
CHAPTER 5

Independence on Cayley Digraphs

of Rectangular Groups

In this chapter, we propose some results about independence parameters consisting

of the independence number, weakly independence number, dipath independence number,

and weakly dipath independence number on Cayley digraphs of rectangular groups with

respect to their connection sets. Furthermore, we study those independence parameters

on Cayley digraphs of left groups and right groups which are semigroups that encode some

structures of rectangular groups.

For a connection set A of a Cayley digraph, if p1(A) contains the identity e of a

group G, then we can observe that every vertex of the digraph has a loop attaching to

itself which does not affect to those independence parameters. Throughout this chapter,

we thus suffice to consider the connection set A in which the identity e /∈ p1(A).

5.1 Independence Number

This section presents some results of an independence number on Cayley digraphs

of rectangular groups including left groups and right groups. Recall that, the digraph ∆

denotes a Cayley digraph Cay(G×L×R,A) of a rectangular group G×L×R with respect

to a connection set A. In fact, the digraph ∆ can be considered as the disjoint union of

|L| strong subdigraphs (G × {ℓ} × R,Eℓ) such that (G × {ℓ} × R,Eℓ) is isomorphic to

Cay(G×R,A) for all ℓ ∈ L where

A = {(a, λ) ∈ G×R : (a, l, λ) ∈ A for some l ∈ L}.

So those results on Cayley digraphs of rectangular groups will depend on the results from

corresponding Cayley digraphs of right groups, certainly. Some results of the parameter

α of the digraph ∆ are obtained as follows.

Theorem 5.1.1. If I is an α−set of ∆, then I ∩ (G×{ℓ}×R) is an α−set of the digraph

(G× {ℓ} ×R,Eℓ) for all ℓ ∈ L.
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Proof. Let I be an α−set of ∆ and ℓ ∈ L. We will show that I∩ (G×{ℓ}×R) is an α−set

of the digraph (G×{ℓ}×R,Eℓ). It is obvious that I ∩ (G×{ℓ}×R) is a nonempty subset

of G×{ℓ}×R. Since I ∩ (G×{ℓ}×R) ⊆ I, we can conclude that I ∩ (G×{ℓ}×R) is an

independent set of (G × {ℓ} × R,Eℓ). Assume that there exists an independent set J of

(G× {ℓ} ×R,Eℓ) such that |J | > |I ∩ (G× {ℓ} ×R)|. Therefore, [I \ (G× {ℓ} ×R)] ∪ J

is an independent set of ∆ and we also obtain that

|[I \ (G× {ℓ} ×R)] ∪ J | = |I \ (G× {ℓ} ×R)|+ |J |

> |I \ (G× {ℓ} ×R)|+ |I ∩ (G× {ℓ} ×R)|

= |[I \ (G× {ℓ} ×R)] ∪ [I ∩ (G× {ℓ} ×R)]|

= |I| which is a contradiction.

Consequently, our assertion is completely proved.

Theorem 5.1.2. If T is an α−set of Cay(G × R,A), then
⋃

(t,λ)∈T

({t} × L × {λ}) is an

α−set of ∆.

Proof. Suppose that T is an α−set of Cay(G × R,A). Let
⋃

(t,λ)∈T

({t} × L × {λ}) be

denoted by K. We will prove that K is an α−set of ∆. It is clear that K is a nonempty

subset of G×L×R. We first show that K is independent in ∆. Assume that there exist

(t1, l1, λ1), (t2, l2, λ2) ∈ K such that they are not independent, that is,

((t1, l1, λ1), (t2, l2, λ2)) ∈ E(∆) or ((t2, l2, λ2), (t1, l1, λ1)) ∈ E(∆).

Without loss of generality, we may suppose that ((t1, l1, λ1), (t2, l2, λ2)) ∈ E(D), that is,

(t2, l2, λ2) = (t1, l1, λ1)(a, l, µ) = (t1a, l1, µ) for some (a, l, µ) ∈ A. Hence (a, µ) ∈ A and

(t2, λ2) = (t1a, µ) = (t1, λ1)(a, µ) which implies that ((t1, λ1), (t2, λ2)) ∈ E(Cay(G×R,A))

where (t1, λ1), (t2, λ2) ∈ T which contradicts to the independence of T . Thus K is an

independent set of ∆. We now assume that there exists an independent set M of ∆

such that α(∆) = |M | > |K| = |
⋃

(t,λ)∈T

({t} × L × {λ})| = |T ||L|. Then there exists

ℓ ∈ L such that |M ∩ (G × {ℓ} × R)| > |T |. Since M is an α−set of ∆, we obtain

that M ∩ (G × {ℓ} × R) is an α−set of the digraph (G × {ℓ} × R,Eℓ) by Theorem

5.1.1. Thus α(G × {ℓ} × R,Eℓ) = |M ∩ (G × {ℓ} × R)|. Since we have known that

(G× {ℓ} ×R,Eℓ) ∼= Cay(G×R,A), we can conclude that

α(Cay(G×R,A)) = α(G× {ℓ} ×R,Eℓ) = |M ∩ (G× {ℓ} ×R)| > |T |

which is a contradiction because T is an α−set of Cay(G × R,A). Consequently, the set
⋃

(t,λ)∈T

({t} × L× {λ}) is an α−set of ∆, as required.
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Next, we will show some results of an independence number of Cayley digraphs

of left groups. Indeed, a Cayley digraph Γ of a left group G × L with a connection set

A is the disjoint union of strong subdigraphs which each subdigraph is isomorphic to

Cay(〈p1(A)〉, p1(A)) as stated in Lemma 2.2.6. Thus we first need to consider the Cayley

digraph Cay(〈p1(A)〉, p1(A)) for extending the results to the Cayley digraphs of left groups

with corresponding connection sets. Firstly, we show some facts of an independence

number on Cayley digraphs of left groups.

Let A be a connection set of Γ. Thus p1(A) is a connection set of Cay(G, p1(A)).

Let A∗ be another connection set of a Cayley digraph Γ of a left group G× L such that

p1(A
∗) = p1(A) ∪ C where C ⊆ {c−1 : c ∈ p1(A)}.

Clearly, p1(A
∗) ⊆ 〈p1(A)〉. We then obtain the following theorem.

Theorem 5.1.3. α(Cay(〈p1(A)〉, p1(A))) = α(Cay(〈p1(A)〉, p1(A
∗))).

Proof. Let H := Cay(〈p1(A)〉, p1(A)) and H∗ := Cay(〈p1(A)〉, p1(A
∗)) be Cayley digraphs

of 〈p1(A)〉 with connection sets p1(A) and p1(A
∗), respectively. Since p1(A) ⊆ p1(A

∗),

we get that H is a spanning subdigraph of H∗ which easily implies that α(H∗) ≤ α(H).

Suppose that α(H) = k with a corresponding α−set X = {x1, x2, . . . , xk} for some k ∈ N.

We will show that X is independent in H∗. Assume that there exist xi and xj in X such

that they are not independent, that is, (xi, xj) ∈ E(H∗) or (xj , xi) ∈ E(H∗). Without

loss of generality, we can take (xi, xj) ∈ E(H∗). Hence xj = xia for some a ∈ p1(A
∗).

If a ∈ p1(A), then (xi, xj) ∈ E(H) which is a contradiction since xi and xj are

independent in H.

