
CHAPTER 4

Domination on Cayley Digraphs

of Rectangular Groups

In this chapter, we provide the results of domination parameters consisting of the

domination number and total domination number of Cayley digraphs of rectangular groups

with their connection sets. In particular, since left groups and right groups are rectangular

groups, we also consider such semigroups here. Furthermore, we present the value or

bounds for the domination number of Cayley digraphs of left groups and right groups.

Some examples which give sharpness of those bounds are also shown. Moreover, we

consider the total domination number and give the necessary and sufficient conditions for

the existence of total dominating sets in Cayley digraphs of left groups and right groups.

4.1 Domination Number

We start with the result of the domination number on Cayley digraphs of rectangular

groups in the term of the domination number of Cayley digraphs of right groups with

corresponding connection sets.

Theorem 4.1.1. Let A be a connection set of ∆.

If A = {(g, r) ∈ G×R : (g, l, r) ∈ A for some l ∈ L}, then γ(∆) = |L| · γ(Cay(G×R,A)).

Proof. From the characterization of Cayley digraphs of rectangular groups described in

Theorem 3.1.1, we get that ∆ is the disjoint union of |L| isomorphic subdigraphs which

each subdigraph is isomorphic to the Cayley digraph Cay(G×R,A) of a right group G×R

with the connection set A = {(a, α) ∈ G× R : (a, l, α) ∈ A for some l ∈ L}. Let |L| = m

for some m ∈ N and I = {1, 2, . . . ,m}. Suppose that those m subdigraphs of ∆ are

D1, D2, . . . , Dm. Consequently,

γ(∆) = γ

(

·
⋃

i∈I

Di

)

= γ

(

·
⋃

i∈I

Cay(G×R,A)

)

=
m
∑

i=1
γ(Cay(G×R,A))

= m · γ(Cay(G×R,A)) = |L| · γ(Cay(G×R,A)).

Next, we will consider the Cayley digraph Γ of a left group G×L with a connection
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set A. The following result gives the domination number of a Cayley digraph of a left

group in the term of the domination number of a Cayley digraph of its subgroup.

Theorem 4.1.2. Let G/〈p1(A)〉 = {g1〈p1(A)〉, g2〈p1(A)〉, . . . , gk〈p1(A)〉} for some k ∈ N.

Then γ(Γ) = k · |L| · γ(Cay(〈p1(A)〉, p1(A))) where A is a connection set of Γ.

Proof. Let I = {1, 2, . . . , k}. By Lemma 2.2.6, we have Γ =
·
⋃

i∈I,l∈L

((gi〈p1(A)〉 × {l}), Eil)

where ((gi〈p1(A)〉 × {l}), Eil) is a strong subdigraph of Γ such that

((gi〈p1(A)〉 × {l}), Eil) ∼= Cay(〈p1(A)〉, p1(A)) for all i ∈ I, l ∈ L.

Therefore, γ(Γ) =
∑

i∈I

∑

l∈L

γ((gi〈p1(A)〉 × {l}), Eil) = |I| · |L| · γ(Cay(〈p1(A)〉, p1(A))).

Sometimes, it is not easy to find the value of γ(Cay(〈p1(A)〉, p1(A))), so we can not

find γ(Γ) actually. However, we can know the bounds of γ(Γ) which does not depend on

γ(Cay(〈p1(A)〉, p1(A))). The next theorem gives the bounds of the domination number in

Cayley digraphs of left groups with their corresponding connection sets.

Theorem 4.1.3. Let G × L be a left group and A a connection set of Γ such that the

identity of G lies in p1(A). If H is a subgroup of G with a maximum cardinality that

contained in p1(A), then
|G|

|p1(A)| |L| ≤ γ(Γ) ≤ [G : H]|L| where [G : H] is the index of H

in G.

Proof. Suppose that H is the subgroup of G with a maximum cardinality such that H ⊆

p1(A). We will show that γ(Γ) ≤ [G : H]|L|. Let [G : H] = k for some k ∈ N. Consider

the set of all left cosets of H in G, {g1H, g2H, . . . , gkH}. Pick one element from each

left coset g1H, g2H, . . . , gkH, say that g1h1, g2h2, . . . , gkhk, respectively. Let l ∈ L and D

denote Cay(G×{l}, p1(A)×{l}) and Y = {g1h1, g2h2, . . . , gkhk}×{l} ⊆ G×{l}. We will

prove that Y is a dominating set of D. Let (g, l) ∈ (G× {l}) \ Y . Since g ∈ G =
k
⋃

t=1
gtH,

we get that g ∈ gjH for some 1 ≤ j ≤ k. Then g = gjh for some h ∈ H. Thus (gjhj , l) ∈ Y

and h−1j h ∈ H ⊆ p1(A). So there exists q ∈ p2(A) such that (h
−1
j h, q) ∈ A and we have

(g, l) = (gjh, l) = ((gjhj)(h
−1
j h), l) = (gjhj , l)(h

−1
j h, q) ∈ Y A. Hence Y is the dominating

set of D and then γ(D) ≤ |Y | = k = [G : H]. By Lemma 2.2.5, we can conclude that

γ(Γ) = γ(D)|L| ≤ [G : H]|L|. Now, we will prove that γ(Γ) ≥ |G|
|p1(A)| |L|. By Lemma

2.2.5(1), we obtain that

Cay(G× {l1}, p1(A)× {l1}) ∼= Cay(G× {l2}, p1(A)× {l2}) for all l1, l2 ∈ L.

For each l ∈ L, we will consider the domination number of D, the digraph defined as

above, and let X be the dominating set of D such that X is a γ−set. Since the identity of
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G lies in p1(A) and X is the dominating set of D, we get that (X)(p1(A)×{l}) = G×{l}.

Hence |G| = |G × {l}| = |(X)(p1(A) × {l})| ≤ |X||p1(A) × {l}| = |X||p1(A)|. Therefore,

γ(D) = |X| ≥ |G|
|p1(A)| . By Lemma 2.2.5(2), we have γ(Γ) = γ(D)|L| ≥ |G|

|p1(A)| |L|.

Corollary 4.1.4. Let G× L be a left group and A = K × L a connection set of Γ where

K is any subgroup of G. Then γ(Γ) = [G : K]|L|.

Proof. Since A = K × L where K is any subgroup of G, we obtain that the identity e of

G lies in K = p1(A). Moreover, we get that K is the subgroup of G with a maximum

cardinality that contained in p1(A). By applying Theorem 4.1.3, we can conclude that

|G|
|K| |L| ≤ γ(Γ) ≤ [G : K]|L|. Therefore, γ(Γ) = [G : K]|L| since [G : K] = |G|

|K| .

