CHAPTER 3

Main Results

In this chapter, we study fixed point theorems for generalized a-1-Geraghty con-

traction type and JKS contraction in complete RS-generalized metric spaces.

3.1 Generalized a-y-Geraghty Contraction Type

In this section, we present the existence and the uniqueness of fixed points of gen-
eralized o — 1-Geraghty contraction type in R.S-generalized metric space. Now, we are

ready to state the first result.

Theorem 3.1.1. Let (X, D) be a complete RS-generalized metric space, a: X x X — R
and T : X — X be a mapping. Suppose that the following conditions hold

1. T is a generalized a-1p-Geraghty contractive type mapping,
2. T is triangular a-admissible,

3. there exists xg € X such that a(xo,Txo) > 1, a(zo,x0) > 1 and 0p, (D, T, x0) is

finite for some ng € N,
4. T is continuous.
Then T has a fized point z € X and {T"x¢} converges to z.

Proof. Define a sequence {x,} by =, = T"xg. If z,; = 2,41 for some n’ € N, then z,,
is a fixed point of T. Thus, we assume that z, # z,11 for all n € N. This implies that
D(zy,xp41) # 0 for all n € N.

First, we will show that lim D(z,,z,+1) = 0. By Proposition 2.2.10, we know that

n—oo

a(x;,x;) > 1 for all ¢ < j.

For n > ng

V(D(Tpt1, Dxnio)) = Y(D(Tn, Trpni1))
< Oé(xm l‘n+1)¢(D(T$n, Txn+1))

< BW(M (2, 2pt1)) )Y (M (20, Tntr)), (3.1)
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where

M(zn, 2ny1) = max{D(zn, Tni1), D(Tn, TTn), D(Tns1, Topy1)}

= max{D(xn, xn-‘,—l), D(xn-l—la xn+2)}-

If M(zp,2Znt1) = D(Tpt1, Tni2), we have

V(D(@n41, Tnt2)) < BO(M (2, Tnt1))) (M (20, Tni1))
= B (D(@nt1, Tnt2)) )V (D(Tn+1, Tnt2))

< WPY(D(Tnt1, Tni2))

which is a contradiction. It follows that M (z,, zn4+1) = D(Zpn, Zn41) and

Y(D(@n+1, Tnt2)) < B(D(@n, Tnt1)))Y(D(Tn, Tnt1)) < Y(D(Tn, Tn1))- (3.2)

Since v is nondecreasing, if we suppose that D (241, Zny2) > D(xy, Tpt1). Then we have
V(D (Tpt1, Tnt2)) = Y(D(2p, Tny1)) which is a contradiction to (3.2). Therefore, we have
D(zp41,Tny2) < D(xn, Tpt1), for all n > ng.

Since a sequence {D(Zy, Tp+1) }n>n, is nonincreasing and bounded below. Therefore

lim D(xy,x,+1) = € for some € > 0. Suppose that € > 0, from (3.2), we have
n—oo

¢(D(93n+1, xn+2))
1/1(D(96n7 -TnJrl))

By definition of ¢, we have

< BW(D(xn, Tny1))) < 1. (3-3)

lim w(D(xn+17xn+2)) = 1/)( lim D(xn+17xn+2)) = w(G) >0

n—oo n—o0

and

lim w(D(xnvanrl)) = '(/)( lim D(:EnaCUnJrl)) = 7[)(6) > 0.

n—oo n—oo

Taking limit over n in (3.3), we have

1< lim B((D(@n, 2nt1))) < L.

n—oo

Thus, we can conclude that

lim 5(¢(D($n,wn+1))) =1

n—o0

By property of 3, we have

lim ’QZJ(D(I'n, anrl)) =0.

n—o0

By property of ¢, we have
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lim D(zp,xn41) =0
n—o0o

as a contradiction. We thus conclude that lim,,_o D(p, Zp+1) = 0.
Now, we claim that {x,} is Cauchy. Suppose on the contrary that there exist € > 0
and subsequences {zp, }, {zn, } such that my > ng > k and my, is the smallest index for

which
D(xy,,xm,) > € for all k € N.