If a = c−1 for some c ∈ p1(A), then we have xj = xia = xic
−1 which implies that

xi = xjc, that is, (xj , xi) ∈ E(H) which again contradicts to the property of the set X.

Therefore, X is an independent set of H∗ which directly implies that α(H) = k =

|X| ≤ α(H∗). So we can conclude that α(H) = α(H∗).

The following lemma describes a lower bound and an upper bound of an indepen-

dence number on Cayley digraphs of groups which is the useful result to obtain those

bounds on Cayley digraphs of left groups.

Lemma 5.1.4. Let Cay(G,B) be a Cayley digraph of a group G with a connection set B.

Then
|G|
|〈B〉|

⌈

|〈B〉|
2|B|+1

⌉

≤ α(Cay(G,B)) ≤ |G|
|〈B〉|

⌊

|〈B〉|
2

⌋

.

Proof. Let B be a connection set of Cay(G,B). It is the fact that Cay(G,B) is the disjoint

union of |G|
|〈B〉| subdigraphs such that each subdigraph is isomorphic to Cay(〈B〉, B), so we
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need to consider an independence number of Cay(〈B〉, B). Suppose that α(Cay(〈B〉, B)) =

k for some k ∈ N. Since every vertex has an in-degree |B| and an out-degree |B|, we get

that k(2|B| + 1) ≥ |〈B〉| and whence k ≥
⌈

|〈B〉|
2|B|+1

⌉

. Next, we suppose that there exists

an α−set X of Cay(〈B〉, B) in which |X| ≥
⌊

|〈B〉|
2

⌋

+ 1. Then for each b ∈ B and for all

x ∈ X, we conclude that xb /∈ X by the independence of the set X. Hence X ∩Xb = ∅.

Thus |〈B〉| ≥ |X ∪Xb| = |X|+ |Xb| ≥
⌊

|〈B〉|
2

⌋

+
⌊

|〈B〉|
2

⌋

+ 2

= |〈B〉|−t
2 + |〈B〉|−t

2 + 2 where t ∈ {0, 1}

= 2|〈B〉|−2t+4
2

= |〈B〉| − t+ 2 > |〈B〉|.

This gives a contradiction. By applying the fact mentioned in the beginning of the proof,

we can conclude that α(Cay(G,B)) satisfies the lower bound and upper bound stated in

the above assertion.

Theorem 5.1.5. Let Γ be a Cayley digraph of a left group G × L with a connection set

A. Then
|G||L|
|〈p1(A)〉|

⌈

|〈p1(A)〉|
2|p1(A)|+1

⌉

≤ α(Γ) ≤ |G||L|
|〈p1(A)〉|

⌊

|〈p1(A)〉|
2

⌋

.

Proof. According to Lemma 2.2.5, we obtain that Γ is the disjoint union of |L| isomorphic

subdigraphs such that each subdigraph is isomorphic to a Cayley digraph Cay(G, p1(A))

of a group G with a connection set p1(A). Thus the lower bound and upper bound of

α(Γ) are directly obtained from Lemma 5.1.4.

The following proposition illustrates the sharpness of the lower bound and upper

bound of α(Γ) shown in Theorem 5.1.5. In order to show the proposition, we need to

prescribe some notations as follows. Let A be a connection set of a Cayley digraph with

a vertex set V and an arc set E. We define

A−1 = {a−1 : a ∈ A}; N+(x) = {y ∈ V : (x, y) ∈ E}; and N−(x) = {y ∈ V : (y, x) ∈ E}.

Proposition 5.1.6. The bounds given in the above theorem are sharp.

Proof. Let G be a finite cyclic group of odd order n with the generator g and A a connec-

tion set of Γ such that p1(A) = {g, g
2, g3, . . . , g

n−1

2 }. It is obvious that 〈p1(A)〉 = G and

p1(A)∩[p1(A)]
−1 = ∅ where [p1(A)]

−1 = {a−1 : a ∈ p1(A)}. Then for each x ∈ 〈p1(A)〉, we

have |N+(x)|+|N−(x)| = n−1
2 + n−1

2 = n−1. Thus {x} is an α−set of Cay(〈p1(A)〉, p1(A)).

Therefore, α(Cay(〈p1(A)〉, p1(A))) = 1 =
⌈

|〈p1(A)〉|
2|p1(A)|+1

⌉

which leads to the lower bound of

α(Γ) by applying Lemma 2.2.5, as desired.

Next, let A be a connection set of Γ in which p1(A) = {a} where a is not the identity

of the group G and |a| = k for some an odd number k ∈ N. We will give the sharpness
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for the upper bound of an independence number of Cay(〈p1(A)〉, p1(A)). Then we can

easily investigate that the set {a, a3, a5, . . . , ak−2} is an α−set of Cay(〈p1(A)〉, p1(A)),

Consequently, α(Cay(〈p1(A)〉, p1(A))) =
⌊

k
2

⌋

=
⌊

|〈p1(A)〉|
2

⌋

. Again by Lemma 2.2.5, we

can conclude that α(Γ) = |G||L|
|〈p1(A)〉|

⌊

|〈p1(A)〉|
2

⌋

which reachs the required upper bound of

α(Γ). Hence those bounds mentioned in Theorem 5.1.5 are certainly sharp.

In this part, we present some facts about the independence number of a Cayley

digraph Λ of a right group G × R with respect to a connection set A. Throughout this

part, we also focus on the connection set A in which the identity e /∈ p1(A).

Theorem 5.1.7. Let Λ be a Cayley digraph of a right group G × R with a connection

set A such that p2(A) 6= R. Let H be a strong subdigraph of Λ induced by G × p2(A).

If Y = {y ∈ G : y ∈ p1(W )} × {γ ∈ R : γ /∈ p2(A)} where W is an α−set of H, then

α(D) ≥ max{α(H) + |Y |, (|R| − |p2(A)|)|G|}.

Proof. Suppose that A is a connection set of Λ in which p2(A) 6= R and let U = {(x, ξ) ∈

G × R : ξ /∈ p2(A)}. Thus U 6= ∅. Let (y, β), (z, γ) ∈ U . If ((y, β), (z, γ)) ∈ E(Λ),

that is, (z, γ) = (y, β)(a, λ) for some (a, λ) ∈ A, then γ = βλ = λ ∈ p2(A) which is

impossible. Similarly, if ((z, γ), (y, β)) ∈ E(Λ), then we also get a contradiction. Thus U

is an independent set of Λ which implies that α(Λ) ≥ |U | = (|R| − |p2(A)|)|G|.

Next, we will let H be a strong subdigraph of Λ which is induced by G× p2(A) and

Y = {y ∈ G : y ∈ p1(W )} × {γ ∈ R : γ /∈ p2(A)} such that W is an α−set of H. Thus

W ∩Y = ∅. We will show thatW ∪Y is an independent set of Λ. Let (x, δ), (y, η) ∈W ∪Y .