The following example gives the sharpness of the bounds given in Theorem 4.1.3.

Example 4.1.5. Let Z6 × L be a left group where Z6 is a group of integers

modulo 6 under the addition and L = {l1, l2} is a left zero semigroup.

(1). Consider the Cayley digraph Cay(Z6 × L, {(0, l1), (2, l1), (4, l1)}).

0̄l1 1̄l1 2̄l1

1̄l2 2̄l20̄l2

3̄l1 4̄l1 5̄l1

3̄l2 4̄l2 5̄l2

Figure 4.1: Cay(Z6 × L, {(0, l1), (2, l1), (4, l1)}).

We obtain that X = {(0, l1), (0, l2), (1, l1), (1, l2)} is a γ−set of the Cayley digraph

Cay(Z6 × L2, {(0, l1), (2, l1), (4, l1)}).

Thus γ(Cay(Z6 × L2, {(0, l1), (2, l1), (4, l1)})) = |X| = 4 = 2(2) = [Z6 : H]|L2| where

H = {0, 2, 4} is the subgroup with a maximum cardinality of Z6 that contained in

p1({(0, l1), (2, l1), (4, l1)}).

Similarly, if A = {(0, l1), (2, l1), (4, l1), . . . , (2k − 2, l1)} is a nonempty subset of Z2k × L

where k ∈ N and L = {l1, l2}, then the set {(0, l1), (0, l2), (1, l1), (1, l2)} is a γ−set of a
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Cayley digraph Cay(Z2k × L,A). Hence γ(Cay(Z2k × L,A)) = 4 = [Z2k : H]|L| where

H = {0, 2, 4, . . . , 2k − 2} is the subgroup with the maximum cardinality of Z2k which is

contained in p1(A).

(2). Consider the Cayley digraph Cay(Z6 × L, {(0, l1), (3, l2)}).

0̄l1 1̄l1 2̄l1

1̄l2 2̄l20̄l2

3̄l1 4̄l1 5̄l1

3̄l2 4̄l2 5̄l2

Figure 4.2: Cay(Z6 × L, {(0, l1), (3, l2)}).

We obtain that Y = {(0, l1), (1, l1), (2, l1), (0, l2), (1, l2), (2, l2)} is a γ−set of the Cayley

digraph Cay(Z6 × L, {(0, l1), (3, l2)}) and γ(Cay(Z6 × L, {(0, l1), (3, l2)})) = |Y | = 6 =

6
2 × 2 = |Z6|

|p1({(0,l1),(3,l2)})|
× |L|.

Similarly, if A = {(0, l1), (k, l2)} is a nonempty subset of Z2k × L where k ∈ N and

L = {l1, l2}, then the set {0, 1, 2, . . . , k − 1} × {l1, l2} is a γ−set of Cay(Z2k × L,A).

Hence γ(Cay(Z2k × L,A)) = 2k = 2k
2 × 2 = |Z2k|

|p1(A)| × |L|.

The following two propositions present the results for the domination numbers

of Cayley digraphs of left groups which are isomorphic to the direct product of the

2n−element Dihedral group Dn and a left zero semigroup L with suitable connection

sets.

Proposition 4.1.6. Let S = Dn × L be a left group and A a nonempty subset of S such

that the identity element e /∈ p1(A) and for each x ∈ p1(A), x
−1 must belong to p1(A).

Let n ≥ 3 be an integer, c = ⌊n−12 ⌋ and k, t be integers such that 1 ≤ k ≤ c and 1 ≤ t ≤ n.

Let p1(A) = {r
a1 , ra2 , . . . , rak , rn−ak , rn−ak−1 , . . . , rn−a1 , srb1 , srb2 , . . . , srbt} ⊆ Dn.

If d = max{a1, a2 − a1, a3 − a2, . . . , ak − ak−1, b1, b2 − b1, b3 − b2, . . . , bt − bt−1}, then

γ(Cay(S,A)) ≤ 2d|L|⌈ n
2d+2ak+bt−b1

⌉.
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Proof. This proposition follows from Lemma 2.2.5 and Lemma 2.3.2.

Proposition 4.1.7. Let S = Dn × L be a left group and A a nonempty subset of S such

that the identity element e /∈ p1(A) and for each x ∈ p1(A), x
−1 must belong to p1(A).

Let n ≥ 3 be an integer, c = ⌊n−12 ⌋ and k, t be integers such that 1 ≤ k ≤ c and 1 ≤ t ≤ n.

Let p1(A) = {r
d, r2d, . . . , rkd, rn−kd, rn−(k−1)d, . . . , rn−d, srd, sr2d, . . . , srtd} ⊆ Dn.

If d is an integer such that d(2k + t+ 1) divides n, then γ(Cay(S,A)) = 2n|L|
2k+t+1 .

Proof. This proposition is a direct result from Lemma 2.2.5 and Lemma 2.3.3.

Now, we show other results of the domination number of Cayley digraphs of Zn,

the group of integers modulo n, with a connection set {1, t} ⊆ Zn for applying the results

to the domination number of Cayley digraphs of a left group Zn × L where L is a left

zero semigroup. Furthermore, let (V,E) be a digraph and for each x ∈ V , we define

N(x) = {y ∈ V : (x, y) ∈ E} to be the set of all neighbours of x and let N [x] = N(x)∪{x}.

In general, it is easy to verify that ⌈n3 ⌉ ≤ γ(Cay(Zn, {1, t})) ≤ ⌈
n
2 ⌉.

Proposition 4.1.8. Let n ≥ 2 be a positive integer. Then γ(Cay(Zn, {1, 2})) = ⌈
n
3 ⌉.

Proof. We will consider the case n ≡ 1 (mod 3).

It is easy to see that {1, 4, 7, . . . , n− 3, n} is a dominating set of Cay(Zn, {1, 2}).

Hence γ(Cay(Zn, {1, 2})) ≤ |{1, 4, 7, . . . , n− 3, n}| = n+2
3 = ⌈n3 ⌉.

Suppose that there exists a dominating set X such that |X| < n+2
3 , that is, |X| ≤ n−1

3 .

Since |N [x]| ≤ 3 for all x ∈ X, we obtain that |
⋃

x∈X

N [x]| ≤ 3|X| ≤ n− 1 < n which is a

contradiction. Therefore, γ(Cay(Zn, {1, 2})) = ⌈
n
3 ⌉. Other cases can be proved by using

the similar arguments of the above case.

