
CHAPTER 2

Preliminaries

This chapter provides the basic definitions, terminologies and notations from further

references which are useful for this thesis. We divide this chapter into 6 parts consisting

of semigroups, digraphs, Cayley digraphs of semigroups, domination parameters, indepen-

dence parameters, and digraph morphisms. We emphasize that all sets appeared in this

thesis are considered to be finite and we also denote by |A| the cardinality of the set A.

Now, we are ready to describe more details of those parts.

2.1 Semigroups

This part gives more information about semigroups taken from [16] and [28].

Definition 2.1.1. Let S be a nonempty set. A binary operation on S is a function ·

from S × S into S. The image of (a, b) in S will be denoted by a · b. For convenience, we

shall omit the dot, writing ab for a · b. A semigroup is a nonempty set S together with a

binary operation on S that satisfies the associative property, that is, a(bc) = (ab)c for all

a, b, c ∈ S.

An element e of a semigroup S is called an identity element of S if es = s = se for

all s ∈ S. An element u ∈ S is called a unit if there exists b ∈ S such that ub = e = bu

where e is an identity element of S. A semigroup which has an identity element is called

a monoid. A monoid S is said to be a group if s is a unit for all s ∈ S.

Definition 2.1.2. A nonempty subset T of a semigroup S is called a subsemigroup of S

if it is closed under the binary operation of S, that is, for all x, y ∈ T , xy ∈ T . Moreover,

a subsemigroup of S which is a group with respect to the binary operation inherited from

S will be called a subgroup of S.

Definition 2.1.3. Let S be a semigroup and A a nonempty subset of S. The subsemigroup

of S generated by A, denoted by 〈A〉, is the semigroup consisting of all elements in S that

can be expressed as finite products of elements in A, that is,

〈A〉 = {a1a2a3 · · · an : ai ∈ A where 1 ≤ i ≤ n and n ∈ N}.
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Furthermore, if S is a group, then the subgroup of S generated by A is 〈A ∪ A−1〉 where

A−1 = {a−1 : a ∈ A}.

Definition 2.1.4. Let S be a semigroup. For any nonempty subsets X and Y of S, define

XY = {xy ∈ S : x ∈ X and y ∈ Y }.

For any subsemigroup T of S and a ∈ S, define aT = {at ∈ S : t ∈ T}.

In addition, if we let G be a group, H a subgroup of G and g an element in G, then

the set gH is called a left coset of H in G and the set of all different left cosets of H in

G will be denoted by G/H = {aH : a ∈ G}. Moreover, the number of different left cosets

of H in G is called the index of H in G and written as [G : H].

Next, we will prescribe the definition of semigroup morphisms which are useful for

defining other special semigroups studied in this thesis.

Definition 2.1.5. Let S and T be semigroups. A mapping φ from S to T is called a

homomorphism if (ab)φ = (aφ)(bφ) for all a, b ∈ S. If a homomorphism φ is one-to-one,

we call it a monomorphism, if it is onto, we call it an epimorphism, and if it is both

one-to-one and onto, we shall call it an isomorphism. If φ is a homomorphism from S

to S, we call it an endomorphism of S. An isomorphism from S to S will be called an

automorphism of S. If there exists an isomorphism between S and T , we say that S and

T are isomorphic and write S ∼= T .

Definition 2.1.6. Let n ∈ N and I = {1, 2, . . . , n} be an index set. Let {Ai : i ∈ I} be

a family of nonempty sets indexed by I. The Cartesian product A1 × A2 × · · · × An is

identified with the set of all ordered n−tuples (a1, a2, . . . , an) where ai ∈ Ai for all i ∈ I.

For each k ∈ I, define a map pk : A1×A2×· · ·×An → Ak by (a1, a2, . . . , an) 7→ ak.

The map pk is called a projection map of the product onto its kth component.

Definition 2.1.7. Let n ∈ N and I = {1, 2, . . . , n} be an index set. Let {Si : i ∈ I} be a

family of semigroups indexed by I. The Cartesian product S1 × S2 × · · · × Sn becomes a

semigroup if we define the binary operation as follows:

(s1, s2, . . . , sn)(t1, t2, . . . , tn) = (s1t1, s2t2, . . . , sntn)

for all (s1, s2, . . . , sn), (t1, t2, . . . , tn) ∈ S1 × S2 × · · · × Sn.

We refer to this semigroup as the direct product of S1, S2, . . . , Sn.

