CHAPTER 3

Main Results

In this chapter, we study fixed point theorems for generalized α - ψ -Geraghty contraction type and JKS contraction in complete RS-generalized metric spaces.

3.1 Generalized α - ψ -Geraghty Contraction Type

In this section, we present the existence and the uniqueness of fixed points of generalized $\alpha - \psi$ -Geraghty contraction type in RS-generalized metric space. Now, we are ready to state the first result.

Theorem 3.1.1. Let (X,D) be a complete RS-generalized metric space, $\alpha: X \times X \to \mathbb{R}$ and $T: X \to X$ be a mapping. Suppose that the following conditions hold

- 1. T is a generalized α - ψ -Geraghty contractive type mapping,
- 2. T is triangular α -admissible,
- 3. there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq 1$, $\alpha(x_0, x_0) \geq 1$ and $\delta_{n_0}(D, T, x_0)$ is finite for some $n_0 \in \mathbb{N}$,
- 4. T is continuous.

Then T has a fixed point $z \in X$ and $\{T^n x_0\}$ converges to z.

Proof. Define a sequence $\{x_n\}$ by $x_n = T^n x_0$. If $x_{n'} = x_{n'+1}$ for some $n' \in \mathbb{N}$, then $x_{n'}$ is a fixed point of T. Thus, we assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$. This implies that $D(x_n, x_{n+1}) \neq 0$ for all $n \in \mathbb{N}$.

First, we will show that $\lim_{n\to\infty} D(x_n, x_{n+1}) = 0$. By Proposition 2.2.10, we know that $\alpha(x_i, x_i) \geq 1$ for all $i \leq j$.

For $n > n_0$

$$\psi(D(x_{n+1}, Dx_{n+2})) = \psi(D(Tx_n, Tx_{n+1}))$$

$$\leq \alpha(x_n, x_{n+1})\psi(D(Tx_n, Tx_{n+1}))$$

$$\leq \beta(\psi(M(x_n, x_{n+1})))\psi(M(x_n, x_{n+1})), \tag{3.1}$$

where

$$M(x_n, x_{n+1}) = \max\{D(x_n, x_{n+1}), D(x_n, Tx_n), D(x_{n+1}, Tx_{n+1})\}$$
$$= \max\{D(x_n, x_{n+1}), D(x_{n+1}, x_{n+2})\}.$$

If $M(x_n, x_{n+1}) = D(x_{n+1}, x_{n+2})$, we have

$$\psi(D(x_{n+1}, x_{n+2})) \le \beta(\psi(M(x_n, x_{n+1})))\psi(M(x_n, x_{n+1}))$$

$$= \beta(\psi(D(x_{n+1}, x_{n+2})))\psi(D(x_{n+1}, x_{n+2}))$$

$$< \psi(D(x_{n+1}, x_{n+2}))$$

which is a contradiction. It follows that $M(x_n, x_{n+1}) = D(x_n, x_{n+1})$ and

$$\psi(D(x_{n+1}, x_{n+2})) \le \beta(\psi(D(x_n, x_{n+1})))\psi(D(x_n, x_{n+1})) < \psi(D(x_n, x_{n+1})). \tag{3.2}$$

Since ψ is nondecreasing, if we suppose that $D(x_{n+1}, x_{n+2}) > D(x_n, x_{n+1})$. Then we have $\psi(D(x_{n+1}, x_{n+2})) \ge \psi(D(x_n, x_{n+1}))$ which is a contradiction to (3.2). Therefore, we have $D(x_{n+1}, x_{n+2}) \le D(x_n, x_{n+1})$, for all $n \ge n_0$.

Since a sequence $\{D(x_n, x_{n+1})\}_{n\geq n_0}$ is nonincreasing and bounded below. Therefore $\lim_{n\to\infty} D(x_n, x_{n+1}) = \epsilon$ for some $\epsilon \geq 0$. Suppose that $\epsilon > 0$, from (3.2), we have

$$\frac{\psi(D(x_{n+1}, x_{n+2}))}{\psi(D(x_n, x_{n+1}))} \le \beta(\psi(D(x_n, x_{n+1}))) < 1.$$
(3.3)

By definition of ψ , we have

$$\lim_{n \to \infty} \psi(D(x_{n+1}, x_{n+2})) = \psi(\lim_{n \to \infty} D(x_{n+1}, x_{n+2})) = \psi(\epsilon) > 0$$

and

$$\lim_{n \to \infty} \psi(D(x_n, x_{n+1})) = \psi(\lim_{n \to \infty} D(x_n, x_{n+1})) = \psi(\epsilon) > 0.$$

Taking limit over n in (3.3), we have

$$1 \le \lim_{n \to \infty} \beta(\psi(D(x_n, x_{n+1}))) \le 1.$$

Thus, we can conclude that

$$\lim_{n\to\infty}\beta(\psi(D(x_n,x_{n+1})))=1.$$

By property of β , we have

$$\lim_{n \to \infty} \psi(D(x_n, x_{n+1})) = 0.$$

By property of ψ , we have

$$\lim_{n \to \infty} D(x_n, x_{n+1}) = 0$$

as a contradiction. We thus conclude that $\lim_{n\to\infty} D(x_n, x_{n+1}) = 0$.