Lemma 4.1.9. Let n ≥ 3 be a positive integer and X a dominating set of Cay(Zn, {1, 3}).

For each x ∈ X, |N [x] ∩N [v]| ≥ 1 for some v ∈ X \ {x}.

Proof. Let X be a dominating set of Cay(Zn, {1, 3}) and x ∈ X.

Then N [x] = {x, x+1, x+3}. Since x+2 /∈ N [x] and x+2 has to be dominated, we can

conclude that x+ 2 ∈ X or x+ 2 ∈ N [y] for some y ∈ X.

If x+ 2 ∈ X, then N [x+ 2] = {x+ 2, x+ 3, x+ 5}, that is, x+ 3 ∈ N [x] ∩N [x+ 2]

which implies that |N [x] ∩N [x+ 2]| ≥ 1.

If x+ 2 ∈ N [y], then y = x+ 1 or y = x− 1.

If y = x+ 1, then x+ 1 ∈ X. Thus x+ 1 ∈ N [x] ∩N [x+ 1] which leads

to the fact that |N [x] ∩N [x+ 1]| ≥ 1.
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If y = x− 1, then x− 1 ∈ X. Thus x ∈ N [x] ∩N [x− 1] which implies

that |N [x] ∩N [x− 1]| ≥ 1.

Proposition 4.1.10. Let n ≥ 3 be a positive integer.

Then γ(Cay(Zn, {1, 3})) =











2⌈n5 ⌉ − 1 if n ≡ 1, 2 (mod 5),

2⌈n5 ⌉ if n ≡ 0, 3, 4 (mod 5).

Proof. We will consider the case n ≡ 1 (mod 5). In this case, we can conclude that

T = {1, 2, 6, 7, 11, 12, . . . , n− 5, n− 4, n} is a dominating set of Cay(Zn, {1, 3}) which

implies that γ(Cay(Zn, {1, 3})) ≤ |T | =
2n+3

5 = 2⌈n5 ⌉ − 1. Next, suppose that there exists

a dominating set X such that |X| ≤ 2⌈n5 ⌉ − 2 = 2(n−1)
5 . For each x ∈ X, we have by

Lemma 4.1.9 that N [x] ∩ N [y] ≥ 1 for some y ∈ X \ {x}. Since |N [x]| ≤ 3, we have

|
⋃

x∈X

N [x]| ≤ 3|X| − ⌈ |X|2 ⌉ ≤
5|X|
2 ≤ n− 1 < n, that is,

⋃

x∈X

N [x] ( Zn. Hence X does not

dominate Zn which is a contradiction. Therefore, γ(Cay(Zn, {1, 3})) = |T | = 2⌈n5 ⌉ − 1.

Similarly, we can prove the case n ≡ 2 (mod 5).

Now, we will consider the case n ≡ 3 (mod 5). For this case, we can obtain

that T = {1, 2, 6, 7, 11, 12, . . . , n− 2, n− 1} is a dominating set of Cay(Zn, {1, 3}). Then

γ(Cay(Zn, {1, 3})) ≤ |T | = 2n+4
5 = 2⌈n5 ⌉. Assume to the contrary that there exists a

dominating set X such that |X| ≤ 2⌈n5 ⌉ − 1 = 2n−1
5 . Again by Lemma 4.1.9, we have

|
⋃

x∈X

N [x]| ≤ 5|X|
2 ≤ 2n−1

2 < 2n
2 = n. Whence, X does not dominate Zn which contradicts

to the property of the dominating set X. So we can conclude that γ(Cay(Zn, {1, 3})) =

|T | = 2⌈n5 ⌉. For the cases n ≡ 0, 4 (mod 5), we can prove them, similarly.

Proposition 4.1.11. Let n ≥ 4 be a positive integer.

Then γ(Cay(Zn, {1, 4})) ≤























3⌈n7 ⌉ if n ≡ 0, 6 (mod 7),

3⌈n7 ⌉ − 1 if n ≡ 4, 5 (mod 7),

3⌈n7 ⌉ − 2 if n ≡ 1, 2, 3 (mod 7).

Proof. Let n ≥ 4 be a positive integer.

For n ≡ 0 (mod 7), we obtain that X0 is a dominating set of Cay(Zn, {1, 4}) where

X0 = {1, 8, 15, 22, . . . , n− 6} ∪ {3, 10, 17, 24, . . . , n− 4} ∪ {6, 13, 20, 27, . . . , n− 1}

which implies that γ(Cay(Zn, {1, 4})) ≤ |X0| = 3⌈n7 ⌉.

For n ≡ 1 (mod 7), we obtain that X1 is a dominating set of Cay(Zn, {1, 4}) where

X1 = {1, 8, 15, 22, . . . , n} ∪ {3, 10, 17, 24, . . . , n− 5} ∪ {6, 13, 20, 27, . . . , n− 2}

which implies that γ(Cay(Zn, {1, 4})) ≤ |X1| = 3⌈n7 ⌉ − 2.

For n ≡ 2 (mod 7), we obtain that X2 is a dominating set of Cay(Zn, {1, 4}) where

X2 = {1, 8, 15, 22, . . . , n− 1} ∪ {3, 10, 17, 24, . . . , n− 6} ∪ {6, 13, 20, 27, . . . , n− 3}
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which implies that γ(Cay(Zn, {1, 4})) ≤ |X2| = 3⌈n7 ⌉ − 2.

For n ≡ 3 (mod 7), we obtain that X3 is a dominating set of Cay(Zn, {1, 4}) where

X3 = {1, 8, 15, 22, . . . , n− 2} ∪ {3, 10, 17, 24, . . . , n− 7} ∪ {6, 13, 20, 27, . . . , n− 4}

which implies that γ(Cay(Zn, {1, 4})) ≤ |X3| = 3⌈n7 ⌉ − 2.

For n ≡ 4 (mod 7), we obtain that X4 is a dominating set of Cay(Zn, {1, 4}) where

X4 = {1, 8, 15, 22, . . . , n− 3} ∪ {3, 10, 17, 24, . . . , n− 1} ∪ {6, 13, 20, 27, . . . , n− 5}

which implies that γ(Cay(Zn, {1, 4})) ≤ |X4| = 3⌈n7 ⌉ − 1.