Consider when k& > ng, we have

Y(e) <

V(D (2ny,, xmk))
D(Tzn—1, T, -1))

W(
o(
(Tng—15 Tmy,—1) Y (D (T 1, Ty —1))
(
(

< «
<pB @b( (xnk—lvxmk—l)))w(M(xnk—lvxmk—l))
<'d) M(xnk 1, Tmy,— 1))

where

M(xnk—la mmk—l) = maX{D(xnk—lu xmk—1)7 D(xnk—la Tl'nk_l), D<mmk—17 Txmk—l)}
= maX{D(xnk—la l‘mk—l)’ D(l‘nk—la xnk)a D(xmk—l’ xmk)}
If M(zn,—1,%me—1) # D(xn,—1, Tm,—1), we have
P(e) < lim (M (2,1, Tm, 1)) = ¥(0).
k—o0
Since 1 is nondecreasing, we have € < 0 which is a contradiction. Therefore

M(zn,—1,Tmy—1) = D(@n, -1, Tm,—1) for all k& > ny.

This implies that, for all & > ng

w(D(wnmxmk)) 7/}<D(Txnk—17xmk—1))
a(l‘nkfl, xmkfl)d}(D(Ink*lv xmkfl))

< /B(w(D(xnk—h xmk_l)))w(D(xnk_l’ xmk_1>)‘

IN

Repeating this argument, we have

< B(¢( (‘Tnk*]-’ mmkfl))) 'w(D($nk*17$mk*1))
< 5(¢( (xnk_l’ xmk_l))) . 6(¢(D<xnk_2’ xmk_Q))) : ¢<D(xnk—2’ xmk_Q))
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<...

nE—no

< H /B(w(D(mno-i-ivxmkf(nk7n0)+i)))'w(D(a:NWl’mkf(nkfno)))
=0

nE—mno

< H B(w(D(xno-i-iv xmkf(nkfno)+i)))w(6no (Dv T, (L'()))
=0

For each k > ng, define

/Bk = ﬁ(qp(D(l‘no-{-ikaxmk—(nk—no)—i-ik))) = max {B(¢(D(xno+ivxmk—(nk—no)+i)))}'

0<i<ng—no

Thus, for k > ng

¢(6) < Q[J(D(.Z‘nk,l‘mk)) =8 /sz_now((sno(DvTv .’E(]))

If limsup B < 1, then lim 3 " = 0 which is a contradiction. If limsup f; = 1, by
k—o0 k—o0 k—o0
passing through a subsequence, we have
1= kh%rglo Bk 7 khanc;lo 6(¢(D(xno+ikvxmk—(nk—no)+ik)))‘
This implies that
kli)rgo w(D(xno-Hka$mk—(nk—no)+ik)) =0.
Thus, there exists ky € N such that
w(D(xnko Figg s xmkof(nko 7no)+ik0 )) < 1/’(%)
Therefore,
¥(€) < Y(D(Tny, , Tmy,))
kg
< H /B(w(D(xnkDJrko ’ xmkof(nko fno)Jri))) . w(D(xnkO'Fiko ) xmkof(nko —n0)+ik0 ))
i=1

€
< ¢(D(mnk0+iko’xmko—(nko—no)-ﬂ'ko)) < ¢(§)

which is a contradiction. Thus, {x,} is a Cauchy sequence. Since (X, D) is complete,
then z,, — z € X as n — oo.

By continuity of T', Tz,, — Tz as n — oco. By Theorem 2.5.15, we have z = Tz as
required.

O]

Lemma 3.1.2. From Theorem 3.1.1, if z is a fized point of T', D(z,Tz) < oo and o(a,b) >
1 for all a,b € X such that a and b are fized points of T then D(z,Tz) = 0.
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Proof. Since z is a fixed point of T, M(z,z) = D(2,Tz) = D(z,z) = D(Tz,Tz) < oc.

Suppose D(z,Tz) > 0. Using the contraction, we have

a contradiction. Thus D(z,Tz) = 0.

The following result present the uniqueness of fixed point.

Theorem 3.1.3. From Theorem 3.1.1, let z,2' be fized points of T. If a(a,b) > 1 for all
a,b € X such that a and b are fized points of T and D(z,Tz), D(',T%") and D(z,z") are

finite, then z = 2.