Definition 2.1.8. A nonempty subset A of a semigroup S is called a left ideal if SA ⊆ A

and a right ideal if AS ⊆ A.
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Definition 2.1.9. Let S be a semigroup. An element z ∈ S is said to be zero if zx = z =

xz for all x ∈ S. A semigroup S without zero is said to be left (right) simple if it has no

proper left (right) ideals.

Definition 2.1.10. A semigroup S is said to be left cancellative if for each a, b, c ∈ S,

ab = ac implies b = c and said to be right cancellative if for each a, b, c ∈ S, ac = bc

implies a = b.

We now present the definitions of various special semigroups comprising of a left

group, a right group and a rectangular group which are focused in this thesis.

Definition 2.1.11. A semigroup S is said to be a left (right) group if S is left (right)

simple and right (left) cancellative. In addition, the semigroup S is called a left (right)

zero semigroup if xy = x (xy = y) for all x, y ∈ S.

It is known that a semigroup S is a left (right) group if and only if S is isomorphic

to the direct product of a group and a left (right) zero semigroup (see [28]).

Definition 2.1.12. A semigroup S is called a rectangular group if S is isomorphic to the

direct product of a group, a left zero semigroup and a right zero semigroup.

It is clear that a left (right) zero semigroup and a left (right) group are rectangular

groups. The following diagram shows the relationships between a rectangular group, a

left (right) group, a left (right) zero semigroup, and a group. An arrow from one property

to another one indicates that the former implies the latter.

Left zero semigroup Right zero semigroupGroup

Left group Right group

Rectangular group

Figure 2.1: Diagram.
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2.2 Digraphs

This part presents basic knowledge about digraphs and some algebraic structures

of digraphs referred from [5], [7] and [36].

Definition 2.2.1. A digraph (directed graph) D is a pair (V (D), E(D)) in which V (D)

is a nonempty set whose elements are called the vertices and E(D) is the subset of the

set of ordered pairs of elements in V (D). The elements of E(D) are called the arcs of

D. The set V (D) is called a vertex set of D and the set E(D) is called an arc set of D.

For each v ∈ V (D), an arc (v, v) ∈ E(D) is called a loop. The number of elements in the

vertex set is called the order of D.

Definition 2.2.2. Let D be a digraph without parallel arcs. For each u, v ∈ V (D) and

e := (u, v) ∈ E(D), we say that:

• u is the initial vertex (tail) and v is the terminal vertex (head);

• e is an arc joining from u to v;

• e is incident with u and v;

• e is incident from u and e is incident to v;

• u is adjacent to v and v is adjacent from u.

For any v ∈ V (D), the number of arcs incident to v is the indegree of v which is denoted

by d−(v). The number of arcs incident from v is called the outdegree of v, denoted by

d+(v). Furthermore, we define N−(v) and N+(v) by

N−(v) = {u ∈ V (D) : (u, v) ∈ E(D)} and N+(v) = {u ∈ V (D) : (v, u) ∈ E(D)}.

We note that d−(v) = |N−(v)| and d+(v) = |N+(v)|. The total degree (or simply degree)

of v is d(v) = d−(v)+ d+(v). A vertex v for which d+(v) = d−(v) = 0 is called an isolated

vertex.

Definition 2.2.3. Let D be a digraph. A digraph H is said to be a subdigraph of D if

V (H) ⊆ V (D) and E(H) ⊆ E(D). A subdigraph H of D is called a strong subdigraph of

D if and only if whenever u and v are vertices of H and (u, v) is an arc in D, then (u, v)

is an arc in H as well. Furthermore, a subdigraph H is said to be a spanning subdigraph

of D if V (H) = V (D).

Example 2.2.1. The examples of a digraph, a subdigraph, a strong subdigraph, and a

spanning subdigraph are shown as follows.
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Figure 2.2: Digraph D1.
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Figure 2.3: Subdigraph of D1.
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Figure 2.4: Strong subdigraph of D1.
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Figure 2.5: Spanning subdigraph of D1.
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Definition 2.2.4. Let D be a digraph and k ∈ N. A sequence

W : u = u0, u1, . . . , uk = v (2.1)

of vertices of D such that ui is adjacent to ui+1 for all i in which 0 ≤ i ≤ k − 1 is called

a u − v diwalk (u − v directed walk) in D. For 1 ≤ i ≤ k − 1, each arc (ui, ui+1) is said

to lie on or belong to W . The number of occurrences of arcs on a diwalk is the length of

the diwalk. So the length of the diwalk W in (2.1) is k. A diwalk in which no vertex is

repeated is called a dipath (directed path). A u− v diwalk is closed if u = v and is open if

u 6= v. A closed diwalk of length at least 2 in which no vertex is repeated except for the

initial and terminal vertices is a dicycle (directed cycle).