Now, we claim that $\{x_n\}$ is Cauchy. Suppose on the contrary that there exist $\epsilon > 0$ and subsequences $\{x_{m_k}\}, \{x_{n_k}\}$ such that $m_k \geq n_k \geq k$ and m_k is the smallest index for which

$$D(x_{n_k}, x_{m_k}) \ge \epsilon$$
 for all $k \in \mathbb{N}$.

Consider when $k \geq n_0$, we have

$$\psi(\epsilon) \leq \psi(D(x_{n_k}, x_{m_k}))$$

$$= \psi(D(Tx_{n_k-1}, Tx_{m_k-1}))$$

$$\leq \alpha(x_{n_k-1}, x_{m_k-1})\psi(D(x_{n_k-1}, x_{m_k-1}))$$

$$\leq \beta(\psi(M(x_{n_k-1}, x_{m_k-1})))\psi(M(x_{n_k-1}, x_{m_k-1}))$$

$$< \psi(M(x_{n_k-1}, x_{m_k-1}))$$

where

$$\begin{split} M(x_{n_k-1},x_{m_k-1}) &= \max\{D(x_{n_k-1},x_{m_k-1}),D(x_{n_k-1},Tx_{n_k-1}),D(x_{m_k-1},Tx_{m_k-1})\}\\ &= \max\{D(x_{n_k-1},x_{m_k-1}),D(x_{n_k-1},x_{n_k}),D(x_{m_k-1},x_{m_k})\}. \end{split}$$

If $M(x_{n_k-1}, x_{m_k-1}) \neq D(x_{n_k-1}, x_{m_k-1})$, we have

$$\psi(\epsilon) \le \lim_{k \to \infty} \psi(M(x_{n_k-1}, x_{m_k-1})) = \psi(0).$$

Since ψ is nondecreasing, we have $\epsilon \leq 0$ which is a contradiction. Therefore

$$M(x_{n_k-1}, x_{m_k-1}) = D(x_{n_k-1}, x_{m_k-1})$$
 for all $k \ge n_0$.

This implies that, for all $k \geq n_0$

$$\psi(D(x_{n_k}, x_{m_k})) = \psi(D(Tx_{n_k-1}, x_{m_k-1}))$$

$$\leq \alpha(x_{n_k-1}, x_{m_k-1})\psi(D(x_{n_k-1}, x_{m_k-1}))$$

$$\leq \beta(\psi(D(x_{n_k-1}, x_{m_k-1})))\psi(D(x_{n_k-1}, x_{m_k-1})).$$

Repeating this argument, we have

$$\begin{split} \psi(\epsilon) &\leq \psi(D(x_{n_k}, x_{m_k})) \\ &\leq \beta(\psi(D(x_{n_k-1}, x_{m_k-1}))) \cdot \psi(D(x_{n_k-1}, x_{m_k-1})) \\ &\leq \beta(\psi(D(x_{n_k-1}, x_{m_k-1}))) \cdot \beta(\psi(D(x_{n_k-2}, x_{m_k-2}))) \cdot \psi(D(x_{n_k-2}, x_{m_k-2})) \end{split}$$

$$\leq \dots \\ \leq \prod_{i=0}^{n_k - n_0} \beta(\psi(D(x_{n_0+i}, x_{m_k - (n_k - n_0) + i}))) \cdot \psi(D(x_{n_0}, x_{m_k - (n_k - n_0)})) \\ \leq \prod_{i=0}^{n_k - n_0} \beta(\psi(D(x_{n_0+i}, x_{m_k - (n_k - n_0) + i}))) \psi(\delta_{n_0}(D, T, x_0)).$$

For each $k \geq n_0$, define

$$\beta_k = \beta(\psi(D(x_{n_0+i_k}, x_{m_k-(n_k-n_0)+i_k}))) = \max_{0 \le i \le n_k-n_0} \{\beta(\psi(D(x_{n_0+i}, x_{m_k-(n_k-n_0)+i})))\}.$$