If (x, δ), (y, η) ∈ W , then they are independent in H by the property of an independent

set W . Hence they are also independent in Λ because H is the strong subdigraph of

Λ. If (x, δ), (y, η) ∈ Y and Y ⊆ U which is defined as above, then (x, δ) and (y, η) are

independent since U is an independent set of Λ. Now, we consider in the case where one is

in W and another one is in Y . Without loss of generality, we can assume that (x, δ) ∈W

and (y, η) ∈ Y . By the property of the Cayley digraph Λ of a right group G × R, we

have ((x, δ), (y, η)) /∈ E(Λ). If ((y, η), (x, δ)) ∈ E(Λ), that is, (x, δ) = (y, η)(a, λ) for some

(a, λ) ∈ A, then x = ya and δ = ηλ = λ. Since y ∈ p1(W ), there exists µ ∈ p2(W ) such

that (y, µ) ∈W and

(x, δ) = (ya, δ) = (y, µ)(a, δ) = (y, µ)(a, λ) where (a, λ) ∈ A,

that is, ((y, µ), (x, δ)) ∈ E(H) which contradicts to the independence of W . Hence (x, δ)

and (y, η) are independent in Λ. Therefore, W ∪ Y is an independent set of Λ which
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implies that α(Λ) ≥ |W ∪ Y | = |W | + |Y | = α(H) + |Y |. So we can conclude that

α(Λ) ≥ max{α(H) + |Y |, (|R| − |p2(A)|)|G|}, as required.

Now, we consider the value of the independence number α(Λ) of a Cayley digraph

Λ of a right group G × R such that the connection set A satisfies the condition that

|R| ≥ 2|p2(A)|.

Theorem 5.1.8. Let Λ be a Cayley digraph of a right group G×R with a connection set

A in which p2(A) 6= R. If |R| ≥ 2|p2(A)|, then α(Λ) = (|R| − |p2(A)|)|G|.

Proof. Let A be a connection set of Λ such that p2(A) 6= R. The proof of this theorem

will be shown in the form of contraposition. Assume that α(Λ) 6= (|R| − |p2(A)|)|G|,

that is, either α(Λ) < (|R| − |p2(A)|)|G| or α(Λ) > (|R| − |p2(A)|)|G|. Since p2(A) 6= R,

we can conclude that α(Λ) ≥ (|R| − |p2(A)|)|G| as shown in the proof of Theorem 5.1.7.

Hence we now have α(Λ) > (|R| − |p2(A)|)|G|. Let I be an independent set of Λ such

that |I| = α(Λ) > (|R| − |p2(A)|)|G| which implies that I ∩ (G × p2(A)) 6= ∅. Let

T = {(y, β) ∈ I : β ∈ p2(A)}. Thus T 6= ∅. For each (z, λ) ∈ T , there exists (a, λ) ∈ A

such that ((za−1, γ), (z, λ)) ∈ E(Λ) for all γ ∈ R \ p2(A). Since I is independent, we

conclude that (za−1, γ) /∈ I for all γ ∈ R \ p2(A). Hence

|I \ T | ≤ [(|R| − |p2(A)|)|G|]− [|p1(T )|(|R| − |p2(A)|)]

= (|R| − |p2(A)|)(|G| − |p1(T )|)

which implies that (|R| − |p2(A)|)|G| < |I| = |T |+ |I \ T |

≤ |T |+ (|R| − |p2(A)|)(|G| − |p1(T )|).

So we obtain that |T | > (|R| − |p2(A)|)|G| − (|R| − |p2(A)|)(|G| − |p1(T )|)

= (|R| − |p2(A)|)|p1(T )|.

Since (|R| − |p2(A)|)|p1(T )| < |T | ≤ |p1(T ) × p2(T )| = |p1(T )||p2(T )|, we obtain that

|R|− |p2(A)| < |p2(T )|. By the definition of the set T , we can observe that p2(T ) ⊆ p2(A)

which implies that |R| − |p2(A)| < |p2(T )| ≤ |p2(A)|. Consequently, we obtain that

|R| < |p2(A)|+ |p2(A)| = 2|p2(A)|, this completes the proof.

Let Λ be a Cayley digraph of a right group G × R with a connection set A. The

digraph Λ is said to be almost complete if for each two different elements x and y in G

satisfy the following condition:

((x, β), (y, γ)), ((y, γ), (x, β)) ∈ E(D) for all β, γ ∈ p2(A).

We now obtain the following proposition.
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Proposition 5.1.9. Let Λ be a Cayley digraph of a right group G×R with a connection

set A such that p2(A) 6= R. If the digraph Cay(〈p1(A)〉 × p2(A), A) is almost complete,

then α(Λ) = max
{

|G||R|
|〈p1(A)〉| , (|R| − |p2(A)|)|G|

}

.

Proof. Assume that Cay(〈p1(A)〉 × p2(A), A) is almost complete. By the first part of

the proof of Theorem 5.1.7, we have α(Λ) ≥ (|R| − |p2(A)|)|G|. Since p1(A) does not

contain the identity of G, we obtain that the set {x} × R is an independent set of Λ for

all x ∈ 〈p1(A)〉. Thus α(Cay(〈p1(A)〉 × p2(A), A)) ≥ |R| and then α(Λ) ≥ |G||R|
|〈p1(A)〉| . Hence

α(Λ) ≥ max
{

|G||R|
|〈p1(A)〉| , (|R| − |p2(A)|)|G|

}

.

Now, let X be an α−set of Cay(〈p1(A)〉 × p2(A), A). Suppose that there exist

two different elements x, y ∈ 〈p1(A)〉 in which (x, β), (y, γ) ∈ X for some β ∈ p2(A)

and γ ∈ R. Since the digraph Cay(〈p1(A)〉 × p2(A), A) is almost complete, we obtain

that ((y, β), (x, β)) ∈ E(Cay(〈p1(A)〉 × p2(A), A)), that is, (x, β) = (y, β)(a, λ) for some

(a, λ) ∈ A. Hence x = ya and β = λ. We also have (x, β) = (ya, λ) = (y, γ)(a, λ)

which implies that ((y, γ), (x, β)) ∈ E(Cay(〈p1(A)〉 × p2(A), A)). This contradicts to the

property of the independent set X. Thus all elements in X must be either elements in

{z} ×R, for some z ∈ 〈p1(A)〉, or elements in 〈p1(A)〉 × (R \ p2(A)). So we can conclude

that α(Λ) = max
{

|G||R|
|〈p1(A)〉| , (|R| − |p2(A)|)|G|

}

, as required.

We next show the following theorem which gives an upper bound and a lower bound

of the independence number of Cayley digraphs of right groups with respect to some

specific connection sets.

Theorem 5.1.10. Let Λ denote a Cayley digraph of a right group G×R with a connection

set A in which p2(A) = R. Then |R| ≤ α(Λ) ≤
⌊

|〈p1(A)〉|
2

⌋

|G||R|
|〈p1(A)〉| .

Proof. Let A be a connection set of Λ such that p2(A) = R. Since we consider the

connection set A in the case where e /∈ p1(A), we can observe that, for each g ∈ G, the

set {g} ×R is an independent set of Λ. Hence α(Λ) ≥ |{g} ×R| = |R|.