Next, we will consider the special type of graphs which is useful for defining the

connectedness concepts of digraphs.

Definition 2.2.5. LetD be a digraph. The underlying graph ofD is obtained by removing

all directions from the arcs of D and replacing any resulting pair of parallel edges by a

single edge. Equivalently, the underlying graph of a digraph D is obtained by replacing

each arc (u, v) or pair (u, v), (v, u) of arcs by the edge {u, v}, see [7] for more information.

Example 2.2.2. The following graph is an underlying graph of the digraph D1 which is

shown in Figure 2.2.
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Figure 2.6: Underlying graph of D1.

The following definition is described for presenting the information about concepts

of the connectedness of digraphs. Recall that the connected graph is the graph for which

any two different vertices connected by a path of that graph, see [7].

Definition 2.2.6. Let D be a digraph. The digraph D is said to be connected (weakly

connected) if the underlying graph of D is connected. A maximal connected subdigraph of

D is called a component of D. Moreover, D is said to be strongly connected if D contains

both a u− v dipath and a v − u dipath for every pair u, v of distinct vertices of D.
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Example 2.2.3. This example illustrates a weakly connected digraph and a strongly

connected digraph, respectively.

1 2

3

45

1 2

3

45

Figure 2.7: Weakly connected digraph & Strongly connected digraph.

Definition 2.2.7. For any family of nonempty sets {Xi : i ∈ I}, we write
·⋃

i∈I

Xi :=
⋃

i∈I

Xi

if Xi ∩ Xj = ∅ for all i 6= j. Let (V1, E1), (V2, E2), . . . , (Vn, En) be digraphs such that

Vi∩Vj = ∅ for all i 6= j. The disjoint union of (V1, E1), (V2, E2), . . . , (Vn, En) is defined as

⋃̇n

i=1(Vi, Ei) := (
⋃̇n

i=1Vi,
⋃̇n

i=1Ei).

Now, we introduce the definition of digraph isomorphisms.

Definition 2.2.8. Let D1 := (V1, E1) and D2 := (V2, E2) be digraphs. A mapping

ϕ : D1 → D2, in the sense that ϕ : V1 → V2, is called a (digraph) homomorphism if

(u, v) ∈ E1 implies (ϕ(u), ϕ(v)) ∈ E2 for all u, v ∈ V1. Such a mapping ϕ is said to be arc-

preserving. A digraph homomorphism ϕ : D1 → D1 is called an (digraph) endomorphism.

We denote by End(D1) the set of all endomorphisms of D1. If ϕ is a bijection from D1

to D2 such that (u, v) ∈ E1 if and only if (ϕ(u), ϕ(v)) ∈ E2, then ϕ is called an (digraph)

isomorphism and we say that D1 is isomorphic to D2, denoted by D1
∼= D2. A digraph

isomorphism ϕ : D1 → D1 is called an (digraph) automorphism.

Next, we will recall the definition of a Cayley digraph of a semigroup with respect

to the connection set.

Definition 2.2.9. Let S be a semigroup and A a subset of S. The Cayley digraph

Cay(S,A) of a semigroup S with a connection set A is defined to be a digraph with a

vertex set V (Cay(S,A)) = S and an arc set E(Cay(S,A)) = {(x, xa) : x ∈ S and a ∈ A}.

Example 2.2.4. Let (Z6,+) be a group of integers modulo 6 and A = {1, 2, 3} a subset

of Z6. The Cayley digraph of Z6 with a connection set A is shown as follows.
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Figure 2.8: Cay(Z6, {1, 2, 3}).

Notation 2.2.10. Throughout this thesis, we denote by G a group, L a left zero semi-

group, and R a right zero semigroup. For convenience, we shall prescribe some useful

notations as follows:

∆ : the Cayley digraph Cay(G× L×R,A) of a rectangular group G× L×R;

Γ : the Cayley digraph Cay(G× L,A) of a left group G× L;

Λ : the Cayley digraph Cay(G×R,A) of a right group G×R,

where A is referred as a connection set of such Cayley digraphs. Note that for Cayley

digraphs of left groups G × L and right groups G × R, if |L| = 1 or |R| = 1, then we

can consider such Cayley digraphs as Cayley digraphs of a group G, certainly. So in this

thesis, we will consider in the case where |L| ≥ 2 and |R| ≥ 2.

