
CHAPTER 3

Basic Properties of Cayley Digraphs

of Rectangular Groups

We now give some characterizations of Cayley digraphs of rectangular groups with

respect to their connection sets. Moreover, some basic properties of Cayley digraphs ∆ of

rectangular groups G× L×R with connection sets A are also presented.

3.1 Characterizations of Cayley Digraphs of Rectangular Groups

Theorem 3.1.1. If A = {(a, α) ∈ G × R : (a, l, α) ∈ A for some l ∈ L}, then ∆ is the

disjoint union of |L| strong subdigraphs which each subdigraph is isomorphic to the Cayley

digraph Cay(G×R,A) of a right group G×R with a connection set A.

Proof. Let A = {(a, α) ∈ G× R : (a, l, α) ∈ A for some l ∈ L} be a connection set of the

Cayley digraph Cay(G×R,A) of a right group G×R. For each l ∈ L, let (G×{l}×R,El)

denote a strong subdigraph of ∆ induced by G×{l}×R as a vertex set and its arc set is El.

We first show that ∆ =
·
⋃

l∈L

(G×{l}×R,El). It is easy to obtain that
·
⋃

l∈L

(G×{l}×R,El)

is a subdigraph of ∆. Now, let (g, k, α) ∈ V (∆). It follows that

(g, k, α) ∈ G× {k} ×R = V (G× {k} ×R,Ek) ⊆ V

(

·
⋃

l∈L

(G× {l} ×R,El)

)

, obviously.

Next, let ((g1, l1, α1), (g2, l2, α2)) ∈ E(∆). Hence there exists (a,m, λ) ∈ A such that

(g2, l2, α2) = (g1, l1, α1)(a,m, λ) = (g1a, l1, λ), that is, l1 = l2.

Thus ((g1, l1, α1), (g2, l2, α2)) ∈ E(G × {l1} × R,El1) ⊆ E

(

·
⋃

l∈L

(G× {l} ×R,El)

)

. It is

not difficult to verify that (G× {t1} × R,Et1) is disjoint from (G× {t2} × R,Et2) for all

different elements t1 and t2 of L. So we can conclude that ∆ =
·
⋃

l∈L

(G× {l} ×R,El).

Let l ∈ L be fixed. We next show that (G × {l} × R,El) ∼= Cay(G × R,A). Let

Φ : G× {l} ×R → G×R be a mapping defined by

Φ(g, l, α) = (g, α) for all (g, l, α) ∈ G× {l} ×R.

Then Φ is a well-defined bijection followed from the straightforward proof. We only need

to show that Φ and Φ−1 are arc-preserving. Let ((g1, l, α1), (g2, l, α2)) ∈ E(G×{l}×R,El).
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Hence (g2, l, α2) = (g1, l, α1)(a, k, α) = (g1a, l, α) for some (a, k, α) ∈ A. Thus (a, α) ∈ A

and Φ(g2, l, α2) = (g2, α2) = (g1a, α) = (g1, α1)(a, α) = Φ(g1, l, α1)(a, α) which implies

that (Φ(g1, l, α1),Φ(g2, l, α2)) ∈ E(Cay(G×R,A)). We next consider ((h1, β1), (h2, β2)) ∈

E(Cay(G × R,A)). Then there exists (b, β) ∈ A such that (h2, β2) = (h1, β1)(b, β) =

(h1b, β). We obtain that (b, j, β) ∈ A for some j ∈ L and

Φ−1(h2, β2) = (h2, l, β2) = (h1b, l, β) = (h1, l, β1)(b, j, β) = Φ−1(h1, β1)(b, j, β)

and hence (Φ−1(h1, β1),Φ
−1(h2, β2)) ∈ E(G × {l} × R,El). Therefore, both Φ and Φ−1

are arc-preserving. Consequently, Φ is an isomorphism that means (G × {l} × R,El) ∼=

Cay(G×R,A), this completes the proof of our assertion.

By applying Theorem 3.1.1 and Lemma 2.2.7 under the condition p3(A) = R, we

can simply obtain the following corollary.