In order to verify the upper bound of α(Λ), we will assume to the contrary that

α(D) >
⌊

|〈p1(A)〉|
2

⌋

|G||R|
|〈p1(A)〉| . By applying Lemma 2.2.7, we can conclude that there exists

g ∈ G such that α((g〈p1(A)〉×R), Eg) >
⌊

|〈p1(A)〉|
2

⌋

|R|. Assume that X is an α−set of the

strong subdigraph ((g〈p1(A)〉 × R), Eg) which means that |X| >
⌊

|〈p1(A)〉|
2

⌋

|R| and then

|X ∩ (g〈p1(A)〉 × {λ})| >
⌊

|〈p1(A)〉|
2

⌋

for some λ ∈ R. Let Xλ := X ∩ (g〈p1(A)〉 × {λ}) and

Aλ := A∩ (G× {λ}). It is not hard to investigate that Xλ ∪XλAλ ⊆ g〈p1(A)〉 × {λ} and

Xλ ∩XλAλ = ∅. We have |Xλ ∪XλAλ| ≤ |g〈p1(A)〉 × {λ}| = |g〈p1(A)〉| = |〈p1(A)〉| and
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hence |〈p1(A)〉| ≥ |Xλ ∪XλAλ| = |Xλ|+ |XλAλ| ≥ 2|Xλ| ≥ 2
(

|〈p1(A)〉|+k
2

)

> |〈p1(A)〉| for

some k ∈ N. This gives a contradiction. Thus the upper bound is proved.

The sharpness of those bounds given in the above theorem is described as follows.

Proposition 5.1.11. The bounds stated in the above theorem are sharp.

Proof. We first consider the lower bound of α(Λ). Let A = (G \ {e})×R be a connection

set of Λ where e is the identity of a group G. It is uncomplicated to examine that Λ is

an almost complete digraph. It follows that {g} × R is an α−set of Λ for all g ∈ G that

means α(Λ) = |{g} ×R| = |R|.

For the sharpness of an upper bound of α(Λ), we shall consider the Cayley digraph

Cay(Zn ×R,A) of a right group Zn ×R with a connection set A = {a} ×R where n is a

natural number greater than 1 and a 6= e. Suppose that |a| = k for some k ∈ N. If k is even,

then the set {a, a3, a5, . . . , ak−1}×R is an α−set of Cay(〈p1(A)〉×R,A) and if k is odd, then

the set {a, a3, a5, . . . , ak−2}×R is an α−set of Cay(〈p1(A)〉×R,A) which each of these two

sets has the cardinality
⌊

k
2

⌋

|R|. Hence α(Cay(〈p1(A)〉×R,A)) =
⌊

k
2

⌋

|R| =
⌊

|〈p1(A)〉|
2

⌋

|R|

which certainly implies that α(Λ) =
⌊

|〈p1(A)〉|
2

⌋

|G||R|
|〈p1(A)〉| , as desired.

5.2 Weakly Independence Number

This section provides the results of a weakly independence number αw(∆) of a

Cayley digraph ∆ of a rectangular group G × L × R relative to a connection set A.

The following two theorems are directly obtained by applying the similar arguments of

Theorems 5.1.1 and 5.1.2, respectively.

Theorem 5.2.1. If I is an αw−set of ∆, then I ∩ (G × {ℓ} × R) is an αw−set of the

digraph (G× {ℓ} ×R,Eℓ) for all ℓ ∈ L.

Theorem 5.2.2. If T is an αw−set of Cay(G×R,A), then
⋃

(t,λ)∈T

({t} × L× {λ}) is an

αw−set of ∆.

Now, we give some facts about the properties of the weakly independence number

αw(Γ) of a Cayley digraph Γ of a left group G× L with respect to the connection set A.

Theorem 5.2.3. Let Γ be a Cayley digraph of a left group G × L with a connection set

A. If p1(A) = [p1(A)]
−1 where [p1(A)]

−1 = {x−1 : x ∈ p1(A)}, then αw(Γ) = α(Γ).

Proof. Let A be a connection set of Γ in which p1(A) = [p1(A)]
−1. In fact, we have

α(Γ) ≤ αw(Γ), so we only need to prove that αw(Γ) ≤ α(Γ). Let I be an αw−set of Γ
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and (x, s), (y, t) ∈ I. We claim that I is also an independent set of Γ. Assume to the

contrary that those two elements (x, s) and (y, t) are not independent. We can assume

without loss of generality that ((x, s), (y, t)) ∈ E(Γ). Thus (y, t) = (x, s)(z, l) = (xz, s) for

some (z, l) ∈ A, that is, t = s and y = xz where z ∈ p1(A) = [p1(A)]
−1. Then there exists

a ∈ p1(A) such that z = a−1 and there exists w ∈ p2(A) in which (a,w) ∈ A. We obtain

that (x, s) = (yz−1, t) = (ya, t) = (y, t)(a,w) and then ((y, t), (x, s)) ∈ E(Γ). Hence (x, s)

and (y, t) are not weakly independent which contradicts to the property of I. Thus (x, s)

and (y, t) are independent, this means that I is an independent set of Γ. We can conclude

that αw(Γ) = |I| ≤ α(Γ), proving the assertion.

Let A and A♯ be connection sets of Cayley digraphs of a left group G×L such that

p1(A
♯) = p1(A) ∩ [p1(A)]

−1. It is true that p1(A
♯) ⊆ 〈p1(A)〉, clearly. We consequently

have the following theorem.

Theorem 5.2.4. αw(Cay(〈p1(A)〉, p1(A))) = αw(Cay(〈p1(A)〉, p1(A
♯))).

Proof. Let C := Cay(〈p1(A)〉, p1(A)) and C♯ := Cay(〈p1(A)〉, p1(A
♯)) be Cayley digraphs

of 〈p1(A)〉 with connection sets p1(A) and p1(A
♯), respectively. Since p1(A

♯) ⊆ p1(A) as

defined above, we can conclude that C♯ is a spanning subdigraph of C which implies that

αw(C) ≤ αw(C
♯), absolutely.

We now assume that X is an αw−set of C
♯ and need to show that X is a weakly

independent set in C. Suppose that there exist x, y ∈ X such that (x, y), (y, x) ∈ E(C).

Then y = xa and x = yb for some a, b ∈ p1(A). We obtain that y = xa = yba which implies

that ba = e, the identity of a group G, that is, b = a−1. Thus a, a−1 ∈ p1(A)∩ [p1(A)]
−1 =

p1(A
♯). This implies that (x, y), (y, x) ∈ E(C♯) which is a contradiction since x and y are

weakly independent in C♯. Hence (x, y) /∈ E(C) or (y, x) /∈ E(C), that is, x and y are

weakly independent in C which leads to the fact that X is a weakly independent set of

C. We can conclude that αw(C
♯) = |X| ≤ αw(C). Therefore, αw(C) = αw(C

♯) which

certainly completes the proof as required.

Let Γ := Cay(G × L,A) and Γ♯ := Cay(G × L,A♯) be Cayley digraphs of a left

group G × L with respect to connection sets A and A♯, respectively, where A♯ is the

connection set as defined previously. We completely obtain by the definition of A♯ that

p1(A
♯) ⊆ p1(A) which implies that α(D) ≤ α(D♯). Moreover, it is not hard to investigate

that p1(A
♯) = [p1(A

♯)]−1. We can conclude by Theorem 5.2.3 that α(Γ♯) = αw(Γ
♯). By

applying Theorem 5.2.4, we have αw(Γ
♯) = αw(Γ). Hence we evidently get the following

result about the weakly independence number of Cayley digraphs of left groups.
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Theorem 5.2.5. Let Γ be a Cayley digraph of a left group G × L with a connection set

A. Then
|G||L|
|〈p1(A)〉|

⌈

|〈p1(A)〉|
2|p1(A)|+1

⌉

≤ αw(Γ) ≤
|G||L|

|〈p1(A♯)〉|

⌊

|〈p1(A♯)〉|
2

⌋

.