Now, we recall some results which are needed in the sequel as below for further

references.

Lemma 2.2.5 ([45]). Let S = G×L be a left group and A a nonempty subset of S. Then

the following conditions hold:

(1). for each l ∈ L, Cay(G× {l}, p1(A)× {l}) ∼= Cay(G, p1(A)),

(2). Cay(S,A) =
·⋃

l∈L

Cay(G× {l}, p1(A)× {l}).

Lemma 2.2.6 ([44]). Let S = G × L be a left group, A a nonempty subset of S,

G/〈p1(A)〉 = {g1〈p1(A)〉, g2〈p1(A)〉, . . . , gk〈p1(A)〉}, and let I = {1, 2, . . . , k}. Then

(1). S/〈A〉 = {gi〈p1(A)〉 × {l} : i ∈ I, l ∈ L} and S =
·⋃

i∈I,l∈L

(gi〈p1(A)〉 × {l}),

(2). Cay(S,A) =
·⋃

i∈I,l∈L

((gi〈p1(A)〉×{l}), Eil) where ((gi〈p1(A)〉×{l}), Eil) is a strong sub-

digraph of Cay(S,A) with ((gi〈p1(A)〉×{l}), Eil) ∼= Cay(〈p1(A)〉, p1(A)) for all i ∈ I, l ∈ L.
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Lemma 2.2.7 ([44]). Let S = G×R be a right group, A a nonempty subset of S such that

p2(A) = R,G/〈p1(A)〉 = {g1〈p1(A)〉, g2〈p1(A)〉, . . . , gk〈p1(A)〉}, and let I = {1, 2, . . . , k}.

Then

(1). S/〈A〉 = {gi〈p1(A)〉 ×R : i ∈ I} and S =
·⋃

i∈I

(gi〈p1(A)〉 ×R),

(2). Cay(S,A) =
·⋃

i∈I

((gi〈p1(A)〉×R), Ei) where ((gi〈p1(A)〉×R), Ei) is a strong subdigraph

of Cay(S,A) with ((gi〈p1(A)〉 ×R), Ei) ∼= Cay(〈A〉, A) for all i ∈ I.

Lemma 2.2.8 ([44]). Let S = G × R be a right group and A a nonempty subset of S.

Then 〈A〉 = 〈p1(A)〉 × p2(A) is a right group contained in S.

2.3 Domination Parameters

This section completely provides definitions of domination parameters consisting of

the domination number and total domination number of digraphs.

Definition 2.3.1. Let D = (V,E) be a digraph. A set X ⊆ V of vertices in a digraph

D is called a dominating set of D if for every vertex v ∈ V \X, there exists x ∈ X such

that (x, v) ∈ E and we say that x dominates v or v is dominated by x. The domination

number γ(D) of a digraph D is defined to be the minimum cardinality of a dominating

set of D, that is,

γ(D) = min{|X| : X is a dominating set of D}.

A dominating set of D in which its cardinality equals γ(D) is called a γ−set of D.

Definition 2.3.2. Let D = (V,E) be a digraph. A set X ⊆ V of vertices in a digraph

D is called a total dominating set of D if for every vertex v ∈ V , there exists x ∈ X such

that (x, v) ∈ E. The total domination number γt(D) of a digraph D is defined to be the

minimum cardinality among all total dominating sets of D, that is,

γt(D) = min{|X| : X is a total dominating set of D}.

A total dominating set of D in which its cardinality equals γt(D) is called a γt−set of D.

In general, every total dominating set of a digraph D is also a dominating set of D.

This directly implies that γ(D) ≤ γt(D).

Example 2.3.1. Given a digraph D2 of order 6 as shown in Figure 2.9.

We have γ(D2) = 2 with the γ−set {1, 3} and γt(D2) = 2 with the γt−set {1, 4}.
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Figure 2.9: Digraph D2.

Now, we consider the special group which is a subgroup of a symmetric group. For

each n ≥ 3, the Dihedral group Dn with an identity element e is a group of order 2n whose

generators r and s satisfy:

rn = e ; s2 = e ; rk 6= e if 0 < k < n ; sr = r−1s.

Therefore, we can take Dn = {e, r, r
2, r3, . . . , rn−1, s, rs, r2s, r3s, . . . , rn−1s}.