Proof. To show that D(z,z') = 0. Suppose D(z,2') > 0. By Lemma 3.1.2, D(2,Tz) =
D(2',TZ") = 0. Consider

¥(D(z,7')) = p(D(T2,T7))

IN
=

(2,2)Y(D(Tz,TZ"))

B(M(z,2))) - $(M(z,2"))
P(M(z,2"))

IN

A

where M (z,2") = max{D(z,2'), D(2,Tz),D(z',TZ')} = D(z,2).
This implies that 1)(D(z, 2)) < 1(D(z, 2")) which is a contradiction. Thus D(z,2’) =

0 implies z = 2’ O
The result from Theorem 3.1.1 has many consequences.

Corollary 3.1.4. Let (X, D) be a complete RS-generalized metric space, a: X x X = R
and T : X — X be a mapping. Suppose that the following conditions hold

1. there exists € F such that for all x,y
a(z,y)D(Tz,Ty) < B(M(z,y))M(z,y)

where M (x,y) = max{D(x,y), D(z,Tz), D(y,Ty)},
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2. T 1s triangular a-admissible,

3. there exists xog € X such that a(xo,Txo) > 1, a(xe,z0) > 1 and 0ny(D, T, x0) is

finite for some ng € N,
4. T is continuous.
Then T has a fized point z € X and {T"x¢} converges to z.
Proof. Let 1(t) =t in Theorem 3.1.1 and obtain this result immediately. O

Corollary 3.1.5. Let (X, D) be a complete RS-generalized metric space, o : X x X — R
and T : X — X be a mapping. Suppose that the following conditions hold

1. there exists € F such that for all x,y
a(z,y)Y(D(Tz,Ty)) < B (D(z, y))Y(D(z,y))),

2. T is triangular a-admissible,

3. there exists xg € X such that a(xo,Txo) > 1, a(xg,z0) > 1 and 0n,(D,T,x0) is

finite for some ng € N,
4. T s continuous.
Then T has a fixed point z € X and {T™x¢} converges to z.
Proof. Follow the proof in Theorem 3.1.1 and obtain this corollary instantly. O

Corollary 3.1.6. Let (X, D) be a complete RS-generalized metric space, a: X x X — R
and T : X — X be a mapping. Suppose that the following conditions hold

1. there exists B € F such that for all x,y
a(z,y)D(Tz, Ty) < B(D(z,y))D(z,y),

2. T is triangular a-admissible,

3. there exists xog € X such that a(xo,Txo) > 1, a(zo,z0) > 1 and 0p, (D, T, x0) is

finite for some ng € N,
4. T 1s continuous.

Then T has a fized point z € X and {T"xo} converges to z.
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Proof. Let 1(t) =t in Corollary 3.1.5 and obtain this result instantly. O

Corollary 3.1.7. Let (X, D) be a complete RS-generalized metric space and T : X — X
be a mapping. Suppose that the following conditions hold

1. there exists € F such that for all x,y
D(Tz, Ty) < p(D(z,y))D(z,y),

2. there exists xg € X such that 6,,(D,T,xo) is finite for some ng € N,
3. T 1is continuous.
Then T has a fized point z € X and {T"xq} converges to z.
Proof. Let a(x,y) = 1 for all z,y € X in Corollary 3.1.6 and obtain the result directly. [

Remark 3.1.8. 1. In [1], the authors proved Corollary 3.1.4 in the setting of metric

space.
2. In [12], the author proved Corollary 3.1.5 in the setting of metric space.
3. In [1], the authors proved Corollary 3.1.6 in the setting of metric space.

4. In [8], the author proved Corollary 3.1.7 in the setting of metric space.

3.2 JKS Contraction

Since the RS-generalized metric space can support the value of infinity, we modify

the JKS contraction for its compatibility on RS-generalized space.

Definition 3.2.1. Let ©' be the set of all functions 0 : (0,00] — (1, 00] satisfying the

following conditions
(0'1) 0 is nondecreasing,

(0'2) for each sequence {t,} C (0, 0),

lim O(t,) =1 <= lim t, =0,
n—oo

n—o0

(0'3) 0 is continuous.

Remark 3.2.2. Since 6 is nondecreasing, we have §(c0) = oco. The example of 0 € O

from Example 2.4.2 is still usable in this case.
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The second main result in this thesis is shown below.