Next, we will consider the weakly independence number of a Cayley digraph Λ of a

right group G×R with respect to a connection set A. We consequently have the following

results.

Theorem 5.2.6. Let Λ be a Cayley digraph of a right group G×R with a connection set

A. Then αw(Λ) = |G||R| if and only if p1(A) ∩ [p1(A)]
−1 = ∅.

Proof. Assume that αw(Λ) = |G||R|. Then G × R is a weakly independent set of Λ,

this means that every two vertices of Λ are weakly independent. Suppose that there

exists an element a ∈ p1(A) ∩ [p1(A)]
−1. Thus a = b−1 for some b ∈ p1(A). Hence

there exist β, γ ∈ p2(A) such that (a, β), (b, γ) ∈ A. Let x be any element in G. Since

(xa, β) = (x, γ)(a, β) and (x, γ) = (xaa−1, γ) = (xa, β)(a−1, γ) = (xa, β)(b, γ), we obtain

that ((x, γ), (xa, β)), ((xa, β), (x, γ)) ∈ E(Λ), that is, (x, γ) and (xa, β) are not weakly

independent in Λ which is a contradiction. Therefore, p1(A) ∩ [p1(A)]
−1 = ∅.

On the other hand, we will suppose that p1(A) ∩ [p1(A)]
−1 = ∅. If there exist

two elements (x, β), (y, γ) ∈ G × R such that they are not weakly independent in Λ,

that is, ((x, β), (y, γ)), ((y, γ), (x, β)) ∈ E(Λ), then (y, γ) = (x, β)(a, λ) = (xa, λ) and

(x, β) = (y, γ)(b, µ) = (yb, µ) for some (a, λ), (b, µ) ∈ A. Thus y = xa and x = yb and

then x = yb = xab. Hence we have by the cancellation law that a = b−1 ∈ [p1(A)]
−1.

Consequently, a ∈ p1(A) ∩ [p1(A)]
−1 which contradicts to our supposition. Therefore,

G × R is a weakly independent set of Λ which completely implies that αw(Λ) = |G||R|,

proving the assertion.

For the connection set A of Λ in which p1(A) ∩ [p1(A)]
−1 6= ∅, we obtain the lower

bound of a weakly independence number αw(Λ) of Λ as follows.

Theorem 5.2.7. Let Λ be a Cayley digraph of a right group G×R with a connection set

A in which p1(A) ∩ [p1(A)]
−1 6= ∅. If X = {λ ∈ p2(A) : a

−1 /∈ p1(A) for all (a, λ) ∈ A},

then αw(Λ) ≥ (|R| − |p2(A)|+ |X|)|G|+ |p2(A)| − |X|.

Proof. Let A be a connection set of Λ such that p1(A) ∩ [p1(A)]
−1 6= ∅ and we define

X = {λ ∈ p2(A) : a
−1 /∈ p1(A) for all (a, λ) ∈ A}.

If p2(A) 6= R, then G× (R \ p2(A)) 6= ∅ and it is not difficult to verify that the set

G× (R \ p2(A)) is a weakly independent set of Λ.

We now show that G × X is a weakly independent set of Λ. Assume that there
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exist (g1, λ1), (g2, λ2) ∈ G × X such that ((g1, λ1), (g2, λ2)), ((g2, λ2), (g1, λ1)) ∈ E(Λ).

Then (g2, λ2) = (g1, λ1)(a, β) = (g1a, β) and (g1, λ1) = (g2, λ2)(b, γ) = (g2b, γ) for some

(a, β), (b, γ) ∈ A. Thus g2 = g1a, λ2 = β and g1 = g2b, λ1 = γ. Hence g1 = g2b = g1ab

which implies that a−1 = b. Hence there exists (a, β) ∈ A such that a−1 = b ∈ p1(A),

that is, λ2 = β /∈ X which is a contradiction. So G×X is weakly independent in Λ.

For fixed g ∈ G, since the identity e /∈ p1(A), we can conclude that {g}×(p2(A)\X)

is weakly independent in Λ.

Next, we will prove that I := [G× (R \ p2(A))]∪ (G×X)∪ [{g} × (p2(A) \X)] is a

weakly independent set of Λ. Assume to the contrary that there exist (c, δ), (d, η) ∈ I such

that ((c, δ), (d, η)), ((d, η), (c, δ)) ∈ E(Λ). We need to consider the following two cases.

Case (i): if (c, δ) ∈ G × (R \ p2(A)) and (d, η) is in G × X or {g} × (p2(A) \ X), then

δ /∈ p2(A). Since ((d, η), (c, δ)) ∈ E(Λ), we get that there exists (k, ε) ∈ A such that

(c, δ) = (d, η)(k, ε) and then δ = ηε = ε ∈ p2(A), a contradiction.

Case (ii): if (c, δ) ∈ G × X and (d, η) ∈ {g} × (p2(A) \ X), then δ ∈ X that means

a−1 /∈ p1(A) for all (a, δ) ∈ A. Since ((c, δ), (d, η)), ((d, η), (c, δ)) ∈ E(Λ), there exist

(u, ζ), (v, ξ) ∈ A such that (d, η) = (c, δ)(u, ζ) = (cu, ζ) and (c, δ) = (d, η)(v, ξ) = (dv, ξ).

Then d = cu, η = ζ and c = dv, δ = ξ. Thus d = cu = dvu which implies that u =

v−1. Hence v−1 = u ∈ p1(A) where (v, ξ) ∈ A and whence δ = ξ /∈ X, this gives a

contradiction. Therefore, the set I is a weakly independent set of Λ, that is, αw(Λ) ≥ |I|.

Since G× (R \ p2(A)), G×X and {g}× (p2(A) \X) are pairwise disjoint, we obtain that

αw(D) ≥ |[G× (R \ p2(A))] ∪ (G×X) ∪ [{g} × (p2(A) \X)]|

= |G× (R \ p2(A))|+ |G×X|+ |{g} × (p2(A) \X)|

= |G|(|R| − |p2(A)|) + |G||X|+ |p2(A)| − |X|

= |G|(|R| − |p2(A)|+ |X|) + |p2(A)| − |X|.

This completes the proof of the theorem.

Next, we will present the exact value of a weakly independence number of Cayley

digraphs of right groups with respect to some special connection sets. In order to state the

theorem, we need to show the following lemma which is useful for proving our theorem.

Lemma 5.2.8. Let Λ be a Cayley digraph of a right group G × R with a connection

set A in which p1(A) ∩ [p1(A)]
−1 6= ∅. Let e be the identity of a group G and define

X = {(x, λ) ∈ A : x ∈ p1(A) ∩ [p1(A)]
−1 and x2 6= e} where |p1(X)| = |X| = |p2(X)|. If

W is a weakly independent set of Λ, then W contains at most 1
2 |G × p2(X)| elements of

G× p2(X).
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Proof. Suppose that the conditions hold. Let W be a weakly independent set of Λ.

Assume, contrary to what we want to prove, that |W ∩ (G × p2(X))| > 1
2 |G × p2(X)|.

Let {J,K} be a partition of p1(X) satisfying the condition that for each z ∈ J , z−1 must

belong to K. Thus |J | = |K| = 1
2 |G × p2(X)|. Since |p1(X)| = |X| = |p2(X)|, we can

conclude that for each w ∈ p1(X), there exists a unique β ∈ p2(X) such that (w, β) ∈ X

and for each γ ∈ p2(X), there exists a unique u ∈ p1(X) such that (u, γ) ∈ X. Let

I = {ζ ∈ p2(X) : (z, ζ) ∈ X for some z ∈ J} and

L = {ξ ∈ p2(X) : (k, ξ) ∈ X for some k ∈ K}.