The following lemmas give the results for the domination number and the total

domination number of Cayley graphs of some groups with specific connection sets.

Lemma 2.3.2 ([9]). Let n ≥ 3 be an integer, m = ⌊n−12 ⌋ and k, t be integers such that

1 ≤ k ≤ m and 1 ≤ t ≤ n. Let Dn be a Dihedral group and

Ω = {ra1 , ra2 , . . . , rak , rn−ak , rn−ak−1 , . . . , rn−a1 , srb1 , srb2 , . . . , srbt} ⊆ Dn.

If d1 = a1, di = ai − ai−1 for 2 ≤ i ≤ k and d′1 = b1, d
′

j = bj − bj−1 for 2 ≤ j ≤ t and

d = max{di, d
′

j} where 1 ≤ i ≤ k , 1 ≤ j ≤ t, then γ(Cay(Dn,Ω)) ≤ 2d⌈ n
2d+2ak+bt−b1

⌉.

Lemma 2.3.3 ([9]). Let n ≥ 3 be an integer, m = ⌊n−12 ⌋ and k, t be integers such that

1 ≤ k ≤ m and 1 ≤ t ≤ n and d be a positive integer such that d(2k + t + 1) divides n.

Let Dn be a Dihedral group and

Ω = {rd, r2d, . . . , rkd, rn−kd, rn−(k−1)d, . . . , rn−d, srd, sr2d, . . . , srtd} ⊆ Dn.

Then γ(Cay(Dn,Ω)) =
2n

2k+t+1 .

Lemma 2.3.4 ([9]). Let n ≥ 3 be an integer, m = ⌊n−12 ⌋ and k, t be integers such that

1 ≤ k ≤ m and 1 ≤ t ≤ n. Let Dn be a Dihedral group and

Ω = {ra1 , ra2 , . . . , rak , rn−ak , rn−ak−1 , . . . , rn−a1 , srb1 , srb2 , . . . , srbt} ⊆ Dn.

If d1 = a1, di = ai − ai−1 for 2 ≤ i ≤ k and d′1 = b1, d
′

j = bj − bj−1 for 2 ≤ j ≤ t and

d = max{di, d
′

j} where 1 ≤ i ≤ k , 1 ≤ j ≤ t, then γt(Cay(Dn,Ω)) ≤ 2d⌈ n
d+2ak

⌉.
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Lemma 2.3.5 ([10]). Let n ≥ 3 be an odd integer, m = n−1
2 and

A = {m,n−m,m− 1, n− (m− 1), . . . ,m− (k − 1), n− (m− (k − 1))} ⊆ Zn

where 1 ≤ k ≤ m. Then γt(Cay(Zn, A)) = ⌈
n
2k⌉.

Lemma 2.3.6 ([10]). Let n ≥ 3 be an even integer, m = ⌊n−12 ⌋ and

A = {n2 ,m, n−m,m− 1, n− (m− 1), . . . ,m− (k − 1), n− (m− (k − 1))} ⊆ Zn

where 1 ≤ k ≤ m. Then γt(Cay(Zn, A)) = ⌈
n

2k+1⌉.

2.4 Independence Parameters

The definitions about independence parameters on digraphs are presented in this

section. Moreover, some new types of them concerning with dipaths are also prescribed.

Definition 2.4.1. For any digraphD = (V,E), let u, v be two different vertices in V and I

a nonempty subset of V . The vertex u is said to be independent to v (u, v are independent)

if (u, v) /∈ E and (v, u) /∈ E. The set I is called an independent set of D if any two different

vertices in I are independent. The independence number of D is the maximum cardinality

of an independent set of D and denoted by α(D), that is,

α(D) = max{|I| : I is an independent set of D}.

An independent set of D in which its cardinality equals α(D) is called an α−set of D.

Definition 2.4.2. For any digraph D = (V,E), let u, v be two different vertices in

V and I a nonempty subset of V . The vertex u is said to be weakly independent to

v (u, v are weakly independent) if (u, v) /∈ E or (v, u) /∈ E. The set I is called a

weakly independent set of D if any two different vertices in I are weakly independent.

The weakly independence number of D is the maximum cardinality of a weakly indepen-

dent set of D and denoted by αw(D), that is,

αw(D) = max{|I| : I is a weakly independent set of D}.

A weakly independent set of D in which its cardinality equals αw(D) is called an αw−set

of D.