Theorem 3.2.3. Let (X, D) be a complete RS-generalized metric space and T : X — X
be a mapping. Suppose that these conditions hold

1. T is a modified JKS contraction, that is, there exist 6 € ©' and k € (0,1) such that
2,y € X,D(Tz,Ty) # 0= 0(D(Tx,Ty)) < (6(M(z,y)))*

where M (z,y) = max{D(z,y), D(z,Tx), D(y,Ty)},
2. there exists xg € X such that 6,,(D,T,xo) is finite for some ng € N,

then the Picard sequence {x,} converges to some point x* € X. Moreover, if D(z*,Tz*) <
00, then z* is a fized point of T. Moreover, if ', x* are the fized points of T and D(z',x*)

is finite, then z' = x*.

Proof. Define a sequence {x,} by x, = T"xg.. If x,» = xp+41 for some n* € N, that z,,«
is a fixed point. Thus, we assume x,, # 41 for all n € N. By Proposition 2.5.10 a Picard
sequence must be infinite or almost periodic.

Suppose that {z,, } is almost periodic. Then, there exists n’ > ng such that {x,, }n>n* =

{@n/s Tprg1s ony Tpryq b for some g € N. Consider
Q(D(xn’+2qa xn’+2q+1)) — Q(D(Twn’+2q—1)a Txn’+2q)

< [O(M (2 429-1, xn’+2q))]k

< Q(M(xn’+2q71a xn’+2q))7
where

M (@nrt2g-15Tnit2q) = MaX{ D (Tnr2g-15 T 2q)s DT 4201, T 12g-1), D(@nr2g, T 29) }
= max{D(wn/+2q_1, $n’+2q)’ D($n'+2qa $n'+2q+1)}-
If M(xp/42q—1,%n42q) = D(Tn/42¢, Tnrg2g+1), We have
0(D(Tn12g: T 2+1)) < O(M (T 12g-1, Trrv2q)) = O(D(Tnr42¢, Trr2g+1))
as a contradiction. Thus,
M (2w 1241, Tnrr2q) = D(Tnr 1241, Ty 2q)
and

Q(D(:L'n’-l—Qqa xn’—i—?q—i—l)) < [Q(D(xn’+2q—1a mn’+2q))]k'
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Repeat this argument for ¢ times, we have

IN

G(D(:En’JrQqa $n’+2q+1)) [G(D("L‘n’+2q713 xn’+2q))]k

k‘2

IN

[9(D ([En/+2q—2 » Ln/42¢—1 ) )}

IN

k4

IN

[0(D(Zn/ 15 Tryq1))]

q

[0(D (2 42g, Tn2g+1))]

< H(D(xn’Jqua xn’+2q+1))

as a contradiction. Therefore, a sequence {z,} is infinite.

Next, we will show that D(x,41,2,) — 0 as n — co. For any n > ng, consider

Q(D(xn-‘rla xn-ﬁ-?)) T Q(D(Tmm Txn—i—l))
< [0(M (@n, 41))]"
< Q(M(:L'm $n+1))>

where
M(zy, py1) = max{D(xn, Tpnt1), D(@nt1, TTnt1), D(Tn, Txn)}
= max{D(zyn, Tpn+1), D(Tnt+1, Tns2)}-

If M(zp,Tnt1) = D(Tpt1, Tnt2), we have
O(D(Tn+1, Tny2)) < O(M(Tn, Tnt1)) = 0(D(nt1, Tni2))
as a contradiction. Thus, M (xy, Tpt1) = D(zy, Tpt1) for n > ng.

Therefore, for any n > ng,

0(D(zn+1, Tnt2)) < O(D(2n, Tni1))-

Since 6 is nondecreasing, if D(zpi1,Zn+2) > D(zp,Tni1), then O(D(zp41,Tny2)) >

O(D(xp, xn+1)) which is a contradiction. Therefore
D($n+17xn+2) < D(xmxn—i-l) for n > ny.

Thus, {D(Zn+1,Tn) }n>n, 1S a nonincreasing sequence. Since D is nonnegative, the
limit of {D(xn+t1,Tn) n>n, €xists, we can suppose that H_)m D(zp41,2,) = € > 0. Con-
- n o0

sider when p > ny,

0(D(zp, xp-1)) = 0(D(Txp—1,TTp2))
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< O(M (2p-1,2p-2))"

< O(M(zp-1,2p—2))
where

M (xp—1, xp—2) = max{D(xp—1, Tp-2), D(xp—1,Txp1), D(p—2,TTp—2)}

= max{D(zp-1,Zp-2), D(xp, p-1)}.