We can observe that {I, L} forms a partition of p2(X) with |I| = |J | = |L|.

Next, let (g, λ) be any element in G × p2(X). We will show that there exists a

unique (x, µ) ∈ G× p2(X) such that (g, λ) is not weakly independent to (x, µ). Suppose

that there exist (x1, µ1), (x2, µ2) ∈ G× p2(X) such that they are not weakly independent

to (g, λ). Without loss of generality, we assume that (g, λ) ∈ G × I. Hence there exist

a1, a2 ∈ p1(A) such that g = x1a1 where (a1, λ), (a
−1
1 , µ1) ∈ A and g = x2a2 where

(a2, λ), (a
−1
2 , µ2) ∈ A, respectively. Since (a1, λ), (a2, λ) ∈ A and a1, a2 ∈ p1(X), we can

conclude that a1 = a2 which implies that µ1 = µ2. Then x1 = ga−11 = ga−12 = x2. Hence

(x1, µ1) = (x2, µ2). Since {I, L} is a partition of p2(X), we have {G × I,G × L} is a

partition of G × p2(X). For any weakly independent set U , we define U∗ to be the set

consisting of all vertices that are not weakly independent to any vertex in U , that is,

U∗ = {v : v is not weakly independent to u for some u ∈ U}. Consider

W ∩ (G× p2(X)) =W ∩ [(G× I) ∪ (G× L)] = [W ∩ (G× I)] ∪ [W ∩ (G× L)] and

[W ∩ (G× I)] ∪ [W ∩ (G× L)] ∪ [W ∩ (G× I)]∗ ∪ [W ∩ (G× L)]∗ ⊆ G× p2(X),

then |G× p2(X)| ≥ |[W ∩ (G× I)] ∪ [W ∩ (G× L)]|+ |[W ∩ (G× I)]∗ ∪ [W ∩ (G× L)]∗|

> 1
2 |G× p2(X)|+ 1

2 |G× p2(X)|

= |G× p2(X)| which is a contradiction.

This completes the proof of our assertion, as required.

Now, we are ready to present the following theorem.

Theorem 5.2.9. Let Λ be a Cayley digraph of a right group G × R with a connection

set A in which p1(A) ∩ [p1(A)]
−1 6= ∅. If Y = {(y, λ) ∈ A : y ∈ p1(A) ∩ [p1(A)]

−1} and

|p1(Y )| = |Y | = |p2(Y )|, then αw(Λ) = |G|
(

|R| − |Y |
2

)

.

Proof. Let Y = {(y, λ) ∈ A : y ∈ p1(A)∩ [p1(A)]
−1} be such that |p1(Y )| = |Y | = |p2(Y )|.

We first show that G× (R \ p2(Y )) is a weakly independent set of Λ. Suppose that there
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exist (g1, λ1), (g2, λ2) ∈ G × (R \ p2(Y )) such that ((g1, λ1), (g2, λ2)), ((g2, λ2), (g1, λ1)) ∈

E(Λ). Then (g2, λ2) = (g1, λ1)(a1, µ1) = (g1a1, µ1) and (g1, λ1) = (g2, λ2)(a2, µ2) =

(g2a2, µ2) for some (a1, µ1), (a2, µ2) ∈ A. Thus g2 = g1a1, λ2 = µ1 and g1 = g2a2, λ1 = µ2.

We can obtain that g2 = g1a1 = g2a2a1 which implies that a2 = a−11 . Hence a1, a2 ∈

p1(A)∩ [p1(A)]
−1 and then (a1, µ1), (a2, µ2) ∈ Y , that is, µ1 and µ2 must belong to p2(Y ).

We can conclude that λ1, λ2 ∈ p2(Y ) which is a contradiction. Therefore, G× (R \ p2(Y ))

is a weakly independent set of Λ and it follows that αw(Λ) ≥ |G|(|R| − |p2(Y )|).

Now, let T = {(a, λ) ∈ Y : a = a−1} and Z = Y \ T . By the definition of

the set Z, we can conclude that for each z ∈ p1(Z), z
−1 must belong to p1(Z). Let

{J,K} be a partition of p1(Z) which satisfies that for each x ∈ J , x−1 must belong to

K. Thus |J | = |K| = |p1(Z)|
2 . Since Z ⊆ Y and |p1(Y )| = |Y | = |p2(Y )|, we have

|p1(Z)| = |Z| = |p2(Z)|. Then for each w ∈ p1(Z), there exists a unique β ∈ p2(Z)

such that (w, β) ∈ Z and for each γ ∈ p2(Z), there exists a unique u ∈ p1(Z) such that

(u, γ) ∈ Z. Let I = {η ∈ p2(Z) : (z, η) ∈ Z for some z ∈ J}. We will prove that G× I is a

weakly independent set of Λ. Let (g1, λ1), (g2, λ2) ∈ G×I. Since λ1, λ2 ∈ I, we obtain that

(z1, λ1), (z2, λ2) ∈ Z for some z1, z2 ∈ J . If ((g1, λ1), (g2, λ2)), ((g2, λ2), (g1, λ1)) ∈ E(Λ),

then there exist (a, ζ), (b, ξ) ∈ A such that (g2, λ2) = (g1, λ1)(a, ζ) = (g1a, ζ) and (g1, λ1) =

(g2, λ2)(b, ξ) = (g2b, ξ). Thus g2 = g1a, λ2 = ζ and g1 = g2b, λ1 = ξ which implies that

b = a−1. We have a, b ∈ p1(A) ∩ [p1(A)]
−1 which follows that (a, ζ), (b, ξ) ∈ Y . Since

Z ⊆ Y and |p1(Y )| = |Y | = |p2(Y )|, we have a = z2 and b = z1 and hence a, b ∈ J which

contradicts to the definition of J . Thus G × I is weakly independent in Λ that means

αw(Λ) ≥ |G× I| = |G||I| = |G||J | = |G| |p1(Z)|
2 = 1

2 |G|(|p1(Y )| − |p1(T )|).

For each (a, λ) ∈ T , we obtain that Cay(G×{λ}, {(a, λ)}) is the disjoint union of |G|2

strong subdigraphs which each subdigraph is isomorphic to a strongly connected digraph

of order 2. By choosing one vertex from each subdigraph, we can conclude that the set of

these chosen vertices forms a weakly independent set of Cay(G× {λ}, {(a, λ)}). It is not

difficult to verify that αw(Cay(G× {λ}, {(a, λ)})) =
|G|
2 . Since every vertex in G× {λ} is

weakly independent to other vertices in G× (R \ {λ}), we obtain that

αw(Cay(G× p2(T ), T )) =
|G|
2 |T |.