Definition 2.4.3. For any digraph D = (V,E), let u, v be two different vertices in

V and I a nonempty subset of V . The vertex u is said to be dipath independent to

v (u, v are dipath independent) if there is no dipath from u to v and there is no dipath

from v to u. The set I is called a dipath independent set of D if any two different vertices
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in I are dipath independent. The dipath independence number of D is the maximum

cardinality of a dipath independent set of D and denoted by αp(D), that is,

αp(D) = max{|I| : I is a dipath independent set of D}.

A dipath independent set of D in which its cardinality equals αp(D) is called an αp−set

of D.

Definition 2.4.4. For any digraph D = (V,E), let u, v be two different vertices in V

and I a nonempty subset of V . The vertex u is said to be weakly dipath independent to

v (u, v are weakly dipath independent) if there is no dipath from u to v or there is no

dipath from v to u. The set I is called a weakly dipath independent set of D if any two

different vertices in I are weakly dipath independent. The weakly dipath independence

number of D is the maximum cardinality of a weakly dipath independent set of D and

denoted by αwp(D), that is,

αwp(D) = max{|I| : I is a weakly dipath independent set of D}.

A weakly dipath independent set of D in which its cardinality equals αwp(D) is called an

αwp−set of D.

In fact, every (dipath) independent set of a digraph D is also a weakly (dipath)

independent set of D, so we can conclude that α(D) ≤ αw(D) (αp(D) ≤ αwp(D)).

Example 2.4.1. Consider the DigraphD2 (shown in Figure 2.9) which is shown as follows.
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Figure 2.10: Digraph D2.

We obtain that α(D2) = 2 with the α−set {2, 5}; αw(D2) = 4 with the αw−set {1, 2, 3, 4};

αp(D2) = 1 with the αp−set {1}; and αwp(D2) = 2 with the αwp−set {1, 2}.
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2.5 Independent Domination Parameters

Now, we introduce some special types of domination parameters which are known

as independent domination parameters of digraphs.

Definition 2.5.1. Let D = (V,E) be a digraph and I a nonempty subset of V . The

set I is called an independent dominating set of D if I is a dominating set of D and

independent in D. The independent domination number of D, denoted by i(D), is the

minimum cardinality of an independent dominating set of D, that is,

i(D) = min{|I| : I is an independent dominating set of D}.

An independent dominating set of D in which its cardinality equals i(D) is called an i−set

of D.

Definition 2.5.2. Let D = (V,E) be a digraph and I a nonempty subset of V . The set

I is called a weakly independent dominating set of D if I is a dominating set of D and

weakly independent in D. The weakly independent domination number of D, denoted by

iw(D), is the minimum cardinality of a weakly independent dominating set of D, that is,

iw(D) = min{|I| : I is a weakly independent dominating set of D}.

A weakly independent dominating set of D in which its cardinality equals iw(D) is called

an iw−set of D.

Example 2.5.1. Let D3 be a digraph of order 6 given as follows.

1

2

3

4

5

6

Figure 2.11: Digraph D3.

We obtain that i(D3) = 3 with the i−set {1, 3, 5} and iw(D3) = 2 with the iw−set {1, 2}.

Definition 2.5.3. Let D = (V,E) be a digraph and I a nonempty subset of V . The set

I is called a dipath independent dominating set of D if I is a dominating set of D and
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dipath independent in D. The dipath independent domination number of D, denoted by

ip(D), is the minimum cardinality of a dipath independent dominating set of D, that is,

ip(D) = min{|I| : I is a dipath independent dominating set of D}.

A dipath independent dominating set of D in which its cardinality equals ip(D) is called

an ip−set of D.

Definition 2.5.4. Let D = (V,E) be a digraph and I a nonempty subset of V . The set

I is called a weakly dipath independent dominating set of D if I is a dominating set of D

and weakly dipath independent in D. The weakly dipath independent domination number

of D, denoted by iwp(D), is the minimum cardinality of a weakly dipath independent

dominating set of D, that is,

iwp(D) = min{|I| : I is a weakly dipath independent dominating set of D}.

A weakly dipath independent dominating set of D in which its cardinality equals iwp(D)

is called an iwp−set of D.

Example 2.5.2. Consider the digraph D4 of order 6 illustrated as follows.
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Figure 2.12: Digraph D4.

We obtain that ip(D4) = 2 with the ip−set {4, 6} and iwp(D4) = 2 with the iwp−set {3, 6}.
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