If M(zp—1,2p—2) = D(zp,xp—1), we reach a contradiction since 0(D(zp, zp—1)) <
0(D(xp,zp—1)). Therefore, M(xp—1,xp—2) = D(zp_1,2p—2) for p > ng. Repeating this

argument until we reach z,, and we have

—ng—1
(D(xno-i—lv xno))kp i

9
< 0(6ng (D, T, o)) "

Taking limit over p both sides, we have

1< lim (D(zp, 2p—1)) < lim (6, (D, T, 20))" " =1.

p—0o0 p—0o0
Thus, we have lim 6(D(zp,zp—1)) = 1, using the property of contraction and we
p—0o0
obtain that lim D(zp,x,—1) = 0 as a contradiction. Thus lim D(zp41,2,) =0.
p—00 n—00
Now, we will show that {z,} is a D-Cauchy sequence. Suppose not, then there exist
¢ > 0 and subsequences {Z,, }, {Zn; } such that m; > n; > j and m; is the smallest index
for which D(z,;, zn;) > €.

Consider when j > ng, we have

0(e) < 0(D(zm;,Tn;))
< [O(M (zm;—1,Tn;-1))]*

< Q(M(xmj—la xnj—l))
where

M(l’nj,h 'ijfl) = maX{D(xnj,l, $mj,1), D(.Inj,]_, T,Inj,]_), D(.’Emj,h Txmjfl)}
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= max{D(zn, 1, Tm;~1), D(@n;~1,%n;), D(@m;—1,Tm;)}-

If M(:nmj,l, xnj,l) #* D(:L‘mj,l, xnj,l), from 6 is nondecreasing, we have
0(€) < O(M(Tm;—1,Tn;—1)) = € < M(Tp;—1,Tn;—1)-
Taking limit over j, we obtain

e= lim e < lim M(zp,,—1,2n,—1) = 0.
j—00 j—o00 7 7

as a contradiction. Thus, M(xmj_l,xnj_l) = D(a:m]._l,xnj_l) for all j > ng. We repeat

this method and get

0(€) < O(D(&m,,Tn)))
[0(D (@, -1, 2n;-1))]*

[G(D(vxmjf% l‘nj*Q))]kQ

IN TN

IN

DI

IN

[G(M(xmjf(nj 7n0)7 "'U’I’L()
[0(6ny (D, T, 20))]F

IA

Taking limit over j, we have

0(c) < lim [0(6, (D, T, 20)))F" " =1

j—ro0
as a contradiction. Thus, {x,} must be a D-Cauchy sequence. Since X is complete, {z,,}
must converges to some z* € X.
Assume that D(z*, T'z*) is finite. We will prove that * = Tz*. Suppose D(z*, Tz*) >
0. First, we show that there exists M’ € N such that D(z,,Tz*) > 0 for all n > M'. We

consider in 2 cases:

1. if Tz* ¢ Op(xg), we have Tx* # T"zg for all n € N which implies that for all
M’ € N, D(zy, Tx*) >0 for all n > M.

2. if Tx* € Or(xzg), then there exists m € N such that Tz* = T™xg. Since {x,} is
infinite, Tx* ¢ {zn}n>m. We can choose any M’ such that M’ > m.

Let M = max{ng, M’ + 1}. For n > M we have

O(D(T" 1 xg, Tx*)) < [0(M(T"xg, x*))]*
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where
M (T"xg, z*) = max{D(T"xg,z*), D(T"xo, T" " x0), D(z*, T2*)}.

We can easily see that

lim M (T"xo,z*) = D(z*, Tz"). (3.1)

n—o0

Now, we take limit over n both side and obtain

lim O(D(T" "z, Tx*)) < lim [0(M(T"zo, z*))]*.

n—o0 n—oo

This implies

0(D(z*,Tx*)) = 6( lim D(T" zo, T*))

n—oo

= lim O(D(T"" o, Tz*))

n—oo

< lim [(M(T"xo, z*))]*

n—o0

= [0( lim M(T"xo,z*))]"

= [0(D(z*, Tz*)))"
< O(D(a*, Tz*))

as a contradiction. Thus, D(z*, Tx*) = 0 and z* is a fixed point as required.