Moreover, we can conclude that every vertex in G× p2(Z) is weakly independent to

every vertex in G× p2(T ). Therefore,

αw(Λ) ≥
|G|
2 (|p1(Y )| − |p1(T )|) +

|G|
2 |T |+ |G|(|R| − |p2(Y )|)

= |G|
[

|p1(Y )|
2 − |p1(T )|

2 + |T |
2 + |R| − |p2(Y )|

]

= |G|
(

|R| − |Y |
2

)

.
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We now suppose that there exists a weakly independent set U of a digraph Λ such

that |U | > |G|
(

|R| − |Y |
2

)

. It is easy to obtain that G × (R \ p2(Y )) ⊆ U . Since every

vertex in G × p2(T ) is weakly independent to other vertices in G × (R \ p2(T )) and

from αw(Cay(G × p2(T ), T )) =
|G|
2 |T |, we can conclude that U contains an αw−set of

Cay(G× p2(T ), T ). It follows that

|U ∩ (G× p2(Z))| = |U | − |G|(|R| − |p2(Y )|)−
|G|
2 |T |

> |G|(|R| − |Y |
2 )− |G|(|R| − |p2(Y )|)−

|G|
2 |T |

= |G|
[

|R| − |Y |
2 − |R|+ |p2(Y )| −

|T |
2

]

= |G|
(

|p2(Y )|
2 − |p2(T )|

2

)

= |G| |p2(Y \T )|
2

= |G| |p2(Z)|
2

= 1
2 |G× p2(Z)|

which contradicts to Lemma 5.2.8. Therefore, αw(Λ) = |G|
(

|R| − |Y |
2

)

.

5.3 Dipath Independence Number

The purpose of this section is to investigate the dipath independence number of

Cayley digraphs ∆, Γ, and Λ of a rectangular group G× L×R, a left group G× L, and

a right group G×R, respectively.

We will start this section with the results of the dipath independence number of

Cayley digraphs of rectangular groups with respect to their connection sets. By applying

the similar arguments of Theorems 5.1.1 and 5.1.2, we respectively obtain the following

results.

Theorem 5.3.1. If I is an αp−set of ∆, then I ∩ (G × {ℓ} × R) is an αp−set of the

digraph (G× {ℓ} ×R,Eℓ) for all ℓ ∈ L.

Theorem 5.3.2. If T is an αp−set of Cay(G × R,A), then
⋃

(t,λ)∈T

({t} × L × {λ}) is an

αp−set of ∆.

Next, we shall consider the dipath independence number αp(Γ) of a Cayley digraph

Γ of a left group G × L with a connection set A. Since Γ is the disjoint union of strong

subdigraphs which each subdigraph is isomorphic to Cay(〈p1(A)〉, p1(A)), we need to

describe the useful property of Cay(〈p1(A)〉, p1(A)) in the following lemma which will be

referred in the next theorem.
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Lemma 5.3.3. If A is a connection set of a digraph Γ, then Cay(〈p1(A)〉, p1(A)) is

strongly connected.

Proof. Let A be a connection set of Γ and x, y ∈ 〈p1(A)〉. We claim that there exists

a dipath connecting between x and y. Since 〈p1(A)〉 is a subgroup of G, there exists

a ∈ 〈p1(A)〉 such that y = xa. Then a = a1a2 · · · ak for some a1, a2, . . . , ak ∈ p1(A) and

k ∈ N. Thus (x, xa1), (xa1, xa1a2), . . . , (xa1a2 · · · ak−1, y) ∈ E(Cay(〈p1(A)〉, p1(A))) that

means x, xa1, xa1a2, . . . , xa1a2 · · · ak−1, xa1a2 · · · ak−1ak = xa = y is the dipath connecting

from x to y in Cay(〈p1(A)〉, p1(A)). So we can conclude that Cay(〈p1(A)〉, p1(A)) is a

strongly connected digraph as claimed.

The following theorem shows the exact value of a dipath independence number on

Cayley digraphs of left groups with respect to their connection sets.

Theorem 5.3.4. Let Γ be a Cayley digraph of a left group G × L with a connection set

A. Then αp(Γ) =
|G||L|
|〈p1(A)〉| .

Proof. By considering Cay(〈p1(A)〉, p1(A)), we consequently obtain by Lemma 5.3.3 that

it is a strongly connected subdigraph of Cay(G, p1(A)). Hence there is a dipath that

connects between any two different vertices of Cay(〈p1(A)〉, p1(A)) which implies that

αp(Cay(〈p1(A)〉, p1(A))) = 1. Furthermore, we can obtain by using Lemma 2.2.6 that

αp(Γ) =
|G||L|
|〈p1(A)〉| · αp(Cay(〈p1(A)〉, p1(A))) =

|G||L|
|〈p1(A)〉| .

The following theorem describes the relation between a weakly independence number

and a dipath independence number of Cay(〈p1(A)〉, p1(A)) which can be isomorphically

considered as a strong subdigraph of Γ.

Theorem 5.3.5. Let A be a connection set of Γ and denote by C the Cayley digraph

Cay(〈p1(A)〉, p1(A)) of 〈p1(A)〉 with a connection set p1(A). Then the following statements

are equivalent:

(1). αp(C) = αw(C);

(2). αw(C) = 1;

(3). p1(A) ∪ {e} = 〈p1(A)〉 where e is the identity of a group G.

Proof. Let C := Cay(〈p1(A)〉, p1(A)) be a Cayley digraph of a group 〈p1(A)〉 with a

connection set p1(A).

(1) ⇒ (2) : Suppose that αp(C) = αw(C). As we have known from Lemma 5.3.3

that C is strongly connected, we get that αp(C) = 1 and whence αw(C) = 1.
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(2)⇒ (3) : Assume that αw(C) = 1. It is clear that p1(A)∪{e} ⊆ 〈p1(A)〉. We now

let x ∈ 〈p1(A)〉. If x = e, then x ∈ p1(A)∪{e}, obviously. So we next consider in the case

where x 6= e. Since αw(C) = 1, we obtain that {y} is an αw−set of C where y ∈ 〈p1(A)〉

and then (y, yx) ∈ E(C), that is, yx = ya for some a ∈ p1(A). Thus x = a ∈ p1(A) by

the left cancellation law. Hence the statement (3) is proved.

(3) ⇒ (1) : Suppose that p1(A) ∪ {e} = 〈p1(A)〉. For any two different vertices

x, y ∈ 〈p1(A)〉, we obtain that (x, y), (y, x) ∈ E(C) since y = x(x−1y) and x = y(y−1x)

where x−1y, y−1x ∈ 〈p1(A)〉 \ {e} = p1(A), respectively. Thus {x} is an αw−set of C

and also a dipath independent set of C. Hence αw(C) = |{x}| ≤ αp(C). As we have

generally known that αp(C) ≤ αw(C), we can absolutely conclude that αp(C) = αw(C),

this completes the proof.

In general, if Γ is a Cayley digraph of a left group with any connection set A, we

have the fact that αp(Γ) ≤ α(Γ) ≤ αw(Γ). Thus we directly obtain the following result.

Corollary 5.3.6. Let A be a connection set of Γ and denote by C the Cayley digraph

Cay(〈p1(A)〉, p1(A)) of 〈p1(A)〉 with a connection set p1(A). Then αp(C) = α(C) =

αw(C) = 1 if and only if p1(A) ∪ {e} = 〈p1(A)〉.

Now, we illustrate the exact value of a dipath independence number of a Cayley

digraph Λ of a right group G×R with respect to the connection set A.