Thus, for $k \geq n_0$

$$\psi(\epsilon) \le \psi(D(x_{n_k}, x_{m_k})) \le \beta_k^{n_k - n_0} \psi(\delta_{n_0}(D, T, x_0)).$$

If $\limsup_{k\to\infty} \beta_k < 1$, then $\lim_{k\to\infty} \beta_k^{n_k-n_0} = 0$ which is a contradiction. If $\limsup_{k\to\infty} \beta_k = 1$, by passing through a subsequence, we have

$$1 = \lim_{k \to \infty} \beta_k = \lim_{k \to \infty} \beta(\psi(D(x_{n_0 + i_k}, x_{m_k - (n_k - n_0) + i_k}))).$$

This implies that

$$\lim_{k \to \infty} \psi(D(x_{n_0 + i_k}, x_{m_k - (n_k - n_0) + i_k})) = 0.$$

Thus, there exists $k_0 \in \mathbb{N}$ such that

in Such that
$$\psi(D(x_{n_{k_0}+i_{k_0}},x_{m_{k_0}-(n_{k_0}-n_0)+i_{k_0}}))<\psi(\frac{\epsilon}{2}).$$

Therefore,

$$\begin{split} \psi(\epsilon) &\leq \psi(D(x_{n_{k_0}}, x_{m_{k_0}})) \\ &\leq \prod_{i=1}^{i_{k_0}} \beta(\psi(D(x_{n_{k_0}+k_0}, x_{m_{k_0}-(n_{k_0}-n_0)+i}))) \cdot \psi(D(x_{n_{k_0}+i_{k_0}}, x_{m_{k_0}-(n_{k_0}-n_0)+i_{k_0}})) \\ &< \psi(D(x_{n_{k_0}+i_{k_0}}, x_{m_{k_0}-(n_{k_0}-n_0)+i_{k_0}})) < \psi(\frac{\epsilon}{2}) \end{split}$$

which is a contradiction. Thus, $\{x_n\}$ is a Cauchy sequence. Since (X, D) is complete, then $x_n \to z \in X$ as $n \to \infty$.

By continuity of T, $Tx_n \to Tz$ as $n \to \infty$. By Theorem 2.5.15, we have z = Tz as required.

Lemma 3.1.2. From Theorem 3.1.1, if z is a fixed point of T, $D(z,Tz) < \infty$ and $\alpha(a,b) \ge 1$ for all $a,b \in X$ such that a and b are fixed points of T then D(z,Tz) = 0.

Proof. Since z is a fixed point of T, $M(z,z) = D(z,Tz) = D(z,z) = D(Tz,Tz) < \infty$. Suppose D(z,Tz) > 0. Using the contraction, we have

$$\psi(D(z,Tz)) = \psi(D(Tz,Tz))$$

$$\leq \alpha(z,z)\psi(D(Tz,Tz))$$

$$\leq \beta(M(z,z))\psi(D(M(z,z)))$$

$$< \psi(D(z,Tz))$$

a contradiction. Thus D(z, Tz) = 0.

The following result present the uniqueness of fixed point.

Theorem 3.1.3. From Theorem 3.1.1, let z, z' be fixed points of T. If $\alpha(a, b) \ge 1$ for all $a, b \in X$ such that a and b are fixed points of T and D(z, Tz), D(z', Tz') and D(z, z') are finite, then z = z'.

Proof. To show that D(z, z') = 0. Suppose D(z, z') > 0. By Lemma 3.1.2, D(z, Tz) = D(z', Tz') = 0. Consider

$$\psi(D(z,z')) = \psi(D(Tz,Tz'))$$

$$\leq \alpha(z,z')\psi(D(Tz,Tz'))$$

$$\leq \beta(\psi(M(z,z'))) \cdot \psi(M(z,z'))$$

$$< \psi(M(z,z'))$$

where $M(z, z') = \max\{D(z, z'), D(z, Tz), D(z', Tz')\} = D(z, z')$.

This implies that $\psi(D(z,z')) < \psi(D(z,z'))$ which is a contradiction. Thus D(z,z') = 0 implies z=z'.

The result from Theorem 3.1.1 has many consequences.

Corollary 3.1.4. Let (X, D) be a complete RS-generalized metric space, $\alpha : X \times X \to \mathbb{R}$ and $T : X \to X$ be a mapping. Suppose that the following conditions hold

1. there exists $\beta \in \mathcal{F}$ such that for all x, y

$$\alpha(x,y)D(Tx,Ty) \le \beta(M(x,y))M(x,y)$$

where $M(x,y) = \max\{D(x,y), D(x,Tx), D(y,Ty)\},\$

- 2. T is triangular α -admissible,
- 3. there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq 1$, $\alpha(x_0, x_0) \geq 1$ and $\delta_{n_0}(D, T, x_0)$ is finite for some $n_0 \in \mathbb{N}$,
- 4. T is continuous.