For n ≡ 5 (mod 7), we obtain that X5 is a dominating set of Cay(Zn, {1, 4}) where

X5 = {1, 8, 15, 22, . . . , n− 4} ∪ {3, 10, 17, 24, . . . , n− 2} ∪ {6, 13, 20, 27, . . . , n− 6}

which implies that γ(Cay(Zn, {1, 4})) ≤ |X5| = 3⌈n7 ⌉ − 1.

For n ≡ 6 (mod 7), we obtain that X6 is a dominating set of Cay(Zn, {1, 4}) where

X6 = {1, 8, 15, 22, . . . , n− 5} ∪ {3, 10, 17, 24, . . . , n− 3} ∪ {6, 13, 20, 27, . . . , n}

which implies that γ(Cay(Zn, {1, 4})) ≤ |X6| = 3⌈n7 ⌉.

Proposition 4.1.12. Let n ≥ 5 be a positive integer. Then γ(Cay(Zn, {1, 5})) ≤ ⌈
n
3 ⌉+1.

Proof. Let n ≥ 5 be a positive integer.

For n ≡ 0 (mod 3), we obtain that X0 = {1, 2, 4, 7, 10, 13, . . . , n− 2} is a dominating

set of Cay(Zn, {1, 5}) which leads to γ(Cay(Zn, {1, 5})) ≤ |X0| = ⌈
n
3 ⌉+ 1.

For n ≡ 1 (mod 3), we obtain that X1 = {1, 2, 4, 7, 10, 13, . . . , n} is a dominating

set of Cay(Zn, {1, 5}) which leads to γ(Cay(Zn, {1, 5})) ≤ |X1| = ⌈
n
3 ⌉+ 1.

For n ≡ 2 (mod 3), we obtain that X2 = {1, 2, 4, 7, 10, 13, . . . , n− 1} is a dominating

set of Cay(Zn, {1, 5}) which leads to γ(Cay(Zn, {1, 5})) ≤ |X2| = ⌈
n
3 ⌉+ 1.

Since a Cayley digraph of a left group can be considered as the disjoint union of

Cayley digraphs of a group as shown in Lemma 2.2.5, we can directly obtain some results

for the domination number of a Cayley digraph Cay(Zn × L,A) of a left group Zn × L

with a connection set A as follows.

Theorem 4.1.13. Let n ≥ 2 be a positive integer and A a nonempty subset of G× L. If

p1(A) = {1, 2}, then γ(Cay(Zn × L,A)) = |L|⌈n3 ⌉.

Theorem 4.1.14. Let n ≥ 3 be a positive integer and A a nonempty subset of G× L. If

p1(A) = {1, 3}, then γ(Cay(Zn × L,A)) =











|L|(2⌈n5 ⌉ − 1) if n ≡ 1, 2 (mod 5),

2|L|⌈n5 ⌉ if n ≡ 0, 3, 4 (mod 5).
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Theorem 4.1.15. Let n ≥ 4 be a positive integer and A a nonempty subset of G× L. If

p1(A) = {1, 4}, then γ(Cay(Zn × L,A)) ≤























3|L|⌈n7 ⌉ if n ≡ 0, 6 (mod 7),

|L|(3⌈n7 ⌉ − 1) if n ≡ 4, 5 (mod 7),

|L|(3⌈n7 ⌉ − 2) if n ≡ 1, 2, 3 (mod 7).

Theorem 4.1.16. Let n ≥ 5 be a positive integer and A a nonempty subset of G× L. If

p1(A) = {1, 5}, then γ(Cay(Zn × L,A)) ≤ |L|(⌈n3 ⌉+ 1).

Now, we study the domination number of a Cayley digraph Λ of a right group G×R

relative to the appropriate connection set A. We start with the following theorem which

describes the domination number of Cayley digraphs of right groups with any connection

set A where |p2(A)| 6= |R|.

Theorem 4.1.17. Let G×R be a right group and A a connection set of Λ. If |p2(A)| 6= |R|,

then γ(Λ) = (|R| − |p2(A)|)× |G|.

Proof. Suppose that |p2(A)| 6= |R|, we have |p2(A)| < |R|. Let Y = {(x, a) ∈ G×R : a /∈

p2(A)}. We will show that Y is a dominating set of Λ. Let (b, c) ∈ (G × R) \ Y . Then

b ∈ G and c ∈ p2(A), that is, there exists d ∈ p1(A) ⊆ G such that (d, c) ∈ A. Since G is

a group, there exists y ∈ G such that b = yd. From |R| > |p2(A)|, we get that there exists

r ∈ R \ p2(A) which leads to (y, r) ∈ Y . Thus (b, c) = (yd, c) = (y, r)(d, c). Therefore, Y

is a dominating set of Λ. Hence γ(Λ) ≤ |Y | = (|R| − |p2(A)|) × |G|. Now, we assume to

the contrary that γ(Λ) < (|R| − |p2(A)|)× |G|. Let X ⊆ G×R be a dominating set of Λ

such that X is a γ−set of Λ, that is, |X| = γ(D) < (|R| − |p2(A)|)× |G|. We have

|(G×R) \X| = |G×R| − |X|

> |G||R| − [(|R| − |p2(A)|)× |G|]

= |G||R| − |G||R|+ |G||p2(A)|

= |G||p2(A)|

= |G× p2(A)|.

Thus there exists at least one element (a, b) ∈ ((G × R) \ X) \ (G × p2(A)), that is,

(a, b) ∈ (G × R) \ X and (a, b) /∈ G × p2(A). Since a ∈ G, we obtain that b /∈ p2(A).

From (a, b) ∈ (G × R) \ X and X is the dominating set of Λ, there exists (x, y) ∈ X

such that ((x, y), (a, b)) ∈ E(Λ). Thus (a, b) = (x, y)(c, d) = (xc, yd) = (xc, d) for some

(c, d) ∈ A. We conclude that b = d ∈ p2(A) which is a contradiction. Consequently,

γ(Λ) ≮ (|R| − |p2(A)|)× |G|, that is, γ(Λ) = (|R| − |p2(A)|)× |G|, as required.
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The next theorem gives the bounds of the domination number in Cayley digraphs

of right groups with any connection set A where |p2(A)| = |R|.

Theorem 4.1.18. Let G×R be a right group and A a connection set of Λ. If |p2(A)| = |R|,

then
|G||R|
|A|+1 ≤ γ(Λ) ≤ |G|.

Proof. Assume that |p2(A)| = |R|. We first prove the right inequality, that is, γ(Λ) ≤ |G|.

