. Repeating this

argument until we reach xn0 and we have

1 ≤ θ(D(xp, xp−1))

= θ(D(Txp−1, Txp−2))

≤ θ(D(xp−1, xp−2))
k

≤ θ(D(xp−2, xp−3))
k2

≤ . . .

≤ θ(D(xn0+1, xn0))
kp−n0−1

≤ θ(δn0(D,T, x0))
kp−n0−1

.

Taking limit over p both sides, we have

1 ≤ lim
p→∞

θ(D(xp, xp−1)) ≤ lim
p→∞

θ(δn0(D,T, x0))
kp−n0−1

= 1.

Thus, we have lim
p→∞

θ(D(xp, xp−1)) = 1, using the property of contraction and we

obtain that lim
p→∞

D(xp, xp−1) = 0 as a contradiction. Thus lim
n→∞

D(xn+1, xn) = 0.

Now, we will show that {xn} is a D-Cauchy sequence. Suppose not, then there exist

ϵ > 0 and subsequences {xmj}, {xnj} such that mj ≥ nj ≥ j and mj is the smallest index

for which D(xmj , xnj ) ≥ ϵ.

Consider when j ≥ n0, we have

θ(ϵ) ≤ θ(D(xmj , xnj ))

≤ [θ(M(xmj−1, xnj−1))]
k

< θ(M(xmj−1, xnj−1))

where

M(xnj−1, xmj−1) = max{D(xnj−1, xmj−1), D(xnj−1, Txnj−1), D(xmj−1, Txmj−1)}
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= max{D(xnj−1, xmj−1), D(xnj−1, xnj ), D(xmj−1, xmj )}.

If M(xmj−1, xnj−1) ̸= D(xmj−1, xnj−1), from θ is nondecreasing, we have

θ(ϵ) < θ(M(xmj−1, xnj−1)) ⇒ ϵ < M(xmj−1, xnj−1).

Taking limit over j, we obtain

ϵ = lim
j→∞

ϵ ≤ lim
j→∞

M(xmj−1, xnj−1) = 0.

as a contradiction. Thus, M(xmj−1, xnj−1) = D(xmj−1, xnj−1) for all j ≥ n0. We repeat

this method and get

θ(ϵ) ≤ θ(D(xmj , xnj ))

≤ [θ(D(xmj−1, xnj−1))]
k

≤ [θ(D(xmj−2, xnj−2))]
k2

≤ . . .

≤ [θ(M(xmj−(nj−n0), xn0))]
knj−n0−1

≤ [θ(δn0(D,T, x0))]
knj−n0−1

.

Taking limit over j, we have

θ(ϵ) ≤ lim
j→∞

[θ(δn0(D,T, x0))]
knj−n0−1

= 1

as a contradiction. Thus, {xn} must be a D-Cauchy sequence. Since X is complete, {xn}

must converges to some x∗ ∈ X.

Assume thatD(x∗, Tx∗) is finite. We will prove that x∗ = Tx∗. SupposeD(x∗, Tx∗) >

0. First, we show that there exists M ′ ∈ N such that D(xn, Tx
∗) > 0 for all n > M ′. We

consider in 2 cases:

1. if Tx∗ /∈ OT (x0), we have Tx∗ ̸= Tnx0 for all n ∈ N which implies that for all

M ′ ∈ N, D(xn, Tx
∗) > 0 for all n > M ′.

2. if Tx∗ ∈ OT (x0), then there exists m ∈ N such that Tx∗ = Tmx0. Since {xn} is

infinite, Tx∗ /∈ {xn}n>m. We can choose any M ′ such that M ′ > m.

Let M = max{n0,M ′ + 1}. For n > M we have

θ(D(Tn+1x0, Tx
∗)) ≤ [θ(M(Tnx0, x

∗))]k
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where

M(Tnx0, x
∗) = max{D(Tnx0, x

∗), D(Tnx0, T
n+1x0), D(x∗, Tx∗)}.

We can easily see that

lim
n→∞

M(Tnx0, x
∗) = D(x∗, Tx∗). (3.1)

Now, we take limit over n both side and obtain

lim
n→∞

θ(D(Tn+1x0, Tx
∗)) ≤ lim

n→∞
[θ(M(Tnx0, x

∗))]k.

This implies

θ(D(x∗, Tx∗)) = θ( lim
n→∞

D(Tn+1x0, Tx
∗))

= lim
n→∞

θ(D(Tn+1x0, Tx
∗))

≤ lim
n→∞

[θ(M(Tnx0, x
∗))]k

= [θ( lim
n→∞

M(Tnx0, x
∗))]k

= [θ(D(x∗, Tx∗))]k

< θ(D(x∗, Tx∗))

as a contradiction. Thus, D(x∗, Tx∗) = 0 and x∗ is a fixed point as required.