Then T has a fixed point $z \in X$ and $\{T^n x_0\}$ converges to z.

Proof. Let $\psi(t) = t$ in Theorem 3.1.1 and obtain this result immediately.

Corollary 3.1.5. Let (X, D) be a complete RS-generalized metric space, $\alpha : X \times X \to \mathbb{R}$ and $T : X \to X$ be a mapping. Suppose that the following conditions hold

1. there exists $\beta \in \mathcal{F}$ such that for all x, y

$$\alpha(x,y)\psi(D(Tx,Ty)) \le \beta(\psi(D(x,y)))\psi((D(x,y))),$$

- 2. T is triangular α -admissible,
- 3. there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq 1$, $\alpha(x_0, x_0) \geq 1$ and $\delta_{n_0}(D, T, x_0)$ is finite for some $n_0 \in \mathbb{N}$,
- 4. T is continuous.

Then T has a fixed point $z \in X$ and $\{T^n x_0\}$ converges to z.

Proof. Follow the proof in Theorem 3.1.1 and obtain this corollary instantly. \Box

Corollary 3.1.6. Let (X,D) be a complete RS-generalized metric space, $\alpha: X \times X \to \mathbb{R}$ and $T: X \to X$ be a mapping. Suppose that the following conditions hold

1. there exists $\beta \in \mathcal{F}$ such that for all x, y

$$\alpha(x,y)D(Tx,Ty) \le \beta(D(x,y))D(x,y),$$

- 2. T is triangular α -admissible,
- 3. there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq 1$, $\alpha(x_0, x_0) \geq 1$ and $\delta_{n_0}(D, T, x_0)$ is finite for some $n_0 \in \mathbb{N}$,
- 4. T is continuous.

Then T has a fixed point $z \in X$ and $\{T^n x_0\}$ converges to z.

Proof. Let $\psi(t) = t$ in Corollary 3.1.5 and obtain this result instantly.

Corollary 3.1.7. Let (X, D) be a complete RS-generalized metric space and $T: X \to X$ be a mapping. Suppose that the following conditions hold

1. there exists $\beta \in \mathcal{F}$ such that for all x, y

$$D(Tx, Ty) \le \beta(D(x, y))D(x, y),$$

- 2. there exists $x_0 \in X$ such that $\delta_{n_0}(D, T, x_0)$ is finite for some $n_0 \in \mathbb{N}$,
- 3. T is continuous.

Then T has a fixed point $z \in X$ and $\{T^n x_0\}$ converges to z.

Proof. Let $\alpha(x,y) = 1$ for all $x,y \in X$ in Corollary 3.1.6 and obtain the result directly. \square

Remark 3.1.8. 1. In [1], the authors proved Corollary 3.1.4 in the setting of metric space.

- 2. In [12], the author proved Corollary 3.1.5 in the setting of metric space.
- 3. In [1], the authors proved Corollary 3.1.6 in the setting of metric space.
- 4. In [8], the author proved Corollary 3.1.7 in the setting of metric space.

3.2 JKS Contraction

Since the RS-generalized metric space can support the value of infinity, we modify the JKS contraction for its compatibility on RS-generalized space.

Definition 3.2.1. Let Θ' be the set of all functions $\theta:(0,\infty]\to(1,\infty]$ satisfying the following conditions

- $(\theta'1)$ θ is nondecreasing,
- $(\theta'2)$ for each sequence $\{t_n\} \subset (0,\infty)$,

$$\lim_{n \to \infty} \theta(t_n) = 1 \iff \lim_{n \to \infty} t_n = 0,$$

 $(\theta'3)$ θ is continuous.

Remark 3.2.2. Since θ is nondecreasing, we have $\theta(\infty) = \infty$. The example of $\theta \in \Theta$ from Example 2.4.2 is still usable in this case.

The second main result in this thesis is shown below.

Theorem 3.2.3. Let (X, D) be a complete RS-generalized metric space and $T: X \to X$ be a mapping. Suppose that these conditions hold

1. T is a modified JKS contraction, that is, there exist $\theta \in \Theta'$ and $k \in (0,1)$ such that

$$x, y \in X, D(Tx, Ty) \neq 0 \Rightarrow \theta(D(Tx, Ty)) \leq (\theta(M(x, y)))^k$$

where
$$M(x, y) = \max\{D(x, y), D(x, Tx), D(y, Ty)\},\$$

2. there exists $x_0 \in X$ such that $\delta_{n_0}(D, T, x_0)$ is finite for some $n_0 \in \mathbb{N}$,

then the Picard sequence $\{x_n\}$ converges to some point $x^* \in X$. Moreover, if $D(x^*, Tx^*) < \infty$, then x^* is a fixed point of T. Moreover, if x', x^* are the fixed points of T and $D(x', x^*)$ is finite, then $x' = x^*$.