Suppose z’ to be another fixed point of T and D(z’,2*) > 0 but finite, we have

O(D(z',x*)) = 0(D(Tx', Txz*))
< [0(D(',2*)))"
< 0(D(z',x*))

as a contradiction. Thus, 2’ = z*. O
This result has many consequences.

Corollary 3.2.4. Let (X, D) be a complete JS-generalized metric space and T : X — X
be a mapping. Suppose that these conditions hold

1. T is a modified JKS contraction,
2. there exists xog € X such that 6,,(D,T,x0) is finite for some ng € N,

then the Picard sequence x, = T™xqy converges to some point x* € X. If D(z*, Txx) < oo,
then ©* is a fized point of T. Moreover, if x,x* are the fixed points of T and D(x,z*) is

finite, then x = x*.
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Corollary 3.2.5. Let (X, D) be a complete dislocated metric space and T : X — X be a
mapping. Suppose that these conditions hold

1. T is a modified JKS contraction,
2. there exists xg € X such that 6,,(D,T,xo) is finite for some ng € N,

then the Picard sequence x,, = T"xy converges to some point x* € X and =* is a fized

point of T'. Moreover, if x,x* are the fized points of T, then x = x*.

Corollary 3.2.6. Let (X, D) be a complete RS-generalized metric space and T : X — X
be a mapping. Suppose that there exists X € (0,1) such that

D(Tz,Ty) < Amax{D(z,y), D(z,Tx), D(y, Ty)}.

Then the Picard sequence x, = T"xq converges to some point x* € X. If D(x*, Txx) < oo,
then ©* is a fized point of T. Moreover, if x,x* are the fized points of T and D(x,z*) is

finite, then x = x*.

Proof. From the given contraction, we have

eD(T:(:,Ty)% < [emax{D(x,y),D(z,Tx),D(y,Ty)}%])\%‘

1
Since (t) = ' satisfies all the conditions for Theorem 3.2.3, we can conclude as in

Theorem 3.2.3. OJ

1
Example 3.2.7. Let (Y, d) be as Example 2.3.2. We can easily see that lim d(—,0) =

n—oo N

1
lim d(—,2) = 0. Therefore, (Y,d) is a Ba-space contain a sequence that D-converges to
n—oo n

two different points. Let Z = {3,4,5,6}. Now, let X =Y U Z and define D : X x X —
[0, 0] as Example 2.5.14. We can see that (X, D) is a complete RS-generalized space.

0, if xe€Y,

T(z) =< 5, if z € {5,6},

| 6, if z e {3,4}
In this case, we let M = 4.

For this mapping, there exist 6(t) = et% for all t € (0,00] and k € (\/5, 1) that
satisfies the condition.

Consider when D(T'z,T'y) # 0. It’s easy to see that there are two cases available.

1. If D(z,y) = oo, then Tx € Y and Ty € Z or vice versa which implies M(x,y) =
D(z,y) = oo and
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6(D(T'x, Ty)) = B(oc) = o0 = [8(00)]* = O(M (x, )"
Before we consider another case, let we observe the contraction itself by:
O(D(Tx, Ty)) = PT2TN?T < [ M@k — g(M (1, y))F = kM @a)? |
Take log over both sides, we have
D(Tz,Ty)? < kM(z,y)? = D(Tz,Ty) < k*M(z,y).

Thus, we can consider this equation instead of the contraction itself.
2. If D(x,y) < oo, we have Tz # Ty Tx,Ty = {5,6}. There are 2 possible cases here.

o If x =3, then y € {5,6}. We have M(3,5) = max{D(3,5),D(3,6),D(5,5)} =
max{2,4,0} = 4 and M (3,6) = max{D(3,6),D(3,6),D(6,5)} = max{2,4} =
4, then

IN
o
]

2 <k*(4) >

N\

<k.

NI

=

Since \/g < \/g < k, our k is usable.

o Ifz =4, theny € {5,6}. We have M (4,6) = M(4,5) = max{D(4,5),D(4,6),D(5,6)} =
max{2,3} = 3 and

2
2<k*(3) = - <k?

3
2
S<k.

ﬁ\[&—

There exists 0 € X such that §(D,T,0) < co. Now all condition in Theorem 3.2.3
hold. Thus, there exist fixed points of T, in this case, they are 0 and 5.
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