Corollary 3.1.2. If p3(A) = R, then ∆ is the disjoint union of
|G||L|
|〈p1(A)〉| strong subdigraphs

which each subdigraph is isomorphic to Cay(〈A〉, A) where A is the connection set given

in the above theorem.

3.2 Some Properties of Cayley Digraphs of Rectangular Groups

Let (V,E) be a digraph and u, v be any two vertices in V . Recall that the digraph

(V,E) is said to be strongly connected if there is a dipath in (V,E) connecting from u

to v. The following theorem gives the sufficient condition for Cay(〈A〉, A) to be strongly

connected where A = {(a, α) ∈ G×R : (a, l, α) ∈ A for some l ∈ L}.

Theorem 3.2.1. If p3(A) = R, then Cay(〈A〉, A) is strongly connected.

Proof. Let A be a connection set of ∆ such that p3(A) = R. In order to show that

Cay(〈A〉, A) is strongly connected, we let (x, λ) and (y, µ) be any two vertices of Cay(〈A〉, A),

that is, (x, λ), (y, µ) ∈ 〈A〉. From p3(A) = R, we also get that p2(A) = R. By Lemma

2.2.8, we have 〈A〉 = 〈p1(A)〉 × R. Since µ ∈ R, there exists a ∈ p1(A) such that

(a, µ) ∈ A. Since x, y ∈ p1(〈A〉) = 〈p1(A)〉 and 〈p1(A)〉 is a group, we can write y = xu for

some u ∈ 〈p1(A)〉. Hence u = u1u2 · · ·ut where u1, u2, . . . , ut ∈ p1(A). Thus there exist

ω1, ω2, . . . , ωt ∈ R in which (u1, ω1), (u2, ω2), . . . , (ut, ωt) ∈ A. Consider

(y, ωt) = (xu, ωt) = (xu1u2 · · ·ut, ωt) = (x, λ)(u1, ω1)(u2, ω2) · · · (ut, ωt),

we conclude that there exists a dipath from (x, λ) through to (y, ωt). Assume that |a| = n,

the order of an element a in a group 〈p1(A)〉, for some n ∈ N. Therefore, y = yan and
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then (y, µ) = (yan, µ) = (y, ωt)(a
n, µ) = (y, ωt)(a, µ)

n which implies that there exists a

dipath connecting from (y, ωt) to (y, µ). So we can conclude that there exists a dipath

from (x, λ) to (y, µ) which leads to the result that Cay(〈A〉, A) is strongly connected, as

required.

Proposition 3.2.2. If A is any connection set of ∆, then 〈p1(A)〉 = p1(〈A〉).

Proof. Let A be a connection set of ∆ and a ∈ 〈p1(A)〉. Then a = a1a2 · · · ak for some

a1, a2, . . . , ak ∈ p1(A). So there exist l1, l2, . . . , lk ∈ L and γ1, γ2, . . . , γk ∈ R such that

(a1, l1, γ1), (a2, l2, γ2), . . . , (ak, lk, γk) ∈ A. Consider

(a, l1, γk) = (a1a2 · · · ak, l1, γk) = (a1, l1, γ1)(a2, l2, γ2) · · · (ak, lk, γk) ∈ 〈A〉,

we can conclude that a ∈ p1(〈A〉). Thus 〈p1(A)〉 ⊆ p1(〈A〉). In order to prove the reverse

inclusion, let b ∈ p1(〈A〉). Then there exist m ∈ L and µ ∈ R in which (b,m, µ) ∈ 〈A〉.

We can obtain that

(b,m, µ) = (b1,m1, µ1)(b2,m2, µ2) · · · (bn,mn, µn) = (b1b2 · · · bn,m1, µn)

where (b1,m1, µ1), (b2,m2, µ2), . . . , (bn,mn, µn) ∈ A. Hence b = b1b2 · · · bn ∈ 〈p1(A)〉 in

which b1, b2, . . . , bn ∈ p1(A). Therefore, p1(〈A〉) ⊆ 〈p1(A)〉 and whence 〈p1(A)〉 = p1(〈A〉),

as desired.

The above results are valuable for proving other results of this thesis which will be

presented in the sequel.
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