Proof. Define a sequence $\{x_n\}$ by $x_n = T^n x_0$. If $x_{n^*} = x_{n^*+1}$ for some $n^* \in \mathbb{N}$, that x_{n^*} is a fixed point. Thus, we assume $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$. By Proposition 2.5.10 a Picard sequence must be infinite or almost periodic.

Suppose that $\{x_n\}$ is almost periodic. Then, there exists $n' \ge n_0$ such that $\{x_n\}_{n \ge n^*} = \{x_{n'}, x_{n'+1}, ..., x_{n'+q}\}$ for some $q \in \mathbb{N}$. Consider

$$\theta(D(x_{n'+2q}, x_{n'+2q+1})) = \theta(D(Tx_{n'+2q-1}), Tx_{n'+2q})$$

$$\leq [\theta(M(x_{n'+2q-1}, x_{n'+2q}))]^k$$

$$< \theta(M(x_{n'+2q-1}, x_{n'+2q})),$$

where

$$M(x_{n'+2q-1}, x_{n'+2q}) = \max\{D(x_{n'+2q-1}, x_{n'+2q}), D(x_{n'+2q-1}, Tx_{n'+2q-1}), D(x_{n'+2q}, Tx_{n'+2q})\}$$
$$= \max\{D(x_{n'+2q-1}, x_{n'+2q}), D(x_{n'+2q}, x_{n'+2q+1})\}.$$

If $M(x_{n'+2q-1}, x_{n'+2q}) = D(x_{n'+2q}, x_{n'+2q+1})$, we have

$$\theta(D(x_{n'+2a}, x_{n'+2a+1})) < \theta(M(x_{n'+2a-1}, x_{n'+2a})) = \theta(D(x_{n'+2a}, x_{n'+2a+1}))$$

as a contradiction. Thus,

$$M(x_{n'+2q-1}, x_{n'+2q}) = D(x_{n'+2q-1}, x_{n'+2q})$$

and

$$\theta(D(x_{n'+2q}, x_{n'+2q+1})) \le [\theta(D(x_{n'+2q-1}, x_{n'+2q}))]^k.$$

Repeat this argument for q times, we have

$$\theta(D(x_{n'+2q}, x_{n'+2q+1})) \leq [\theta(D(x_{n'+2q-1}, x_{n'+2q}))]^k$$

$$\leq [\theta(D(x_{n'+2q-2}, x_{n'+2q-1}))]^{k^2}$$

$$\leq \dots$$

$$\leq [\theta(D(x_{n'+2q}, x_{n'+2q+1}))]^{k^q}$$

$$= [\theta(D(x_{n'+2q}, x_{n'+2q+1}))]^{k^q}$$

$$\leq \theta(D(x_{n'+2q}, x_{n'+2q+1}))$$

as a contradiction. Therefore, a sequence $\{x_n\}$ is infinite.

Next, we will show that $D(x_{n+1}, x_n) \to 0$ as $n \to \infty$. For any $n \ge n_0$, consider

$$\theta(D(x_{n+1}, x_{n+2})) = \theta(D(Tx_n, Tx_{n+1}))$$

$$\leq [\theta(M(x_n, x_{n+1}))]^k$$

$$< \theta(M(x_n, x_{n+1})),$$

where

$$M(x_n, x_{n+1}) = \max\{D(x_n, x_{n+1}), D(x_{n+1}, Tx_{n+1}), D(x_n, Tx_n)\}$$

= $\max\{D(x_n, x_{n+1}), D(x_{n+1}, x_{n+2})\}.$

If $M(x_n, x_{n+1}) = D(x_{n+1}, x_{n+2})$, we have

$$\theta(D(x_{n+1}, x_{n+2})) < \theta(M(x_n, x_{n+1})) = \theta(D(x_{n+1}, x_{n+2}))$$

as a contradiction. Thus, $M(x_n, x_{n+1}) = D(x_n, x_{n+1})$ for $n \ge n_0$.

Therefore, for any $n \ge n_0$,

$$\theta(D(x_{n+1}, x_{n+2})) < \theta(D(x_n, x_{n+1})).$$

Since θ is nondecreasing, if $D(x_{n+1}, x_{n+2}) > D(x_n, x_{n+1})$, then $\theta(D(x_{n+1}, x_{n+2})) \ge \theta(D(x_n, x_{n+1}))$ which is a contradiction. Therefore

$$D(x_{n+1}, x_{n+2}) \le D(x_n, x_{n+1})$$
 for $n \ge n_0$.