For each r ∈ R, let Y = {(x, r) : x ∈ G} = G×{r}. We will show that Y is a dominating

set of Λ. Let (a, b) ∈ (G × R) \ Y . Then a ∈ G and b ∈ R such that b 6= r. Since

|p2(A)| = |R| and p2(A) ⊆ R, we get that R = p2(A) and then b ∈ p2(A). Thus there

exists c ∈ p1(A) ⊆ G such that (c, b) ∈ A. Since G is a group, there exists g ∈ G such

that a = gc. We obtain that (a, b) = (gc, b) = (g, r)(c, b) where (g, r) ∈ Y . Hence Y is the

dominating set of Λ. Therefore, γ(Λ) ≤ |Y | = |G× {r}| = |G|.

Now, we will prove the left inequality. Let X be the dominating set of Λ such that

X is a γ−set of Λ, that is, |X| = γ(Λ). Then for each (a, b) ∈ (G × R) \X, we get that

(a, b) = (x, y)(s, t) for some (x, y) ∈ X and (s, t) ∈ A which implies that (G×R)\X ⊆ XA.

Hence |(G × R) \X| ≤ |XA|. Since every element of X has the same out-degree |A|, we

can easily obtain that

γ(Λ)|A| = |X||A| ≥ |XA| ≥ |(G×R) \X| = |G×R| − |X| = |G||R| − γ(Λ).

Then γ(Λ)|A| ≥ |G||R| − γ(D) which leads to |G||R| ≤ γ(Λ)|A| + γ(Λ) = γ(Λ)(|A| + 1).

So we can conclude that γ(Λ) ≥ |G||R|
|A|+1 .

The following example illustrates the sharpness of those bounds which are stated in

Theorem 4.1.18.

Example 4.1.19. Let Z3 ×R be a right group where Z3 is a group of integers

modulo 3 under the addition and R = {r1, r2} is a right zero semigroup.

(1). Consider the Cayley digraph Cay(Z3 ×R, {(2, r1), (2, r2)}) in Figure 4.3.

We have X = {(0, r1), (1, r1), (2, r1)} is a γ−set of Cay(Z3×R, {(2, r1), (2, r2)}) and then

γ(Cay(Z3 ×R, {(2, r1), (2, r2)})) = |X| = 3 = |Z3|.

Similarly, γ(Cay(Zn ×R, {(2, r1), (2, r2)})) = |Zn| where n ∈ N.

(2). Consider the Cayley digraph Cay(Z4 ×R, {(0, r1), (1, r1), (1, r2)}) in Figure 4.4.

We have Y = {(0, r2), (2, r2)} is a γ−set of Cay(Z4 × R, {(0, r1), (1, r1), (1, r2)}) and

γ(Cay(Z4 ×R, {(0, r1), (1, r1), (1, r2)})) = |Y | = 2 = |Z4×R|

|{(0,r1),(1,r1),(1,r2)}|+1
.
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Similarly, we also obtain that γ(Cay(Z2k ×R, {(0, r1), (1, r1), (1, r2)})) = k = 4k
4

= |Z2k×R|

|{(0,r1),(1,r1),(1,r2)}|+1
with a γ−set {(0, r2), (2, r2), (4, r2), . . . , (2k − 2, r2)} where k ∈ N.

0̄r1 1̄r1 2̄r1

1̄r2 2̄r20̄r2

Figure 4.3: Cay(Z3 ×R, {(2, r1), (2, r2)}).

0̄r1 1̄r1 2̄r1

1̄r2 2̄r20̄r2

3̄r1

3̄r2

Figure 4.4: Cay(Z4 ×R, {(0, r1), (1, r1), (1, r2)}).

The following theorems present the value for the domination number of Cayley

digraphs of right groups according to the specific connection sets. We begin with two

lemmas which are referred in the proof of theorems.

Lemma 4.1.20. Let G×R be a right group and A a connection set of Λ such that p1(A) =

G, p2(A) = R, and |A| = |R|. For each (x1, r1), (x2, r2) ∈ G × R, if (x1, r1)(y1, s1) =

(x2, r2)(y2, s2) for some (y1, s1), (y2, s2) ∈ A, then x1 = x2.

Proof. Let (x1, r1), (x2, r2) ∈ G×R be such that (x1, r1)(y1, s1) = (x2, r2)(y2, s2) for some

(y1, s1), (y2, s2) ∈ A. Thus (x1y1, r1s1) = (x2y2, r2s2), that is, (x1y1, s1) = (x2y2, s2).

Then x1y1 = x2y2 and s1 = s2. Since p1(A) = G, p2(A) = R, and |A| = |R|, these imply
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that y1 = y2. From x1y1 = x2y2 where x1, x2, y1, y2 are elements of a group G and y1 = y2,

we can conclude that x1 = x2 by the cancellation law.

Lemma 4.1.21. Let G × R be a right group and A a connection set of Λ such that

A = {a} × R where a ∈ G. Let Y be a dominating set of Λ. If there exists x ∈ G such

that x /∈ p1(Y ), then (xa, r) ∈ Y for all r ∈ R.

Proof. Let Y be a dominating set of Λ. Suppose that there exists x ∈ G such that

x /∈ p1(Y ) and assume to the contrary that there exists r ∈ R such that (xa, r) /∈ Y . Since

Y is a dominating set of Λ, there exists (y, r′) ∈ Y such that ((y, r′), (xa, r)) ∈ E(Λ), that

is, (xa, r) = (y, r′)(a, r) where (a, r) ∈ A. Hence xa = ya, it follows that x = y ∈ p1(Y )

which contradicts to our supposition. Therefore, (xa, r) ∈ Y for all r ∈ R.

Theorem 4.1.22. Let G × R be a right group and A a connection set of Λ such that

p1(A) = G, p2(A) = R, and |A| = |R|. Then γ(Λ) = |G|.

Proof. Assume that the conditions hold. Since |p2(A)| = |R|, we obtain that γ(Λ) ≤ |G| by

Theorem 4.1.18. Now, suppose that there exists a dominating set Y such that |Y | < |G|.

Then there exists g ∈ G such that g /∈ p1(Y ). We first prove that for each r ∈ R, (g, r)A ⊆

Y . Let r ∈ R and (x, y) ∈ (g, r)A. Then (x, y) = (g, r)(g1, r1) for some (g1, r1) ∈ A.