Suppose x′ to be another fixed point of T and D(x′, x∗) > 0 but finite, we have

θ(D(x′, x∗)) = θ(D(Tx′, Tx∗))

≤ [θ(D(x′, x∗))]k

< θ(D(x′, x∗))

as a contradiction. Thus, x′ = x∗.

This result has many consequences.

Corollary 3.2.4. Let (X,D) be a complete JS-generalized metric space and T : X → X

be a mapping. Suppose that these conditions hold

1. T is a modified JKS contraction,

2. there exists x0 ∈ X such that δn0(D,T, x0) is finite for some n0 ∈ N,

then the Picard sequence xn = Tnx0 converges to some point x∗ ∈ X. If D(x∗, Tx∗) <∞,

then x∗ is a fixed point of T . Moreover, if x, x∗ are the fixed points of T and D(x, x∗) is

finite, then x = x∗.
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Corollary 3.2.5. Let (X,D) be a complete dislocated metric space and T : X → X be a

mapping. Suppose that these conditions hold

1. T is a modified JKS contraction,

2. there exists x0 ∈ X such that δn0(D,T, x0) is finite for some n0 ∈ N,

then the Picard sequence xn = Tnx0 converges to some point x∗ ∈ X and x∗ is a fixed

point of T . Moreover, if x, x∗ are the fixed points of T , then x = x∗.

Corollary 3.2.6. Let (X,D) be a complete RS-generalized metric space and T : X → X

be a mapping. Suppose that there exists λ ∈ (0, 1) such that

D(Tx, Ty) ≤ λmax{D(x, y), D(x, Tx), D(y, Ty)}.

Then the Picard sequence xn = Tnx0 converges to some point x∗ ∈ X. If D(x∗, Tx∗) <∞,

then x∗ is a fixed point of T . Moreover, if x, x∗ are the fixed points of T and D(x, x∗) is

finite, then x = x∗.

Proof. From the given contraction, we have

eD(Tx,Ty)
1
2 ≤ [emax{D(x,y),D(x,Tx),D(y,Ty)}

1
2 ]λ

1
2 .

Since θ(t) = et
1
2 satisfies all the conditions for Theorem 3.2.3, we can conclude as in

Theorem 3.2.3.

Example 3.2.7. Let (Y, d) be as Example 2.3.2. We can easily see that lim
n→∞

d(
1

n
, 0) =

lim
n→∞

d(
1

n
, 2) = 0. Therefore, (Y, d) is a B2-space contain a sequence that D-converges to

two different points. Let Z = {3, 4, 5, 6}. Now, let X = Y ∪ Z and define D : X ×X →

[0,∞] as Example 2.5.14. We can see that (X,D) is a complete RS-generalized space.

T (x) =



0, if x ∈ Y,

5, if x ∈ {5, 6},

6, if x ∈ {3, 4.}

In this case, we let M = 4.

For this mapping, there exist θ(t) = et
1
2 for all t ∈ (0,∞] and k ∈ (

√
2
3 , 1) that

satisfies the condition.

Consider when D(Tx, Ty) ̸= 0. It’s easy to see that there are two cases available.

1. If D(x, y) = ∞, then Tx ∈ Y and Ty ∈ Z or vice versa which implies M(x, y) =

D(x, y) = ∞ and
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θ(D(Tx, Ty)) = θ(∞) = ∞ = [θ(∞)]k = θ(M(x, y))k.

Before we consider another case, let we observe the contraction itself by:

θ(D(Tx, Ty)) = eD(Tx,Ty)
1
2 ≤ [eM(x,y)

1
2 ]k = θ(M(x, y))k = ekM(x,y)

1
2 .

Take log over both sides, we have

D(Tx, Ty)
1
2 ≤ kM(x, y)

1
2 ⇒ D(Tx, Ty) ≤ k2M(x, y).

Thus, we can consider this equation instead of the contraction itself.

2. If D(x, y) <∞, we have Tx ̸= Ty Tx, Ty = {5, 6}. There are 2 possible cases here.

• If x = 3, then y ∈ {5, 6}. We have M(3, 5) = max{D(3, 5), D(3, 6), D(5, 5)} =

max{2, 4, 0} = 4 and M(3, 6) = max{D(3, 6), D(3, 6), D(6, 5)} = max{2, 4} =

4, then

2 ≤ k2(4) ⇒ 2

4
≤ k2

⇒
√

2

4
≤ k.

Since
√

2
4 <

√
2
3 < k, our k is usable.

• If x = 4, then y ∈ {5, 6}. We haveM(4, 6) =M(4, 5) = max{D(4, 5), D(4, 6), D(5, 6)} =

max{2, 3} = 3 and

2 ≤ k2(3) ⇒ 2

3
≤ k2

⇒
√

2

3
≤ k.

There exists 0 ∈ X such that δ(D,T, 0) < ∞. Now all condition in Theorem 3.2.3

hold. Thus, there exist fixed points of T , in this case, they are 0 and 5.
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