Thus, $\{D(x_{n+1},x_n)\}_{n\geq n_0}$ is a nonincreasing sequence. Since D is nonnegative, the limit of $\{D(x_{n+1},x_n)\}_{n\geq n_0}$ exists, we can suppose that $\lim_{n\to\infty} D(x_{n+1},x_n) = \epsilon > 0$. Consider when $p > n_0$,

$$\theta(D(x_p,x_{p-1})) = \theta(D(Tx_{p-1},Tx_{p-2}))$$

$$\leq \theta(M(x_{p-1}, x_{p-2}))^k$$
 $< \theta(M(x_{p-1}, x_{p-2}))$

where

$$M(x_{p-1}, x_{p-2}) = \max\{D(x_{p-1}, x_{p-2}), D(x_{p-1}, Tx_{p-1}), D(x_{p-2}, Tx_{p-2})\}$$
$$= \max\{D(x_{p-1}, x_{p-2}), D(x_p, x_{p-1})\}.$$

If $M(x_{p-1}, x_{p-2}) = D(x_p, x_{p-1})$, we reach a contradiction since $\theta(D(x_p, x_{p-1})) < \theta(D(x_p, x_{p-1}))$. Therefore, $M(x_{p-1}, x_{p-2}) = D(x_{p-1}, x_{p-2})$ for $p > n_0$. Repeating this argument until we reach x_{n_0} and we have

$$1 \leq \theta(D(x_{p}, x_{p-1}))$$

$$= \theta(D(Tx_{p-1}, Tx_{p-2}))$$

$$\leq \theta(D(x_{p-1}, x_{p-2}))^{k}$$

$$\leq \theta(D(x_{p-2}, x_{p-3}))^{k^{2}}$$

$$\leq \dots$$

$$\leq \theta(D(x_{n_{0}+1}, x_{n_{0}}))^{k^{p-n_{0}-1}}$$

$$\leq \theta(\delta_{n_{0}}(D, T, x_{0}))^{k^{p-n_{0}-1}}.$$

Taking limit over p both sides, we have

$$1 \le \lim_{p \to \infty} \theta(D(x_p, x_{p-1})) \le \lim_{p \to \infty} \theta(\delta_{n_0}(D, T, x_0))^{k^{p-n_0-1}} = 1.$$

Thus, we have $\lim_{p\to\infty} \theta(D(x_p,x_{p-1})) = 1$, using the property of contraction and we obtain that $\lim_{p\to\infty} D(x_p,x_{p-1}) = 0$ as a contradiction. Thus $\lim_{n\to\infty} D(x_{n+1},x_n) = 0$.

Now, we will show that $\{x_n\}$ is a D-Cauchy sequence. Suppose not, then there exist $\epsilon > 0$ and subsequences $\{x_{m_j}\}, \{x_{n_j}\}$ such that $m_j \geq n_j \geq j$ and m_j is the smallest index for which $D(x_{m_j}, x_{n_j}) \geq \epsilon$.

Consider when $j \geq n_0$, we have

$$\theta(\epsilon) \le \theta(D(x_{m_j}, x_{n_j}))$$

$$\le [\theta(M(x_{m_j-1}, x_{n_j-1}))]^k$$

$$< \theta(M(x_{m_j-1}, x_{n_j-1}))$$

where

$$M(x_{n_j-1}, x_{m_j-1}) = \max\{D(x_{n_j-1}, x_{m_j-1}), D(x_{n_j-1}, Tx_{n_j-1}), D(x_{m_j-1}, Tx_{m_j-1})\}$$

$$= \max\{D(x_{n_i-1}, x_{m_i-1}), D(x_{n_i-1}, x_{n_i}), D(x_{m_i-1}, x_{m_i})\}.$$

If $M(x_{m_j-1}, x_{n_j-1}) \neq D(x_{m_j-1}, x_{n_j-1})$, from θ is nondecreasing, we have

$$\theta(\epsilon) < \theta(M(x_{m_j-1}, x_{n_j-1})) \Rightarrow \epsilon < M(x_{m_j-1}, x_{n_j-1}).$$