If (x, y) /∈ Y , then there exists (g′, r′) ∈ Y such that (x, y) = (g′, r′)(g2, r2) for some

(g2, r2) ∈ A since Y is a dominating set of Λ. Thus (g, r)(g1, r1) = (x, y) = (g′, r′)(g2, r2)

where (g1, r1), (g2, r2) ∈ A. By Lemma 4.1.20, we can conclude that g = g′ ∈ p1(Y ) which

is a contradiction. Hence (x, y) ∈ Y which leads to (g, r)A ⊆ Y . Since p1(A) = G, we

obtain that the identity element e of G lies in p1(A). Then there exists s ∈ p2(A) such that

(e, s) ∈ A and (g, s) = (g, r)(e, s) ∈ (g, r)A ⊆ Y . Whence, g ∈ p1(Y ) which contradicts to

the above supposition. Therefore, γ(Λ) = |G|.

Theorem 4.1.23. Let G × R be a right group and A a connection set of Λ such that

A = {a} ×R where a ∈ G. Then γ(Λ) = |G|.

Proof. Let G × R be a right group and A a connection set of Λ such that A = {a} × R

where a ∈ G. Then |p2(A)| = |R|. By Theorem 4.1.18, we obtain that γ(Λ) ≤ |G|.

Assume that there exists a dominating set Y of Λ such that |Y | < |G|. Then there exists

x ∈ G such that x /∈ p1(Y ). Let U = {u ∈ G : u /∈ p1(Y )}. Assume that |U | = k for

some k ∈ N in which 1 ≤ k ≤ |G| − 1. For each u ∈ U , we obtain by Lemma 4.1.21 that

(ua, r) ∈ Y for all r ∈ R. Hence there exists at least one element q ∈ p1(Y ) such that

(q, r) ∈ Y for all r ∈ R. Let V = {v ∈ p1(Y ) : (v, r) ∈ Y for all r ∈ R}. Assume that
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|V | = l for some l ∈ N such that 1 ≤ l ≤ |G| − k. By Lemma 4.1.21 again, we get that

|Y | ≥ |R|l + [(|G| − k) − l] + (k − l) = |R|l + |G| − 2l = |G| + (|R| − 2)l. Since |R| ≥ 2,

we obtain that |Y | ≥ |G| + (|R| − 2)l ≥ |G|, a contradiction. Therefore, γ(Λ) = |G|, as

required.

Theorem 4.1.24. Let G×R be a right group and A = K×R a connection set of Λ where

K is any subgroup of G. Then γ(Λ) = |G|
|K| .

Proof. Let G × R be a right group and A = K × R a connection set of Λ where K

is a subgroup of a group G. Consider the set of all left cosets of K in G, G/K =

{g1K, g2K, . . . , gtK} for some t ∈ N, we obtain that the index of K in G equals t, that

is, [G : K] = t. Let I = {1, 2, . . . , t} be an index set. By Lemma 2.2.7, we have

(G×R)/〈A〉 = {giK×R : i ∈ I} such that G×R =
.
⋃

i∈I

(giK×R) and Λ =
.
⋃

i∈I

((giK×R), Ei)

where ((giK×R), Ei) is a strong subdigraph of Λ in which ((giK×R), Ei) ∼= Cay(〈A〉, A)

for all i ∈ I. Consequently,

γ(Λ) = γ

(

.
⋃

i∈I

((giK ×R), Ei)

)

=
t
∑

i=1
γ((giK ×R), Ei) = t[γ(Cay(〈A〉, A))].

By Lemma 2.2.8, we can conclude that 〈A〉 = 〈p1(A)〉 × p2(A) = 〈K〉 ×R = K ×R = A.

In this case, we can prove that γ(Cay(〈A〉, A)) = 1 since 〈A〉 = A. So we can conclude

that γ(D) = t = [G : K] = |G|
|K| which completes the proof.

4.2 Total Domination Number

For the total domination number of a Cayley digraph ∆ of a rectangular group

G×L×R with a connection set A, we obtain that the total domination number of ∆ will

exist when p3(A) = R. If we define A as in Theorem 4.1.1, then we can say that the total

domination number of ∆ will exist when p2(A) = R which is considered in Cayley digraphs

of right groups. So we will prove this condition in the part of the total domination number

of Cayley digraphs of right groups (Theorem 4.2.11).

Now, we will present the result for the total domination number of a Cayley digraph

of a rectangular group in the term of the total domination number of a Cayley digraph of

a right group with a given connection set.

Theorem 4.2.1. Let G × L × R be a rectangular group and A a connection set of ∆.

If A = {(g, r) ∈ G × R : (g, l, r) ∈ A for some l ∈ L} such that p2(A) = R, then

γt(∆) = |L| · γt(Cay(G×R,A)).

Proof. The proof of this theorem is similar to the proof of Theorem 4.1.1.
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Next, we give some results of the total domination number of Cayley digraphs of

left groups with their connection sets. We start with the lemma which gives the condition

for the existence of total dominating sets in Cayley digraphs of left groups.

Lemma 4.2.2. Let G × L be a left group and A a connection set of Γ. Then the total

dominating set of Γ exists if and only if A 6= ∅.

Proof. Suppose that the total dominating set of D exists, say T . By the definition of T ,

we obtain that for each (g, l) ∈ G×L, (g, l) is dominated by (g1, l1) for some (g1, l1) ∈ T ,

that is, ((g1, l1), (g, l)) ∈ E(D). Then (g, l) = (g1, l1)(a1, l2) where (a1, l2) ∈ A which

implies that A 6= ∅.

Conversely, assume that the connection set A 6= ∅, that is, there exists (a, l) ∈

A. Hence for each (g1, l1) ∈ G × L, we obtain that (g1, l1) = (g1a
−1, l1)(a, l) in which

(g1a
−1, l1) ∈ G × L. Thus (g1, l1) is dominated by (g1a

−1, l1) in G × L. If we take

T = G× L, then we can conclude that T is a total dominating set of Γ, that is, the total

dominating set of Γ always exists when A 6= ∅.

The following result gives us the total domination number of a Cayley digraph Γ of

a left group G × L with a connection set A in the term of the total domination number

of a Cayley digraph of its subgroup.

Theorem 4.2.3. Let G/〈p1(A)〉 = {g1〈p1(A)〉, g2〈p1(A)〉, . . . , gk〈p1(A)〉} for some k ∈ N.

Then γt(Γ) = k · |L| · γt(Cay(〈p1(A)〉, p1(A))) where A is a connection set of Γ.

Proof. The proof of this theorem is similar to the proof of Theorem 4.1.2.

Proposition 4.2.4. Let S = Dn × L be a left group and A a nonempty subset of S such

that the identity element e /∈ p1(A) and for each x ∈ p1(A), x
−1 must belong to p1(A).

Let n ≥ 3 be an integer, c = ⌊n−12 ⌋ and k, t be integers such that 1 ≤ k ≤ c and 1 ≤ t ≤ n.

Let p1(A) = {r
a1 , ra2 , . . . , rak , rn−ak , rn−ak−1 , . . . , rn−a1 , srb1 , srb2 , . . . , srbt} ⊆ Dn.

If d = max{a1, a2 − a1, a3 − a2, . . . , ak − ak−1, b1, b2 − b1, b3 − b2, . . . , bt − bt−1}, then

γt(Cay(S,A)) ≤ 2d|L|⌈ n
d+2ak

⌉.

Proof. This proposition is true by Lemma 2.2.5 and Lemma 2.3.4.

Proposition 4.2.5. Let n ≥ 3 be an odd integer and c = n−1
2 . Let S = Zn × L be a left

group and A a nonempty subset of S such that

p1(A) = {c, n− c, c− 1, n− (c− 1), . . . , c− (k − 1), n− (c− (k − 1))}

for some k ∈ N in which 1 ≤ k ≤ c. Then γt(Cay(S,A)) = |L|⌈
n
2k⌉.
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Proof. This proposition follows from Lemma 2.2.5 and Lemma 2.3.5, directly.

Proposition 4.2.6. Let n ≥ 3 be an even integer and c = ⌊n−12 ⌋. Let S = Zn × L be a

left group and A a nonempty subset of S such that

p1(A) = {
n
2 , c, n− c, c− 1, n− (c− 1), . . . , c− (k − 1), n− (c− (k − 1))}

for some k ∈ N in which 1 ≤ k ≤ c. Then γt(Cay(S,A)) = |L|⌈
n

2k+1⌉.

Proof. This proposition follows from Lemma 2.2.5 and Lemma 2.3.6, directly.

Before we give the next lemmas, we will define some notations which are used in

the proof. Let I = [a, b] be an interval of consecutive integers x such that a ≤ x ≤ b.

Furthermore, let (V,E) be a digraph and for each u ∈ V , let N(u) = {v ∈ V : (u, v) ∈ E}

be the set of all neighbours of a vertex u and N(A) =
⋃

a∈A

N(a) where A is a subset of V .

Lemma 4.2.7. Let n ≥ 3 be an odd integer. Let m = n−1
2 and k be a fixed integer such that

1 ≤ k ≤ m. If A = {m,m− 1,m− 2, . . . ,m− (k − 1)} ⊆ Zn, then γt(Cay(Zn, A)) = ⌈
n
k
⌉.

Proof. Assume that A = {m,m− 1,m− 2, . . . ,m− (k − 1)} and let l = ⌈n
k
⌉. Since every

vertex in Zn has an out-degree k, from the definition of the total domination number, it

follows that γt(Cay(Zn, A)) ≥ l. Let x = m+ k + 1 and

Xt = {x, x+ k, x+ 2k, . . . , x+ (l − 1)k}.

Note that |Xt| = l. Since l = ⌈n
k
⌉, we get that n = (l − 1)k + j for some j ∈ N with

1 ≤ j ≤ k. Thus V (Cay(Zn, A)) can be partitioned into l intervals as follows:

I1 = [1, k], I2 = [k + 1, 2k], I3 = [2k + 1, 3k], . . . , Il−1 = [(l − 2)k + 1, (l − 1)k], and

Il = [(l − 1)k + 1, n].

Note that |Ii| = k for all i with 1 ≤ i ≤ l − 1 and 1 ≤ |Il| ≤ k. For any 0 ≤ i ≤ l − 2, we

have x + ik ∈ Xt and Ii+1 = [ik + 1, (i + 1)k]. Since A is a set of k consecutive integers

with the least element m− (k − 1) and from (x+ ik) + (m− (k − 1)) ≡ ik + 1 (mod n),

we obtain that N(x+ ik) = Ii+1. Therefore,

(x+ (l − 1)k) +m− (k − 1) ≡ (l − 1)k + 1 (mod n) and so Il ⊆ N(x+ (l − 1)k).

Consequently,

V (Cay(Zn, A)) = I1 ∪ I2 ∪ · · · ∪ Il−1 ∪ Il

⊆ N(x) ∪N(x+ k) ∪ · · · ∪N(x+ (l − 2)k) ∪N(x+ (l − 1)k)

=
⋃

y∈Xt

N(y) = N(Xt).
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Thus Xt is a total dominating set of Cay(Zn, A). Hence γt(Cay(Zn, A)) ≤ |Xt| = l. So

we can conclude that γt(Cay(Zn, A)) = l = ⌈n
k
⌉, as desired.

Lemma 4.2.8. Let n ≥ 3 be an even integer. Let m = ⌊n−12 ⌋ and k be a fixed integer such

that 1 ≤ k ≤ m. If A = {n2 ,m,m−1, . . . ,m−(k−1)} ⊆ Zn, then γt(Cay(Zn, A)) = ⌈
n

k+1⌉.

Proof. Suppose that A = {n2 ,m,m−1, . . . ,m−(k−1)}. Then |A| = k+1 and let l = ⌈ n
k+1⌉.

Since every vertex of Cay(Zn, A) has an out-degree k+1, we also have γt(Cay(Zn, A)) ≥ l.

Let x = m + k + 2 and Xt = {x, x + (k + 1), x + 2(k + 1), . . . , x + (l − 1)(k + 1)}. By

partitioning the set of all vertices of Cay(Zn, A) into l intervals as follows:

I1 = [1, k + 1], I2 = [(k + 1) + 1, 2(k + 1)], . . . , Il−1 = [(l − 2)(k + 1) + 1, (l − 1)(k + 1)],

and Il = [(l − 1)(k + 1) + 1, n],

we can prove the remaining part of this lemma by applying the proof of the previous

lemma, similarly. Hence we can get the similar result of the previous proof, that is,

γt(Cay(Zn, A)) ≤ |Xt| = l. Therefore, γt(Cay(Zn, A)) = l = ⌈ n
k+1⌉.

Now, we apply the above two lemmas to obtain the results for the total domination

number of a Cayley digraph of a left group Zn × L with an according connection set.

Theorem 4.2.9. Let n ≥ 3 be an odd integer. Let c = n−1
2 and k be a fixed integer such

that 1 ≤ k ≤ c. Let S = Zn × L be a left group and A a nonempty subset of S.