Taking limit over j, we obtain

$$\epsilon = \lim_{j \to \infty} \epsilon \le \lim_{j \to \infty} M(x_{m_j - 1}, x_{n_j - 1}) = 0.$$

as a contradiction. Thus, $M(x_{m_j-1}, x_{n_j-1}) = D(x_{m_j-1}, x_{n_j-1})$ for all $j \ge n_0$. We repeat this method and get

$$\theta(\epsilon) \leq \theta(D(x_{m_j}, x_{n_j}))$$

$$\leq [\theta(D(x_{m_j-1}, x_{n_j-1}))]^k$$

$$\leq [\theta(D(x_{m_j-2}, x_{n_j-2}))]^{k^2}$$

$$\leq \dots$$

$$\leq [\theta(M(x_{m_j-(n_j-n_0)}, x_{n_0}))]^{k^{n_j-n_0-1}}$$

$$\leq [\theta(\delta_{n_0}(D, T, x_0))]^{k^{n_j-n_0-1}}.$$

Taking limit over j, we have

$$\theta(\epsilon) \le \lim_{j \to \infty} [\theta(\delta_{n_0}(D, T, x_0))]^{k^{n_j - n_0 - 1}} = 1$$

as a contradiction. Thus, $\{x_n\}$ must be a *D*-Cauchy sequence. Since *X* is complete, $\{x_n\}$ must converges to some $x^* \in X$.

Assume that $D(x^*, Tx^*)$ is finite. We will prove that $x^* = Tx^*$. Suppose $D(x^*, Tx^*) > 0$. First, we show that there exists $M' \in \mathbb{N}$ such that $D(x_n, Tx^*) > 0$ for all n > M'. We consider in 2 cases:

- 1. if $Tx^* \notin O_T(x_0)$, we have $Tx^* \neq T^n x_0$ for all $n \in \mathbb{N}$ which implies that for all $M' \in \mathbb{N}$, $D(x_n, Tx^*) > 0$ for all n > M'.
- 2. if $Tx^* \in O_T(x_0)$, then there exists $m \in \mathbb{N}$ such that $Tx^* = T^m x_0$. Since $\{x_n\}$ is infinite, $Tx^* \notin \{x_n\}_{n>m}$. We can choose any M' such that M' > m.

Let $M = \max\{n_0, M' + 1\}$. For n > M we have

$$\theta(D(T^{n+1}x_0, Tx^*)) \le [\theta(M(T^nx_0, x^*))]^k$$

where

$$M(T^n x_0, x^*) = \max\{D(T^n x_0, x^*), D(T^n x_0, T^{n+1} x_0), D(x^*, Tx^*)\}.$$

We can easily see that

$$\lim_{n \to \infty} M(T^n x_0, x^*) = D(x^*, Tx^*). \tag{3.1}$$

Now, we take limit over n both side and obtain

$$\lim_{n \to \infty} \theta(D(T^{n+1}x_0, Tx^*)) \le \lim_{n \to \infty} [\theta(M(T^nx_0, x^*))]^k.$$

This implies

$$\theta(D(x^*, Tx^*)) = \theta(\lim_{n \to \infty} D(T^{n+1}x_0, Tx^*))$$

$$= \lim_{n \to \infty} \theta(D(T^{n+1}x_0, Tx^*))$$

$$\leq \lim_{n \to \infty} [\theta(M(T^nx_0, x^*))]^k$$

$$= [\theta(\lim_{n \to \infty} M(T^nx_0, x^*))]^k$$

$$= [\theta(D(x^*, Tx^*))]^k$$

$$< \theta(D(x^*, Tx^*))$$

as a contradiction. Thus, $D(x^*, Tx^*) = 0$ and x^* is a fixed point as required.

Suppose x' to be another fixed point of T and $D(x', x^*) > 0$ but finite, we have

$$\theta(D(x', x^*)) = \theta(D(Tx', Tx^*))$$

$$\leq [\theta(D(x', x^*))]^k$$

$$< \theta(D(x', x^*))$$

as a contradiction. Thus, $x' = x^*$.

This result has many consequences.

Corollary 3.2.4. Let (X, D) be a complete JS-generalized metric space and $T: X \to X$ be a mapping. Suppose that these conditions hold

- 1. T is a modified JKS contraction,
- 2. there exists $x_0 \in X$ such that $\delta_{n_0}(D, T, x_0)$ is finite for some $n_0 \in \mathbb{N}$,

then the Picard sequence $x_n = T^n x_0$ converges to some point $x^* \in X$. If $D(x^*, Tx^*) < \infty$, then x^* is a fixed point of T. Moreover, if x, x^* are the fixed points of T and $D(x, x^*)$ is finite, then $x = x^*$.

Corollary 3.2.5. Let (X, D) be a complete dislocated metric space and $T: X \to X$ be a mapping. Suppose that these conditions hold

- 1. T is a modified JKS contraction,
- 2. there exists $x_0 \in X$ such that $\delta_{n_0}(D, T, x_0)$ is finite for some $n_0 \in \mathbb{N}$,

then the Picard sequence $x_n = T^n x_0$ converges to some point $x^* \in X$ and x^* is a fixed point of T. Moreover, if x, x^* are the fixed points of T, then $x = x^*$.