If p1(A) = {c, c− 1, c− 2, . . . , c− (k − 1)}, then γt(Cay(S,A)) = |L|⌈
n
k
⌉.

Proof. This theorem is a direct result from Lemma 2.2.5 and Lemma 4.2.7.

Theorem 4.2.10. Let n ≥ 3 be an even integer. Let c = ⌊n−12 ⌋ and k be a fixed integer

such that 1 ≤ k ≤ c. Let S = Zn × L be a left group and A a nonempty subset of S.

If p1(A) = {
n
2 , c, c− 1, . . . , c− (k − 1)}, then γt(Cay(S,A)) = |L|⌈

n
k+1⌉.

Proof. This theorem follows from Lemma 2.2.5 and Lemma 4.2.8, directly.

Now, we present some results of the total domination number of Cayley digraphs

of right groups with their connection sets. The following theorem gives the necessary and

sufficient conditions for the existence of the total dominating set of a Cayley digraph Λ

of a right group G×R with a connection set A.

Theorem 4.2.11. Let G × R be a right group and A a connection set of Λ. Then the

total dominating set of Λ exists if and only if p2(A) = R.
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Proof. We first prove the necessary condition by assuming that the total dominating set

of Λ exists, say T . We will show that p2(A) = R. By the definition of the connection set

A, we have known that p2(A) ⊆ R. Let r ∈ R. Then for each a ∈ G, we get that (a, r) is

dominated by a vertex (x, y) for some (x, y) ∈ T since T is the total dominating set of Λ.

Thus there exists (a′, r′) ∈ A such that (a, r) = (x, y)(a′, r′) = (xa′, yr′) = (xa′, r′) which

implies that r = r′, that is, r ∈ p2(A). Therefore, p2(A) = R.

Conversely, we prove the sufficient condition by supposing that p2(A) = R. We will

prove that every vertex has an in-degree in Λ. Let (g, r) ∈ G× R. Then r ∈ R = p2(A).

Thus there exists a ∈ p1(A) such that (a, r) ∈ A. We obtain that

((ga−1, r′), (g, r)) = ((ga−1, r′), (ga−1, r′)(a, r)) ∈ E(Λ),

that is, (g, r) is dominated by (ga−1, r′). So we can conclude that every vertex of Λ always

has an in-degree in Λ. If we take T = V (Λ) = G × R, then we can see that T is a total

dominating set of Λ since for each (x, y) ∈ G×R, (x, y) is dominated by some vertices in

T . Hence the total dominating set of Λ always exists if p2(A) = R.

Consequently in this part, we need to consider the connection set A of Λ in the case

where p2(A) = R. Next, we will show a lower bound and an upper bound of the total

domination number of a Cayley digraph of a right group with a given connection set.

Theorem 4.2.12. Let G × R be a right group and A a connection set of Λ such that

p2(A) = R. Then
|G||R|
|A| ≤ γt(Λ) ≤ |G|.

Proof. Let A be a connection set of Λ such that p2(A) = R. We have known that the

total dominating set of Λ exists by Theorem 4.2.11. For each r ∈ R, we let

T = {(g, r) : g ∈ G} = G× {r}.

We will show that T is a total dominating set of Λ. Let (x, y) ∈ S = G × R. Since

p2(A) = R, we get that y ∈ p2(A) which implies that there exists z ∈ p1(A) such that

(z, y) ∈ A. Since G is a group and x, z ∈ G, we obtain that x = hz for some h ∈ G. Thus

there exists (h, r) ∈ T such that (x, y) = (hz, y) = (h, r)(z, y). Hence (x, y) is dominated

by the vertex (h, r) in T . We can conclude that T is the total dominating set of Λ which

leads to the fact that

γt(Λ) ≤ |T | = |G× {r}| = |G|.

Next, we will show that γt(Λ) ≥
|G||R|
|A| . Assume to the contrary that there exists a

total dominating set T ′ such that |T ′| < |G||R|
|A| . Thus |T

′A| ≤ |T ′||A| < |G||R| = |G× R|
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which implies that there exists at least one element (p, q) ∈ G×R but (p, q) /∈ T ′A. Hence

there is no an element in T ′ which dominates (p, q), this contradicts to the property of

the total dominating set T ′. Consequently, γt(Λ) ≥
|G||R|
|A| , as required.

In the following example, we illustrate the sharpness of those bounds which are

given in Theorem 4.2.12.

Example 4.2.13. Let Z3 ×R be a right group where Z3 is a group of integers

modulo 3 under the addition and R = {r1, r2} is a right zero semigroup.

(1). Consider the Cayley digraph Cay(Z3 ×R, {(2, r1), (0, r2), (2, r2)}).

0̄r1 1̄r1 2̄r1

1̄r2 2̄r20̄r2

Figure 4.5: Cay(Z3 ×R, {(2, r1), (0, r2), (2, r2)}).

We obtain that X = {(0, r1), (1, r1), (2, r1)} is a γt−set of the Cayley digraph

Cay(Z3 ×R, {(2, r1), (0, r2), (2, r2)}) and then

γt(Cay(Z3 ×R, {(2, r1), (0, r2), (2, r2)})) = |X| = 3 = |Z3|.

Similarly, we can obtain that γt(Cay(Zn×R, {(2, r1), (0, r2), (2, r2)})) = |Zn| with a γt−set

Zn × {r1} where n ∈ N.
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(2). Consider Cay(Z3 ×R, {(0, r1), (1, r1), (2, r1), (0, r2), (1, r2), (2, r2)}).

0̄r1 1̄r1 2̄r1

1̄r2 2̄r20̄r2

Figure 4.6: Cay(Z3 ×R, {(0, r1), (1, r1), (2, r1), (0, r2), (1, r2), (2, r2)}).

Then Y = {(0, r1)} is a γt−set of Cay(Z3×R, {(0, r1), (1, r1), (2, r1), (0, r2), (1, r2), (2, r2)})

and hence γt(Cay(Z3 × R, {(0, r1), (1, r1), (2, r1), (0, r2), (1, r2), (2, r2)})) = |Y | = |Z3×R2|
|A|

where A = {(0, r1), (1, r1), (2, r1), (0, r2), (1, r2), (2, r2)}.

Similarly, we get that γt(Cay(Z3k × R, {(0, r1), (1, r1), (2, r1), (0, r2), (1, r2), (2, r2)})) =

|Z3k×R2|
|A| = k with a γt−set {(0, r1), (3, r1), (6, r1), . . . , (3k − 3, r1)} where k ∈ N.
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