Corollary 3.2.6. Let (X, D) be a complete RS-generalized metric space and $T: X \to X$ be a mapping. Suppose that there exists $\lambda \in (0,1)$ such that

$$D(Tx, Ty) \le \lambda \max\{D(x, y), D(x, Tx), D(y, Ty)\}.$$

Then the Picard sequence $x_n = T^n x_0$ converges to some point $x^* \in X$. If $D(x^*, Tx^*) < \infty$, then x^* is a fixed point of T. Moreover, if x, x^* are the fixed points of T and $D(x, x^*)$ is finite, then $x = x^*$.

Proof. From the given contraction, we have

$$e^{D(Tx,Ty)^{\frac{1}{2}}} \le [e^{\max\{D(x,y),D(x,Tx),D(y,Ty)\}^{\frac{1}{2}}}]^{\lambda^{\frac{1}{2}}}.$$

Since $\theta(t) = e^{t^{\frac{1}{2}}}$ satisfies all the conditions for Theorem 3.2.3, we can conclude as in Theorem 3.2.3.

Example 3.2.7. Let (Y, d) be as Example 2.3.2. We can easily see that $\lim_{n\to\infty} d(\frac{1}{n}, 0) = \lim_{n\to\infty} d(\frac{1}{n}, 2) = 0$. Therefore, (Y, d) is a B_2 -space contain a sequence that D-converges to two different points. Let $Z = \{3, 4, 5, 6\}$. Now, let $X = Y \cup Z$ and define $D: X \times X \to [0, \infty]$ as Example 2.5.14. We can see that (X, D) is a complete RS-generalized space.

$$T(x) = \begin{cases} 0, & \text{if } x \in Y, \\ 5, & \text{if } x \in \{5, 6\}, \\ 6, & \text{if } x \in \{3, 4.\} \end{cases}$$

In this case, we let M=4.

For this mapping, there exist $\theta(t) = e^{t^{\frac{1}{2}}}$ for all $t \in (0, \infty]$ and $k \in (\sqrt{\frac{2}{3}}, 1)$ that satisfies the condition.

Consider when $D(Tx, Ty) \neq 0$. It's easy to see that there are two cases available.

1. If $D(x,y)=\infty$, then $Tx\in Y$ and $Ty\in Z$ or vice versa which implies $M(x,y)=D(x,y)=\infty$ and

$$\theta(D(Tx, Ty)) = \theta(\infty) = \infty = [\theta(\infty)]^k = \theta(M(x, y))^k.$$

Before we consider another case, let we observe the contraction itself by:

$$\theta(D(Tx,Ty)) = e^{D(Tx,Ty)^{\frac{1}{2}}} \le [e^{M(x,y)^{\frac{1}{2}}}]^k = \theta(M(x,y))^k = e^{kM(x,y)^{\frac{1}{2}}}.$$

Take log over both sides, we have

$$D(Tx, Ty)^{\frac{1}{2}} \le kM(x, y)^{\frac{1}{2}} \Rightarrow D(Tx, Ty) \le k^2 M(x, y).$$

Thus, we can consider this equation instead of the contraction itself.

- 2. If $D(x,y) < \infty$, we have $Tx \neq Ty$ Tx, $Ty = \{5,6\}$. There are 2 possible cases here.
 - If x = 3, then $y \in \{5, 6\}$. We have $M(3, 5) = \max\{D(3, 5), D(3, 6), D(5, 5)\} = \max\{2, 4, 0\} = 4$ and $M(3, 6) = \max\{D(3, 6), D(3, 6), D(6, 5)\} = \max\{2, 4\} = 4$, then

$$2 \le k^{2}(4) \Rightarrow \frac{2}{4} \le k^{2}$$
$$\Rightarrow \sqrt{\frac{2}{4}} \le k.$$

Since $\sqrt{\frac{2}{4}} < \sqrt{\frac{2}{3}} < k$, our k is usable.

• If x = 4, then $y \in \{5, 6\}$. We have $M(4, 6) = M(4, 5) = \max\{D(4, 5), D(4, 6), D(5, 6)\} = \max\{2, 3\} = 3$ and

$$2 \le k^{2}(3) \Rightarrow \frac{2}{3} \le k^{2}$$
$$\Rightarrow \sqrt{\frac{2}{3}} \le k.$$

There exists $0 \in X$ such that $\delta(D, T, 0) < \infty$. Now all condition in Theorem 3.2.3 hold. Thus, there exist fixed points of T, in this case, they are 0 and 5.