Theorem 5.3.7. Let Λ be a Cayley digraph of a right group G×R with a connection set

A. If p2(A) 6= R, then αp(Λ) = |G|(|R| − |p2(A)|).

Proof. Let A be a connection set of Λ such that p2(A) 6= R. We will show that the set

G× (R \ p2(A)) is a dipath independent set of Λ. Suppose that there exist two elements

(g1, λ1), (g2, λ2) ∈ G × (R \ p2(A)) such that they are not dipath independent, that is,

there exists a dipath from (g1, λ1) to (g2, λ2) in Λ or there exists a dipath from (g2, λ2)

to (g1, λ1) in Λ. Without loss of generality, we can assume that Λ contains a dipath from

(g1, λ1) to (g2, λ2). Hence we can write (g2, λ2) = (g1, λ1)(a1, µ1)(a2, µ2) · · · (ak, µk) for

some k ∈ N where (ai, µi) ∈ A for all i ∈ {1, 2, . . . , k}. It follows that g2 = g1a1a2 · · · ak

and λ2 = λ1µ1µ2 · · ·µk = µk ∈ p2(A) which leads to a contradiction because (g2, λ2) ∈

G × (R \ p2(A)). Thus G × (R \ p2(A)) is a dipath independent set of Λ which directly

implies that αp(Λ) ≥ |G× (R \ p2(A))| = |G|(|R| − |p2(A)|).

Assume that there exists an αp−set I such that |I| > |G|(|R| − |p2(A)|). Then

there exists x ∈ G such that (x, η), (x, ρ) ∈ I for some η ∈ p2(A) and ρ ∈ R \ p2(A).

Since η ∈ p2(A), there exists a ∈ p1(A) such that (a, η) ∈ A. Suppose that |a| = k for
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some k ∈ N. Hence (x, η) = (xak, η) = (x, ρ)(a, η)k which implies that there exists a

dipath from (x, ρ) to (x, η), a contradiction. Consequently, αp(Λ) = |G|(|R| − |p2(A)|), as

required.

Theorem 5.3.8. Let Λ be a Cayley digraph of a right group G×R with a connection set

A. If p2(A) = R, then αp(Λ) =
|G|

|〈p1(A)〉| .

Proof. Let A be a connection set of a digraph Λ such that p2(A) = R. Assume that

G/〈p1(A)〉 = {g1〈p1(A)〉, g2〈p1(A)〉, . . . , gk〈p1(A)〉} is the set of all left cosets of 〈p1(A)〉 in

G where k ∈ N. By Lemma 2.2.7, we obtain that Λ is the disjoint union of k isomorphic

strong subdigraphs ((gi〈p1(A)〉×R), Ei) of Λ such that ((gi〈p1(A)〉×R), Ei) ∼= Cay(〈A〉, A)

for all i ∈ {1, 2, . . . , k}. So we need to consider a digraph Cay(〈A〉, A) instead of Λ. We

now show that Cay(〈A〉, A) is strongly connected. Let (x, λ), (y, µ) ∈ 〈A〉. By Lemma

2.2.8, we obtain that 〈A〉 = 〈p1(A)〉 × p2(A) = 〈p1(A)〉 × R. Since µ ∈ R, there exists

a ∈ p1(A) such that (a, µ) ∈ A. From x, y ∈ 〈p1(A)〉 and 〈p1(A)〉 is a group, we can

write y = xu for some u ∈ 〈p1(A)〉. Thus u = u1u2 · · ·ut where u1, u2, . . . , ut ∈ p1(A).

Then there exist ε1, ε2, . . . , εt ∈ R in which (u1, ε1), (u2, ε2), . . . , (ut, εt) ∈ A. Consider

(y, εt) = (xu, εt) = (xu1u2 · · ·ut, εt) = (x, λ)(u1, ε1)(u2, ε2) · · · (ut, εt), we can conclude

that there exists a dipath from (x, λ) through to (y, εt). Assume that |a| = n for some

n ∈ N. Therefore, y = yan and then (y, µ) = (yan, µ) = (y, εt)(a, µ)
n which implies that

there exists a dipath connecting from (y, εt) to (y, µ). So we can conclude that there

exists a dipath from (x, λ) to (y, µ) which leads to the result that Cay(〈A〉, A) is strongly

connected. It is simple to investigate that αp(Cay(〈A〉, A)) = 1. For this reason, we can

completely imply that αp(Λ) = |G/〈p1(A)〉| · αp(Cay(〈A〉, A)) =
|G|

|〈p1(A)〉| , as desired.

5.4 Weakly Dipath Independence Number

The aim of this section is to study the weakly dipath independence number of

Cayley digraphs of rectangular groups with their connection sets. Especially, the weakly

dipath independence number of Cayley digraphs of left groups and right groups are also

considered.

We firstly describe the weakly dipath independence number αwp(∆) of a Cayley

digraph ∆ of a rectangular group G × L × R with a connection set A. The following

theorems are directly obtained by applying the similar arguments of the results from

Theorems 5.1.1 and 5.1.2.
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Theorem 5.4.1. If I is an αwp−set of ∆, then I ∩ (G × {ℓ} × R) is an αwp−set of the

digraph (G× {ℓ} ×R,Eℓ) for all ℓ ∈ L.

Theorem 5.4.2. If T is an αwp−set of Cay(G×R,A), then
⋃

(t,λ)∈T

({t} ×L× {λ}) is an

αwp−set of ∆.

Now, we consider the weakly dipath independence number of Cayley digraphs of

left groups with their connection sets. Actually, we can say that a Cayley digraph Γ of

a left group G× L is the disjoint union of isomorphic subdigraphs which each of them is

strongly connected by Lemma 5.3.3. This means that if there exists a dipath connecting

from a vertex u to another vertex v in that Cayley digraph, there must be a dipath joining

from v to u, as well. Consequently, the results of a weakly dipath independence number

of Cayley digraphs of left groups can be considered to be the same results as a dipath

independence number of Cayley digraphs of left groups, straightforwardly.

The last theorem in this section shows the weakly dipath independence number

αwp(Λ) of a Cayley digraph Λ of a right group G×R with an arbitrary connection set A.

Theorem 5.4.3. Let Λ be a Cayley digraph of a right group G×R with a connection set

A. Then αwp(Λ) =
|G|

|〈p1(A)〉| + |G|(|R| − |p2(A)|).

Proof. Let A be a connection set of Λ. We now consider the following two cases.

Case (i): p2(A) = R. Then |G|(|R| − |p2(A)|) = 0. We have already known by Lemma

2.2.7 and Lemma 2.2.8 that the digraph Λ can be considered as the disjoint union of

|G|
|〈p1(A)〉| isomorphic strong subdigraphs Cay(〈p1(A)〉 × p2(A), A). In addition, we have

already proved in Theorem 5.3.8 that Cay(〈p1(A)〉 × p2(A), A) is a strongly connected

subdigraph of Λ. It can be easily shown that every two elements of 〈p1(A)〉 × p2(A) are

weakly dipath independent which directly implies that αwp(Cay(〈p1(A)〉×p2(A), A)) = 1.

So we can conclude that

αwp(Λ) =
|G|

|〈p1(A)〉| + |G|(|R| − |p2(A)|).

Case (ii): p2(A) 6= R. We have proved in Theorem 5.3.7 that G× (R \ p2(A)) is a dipath

independent set of Λ. It follows that G×(R\p2(A)) is also a weakly dipath independent set

of Λ. Consider Cay(G×p2(A), A), we can certainly obtain that αwp(Cay(G×p2(A), A)) =

|G|
|〈p1(A)〉| by applying the proof of the above case. Since there is no dipath from any

vertex in G × p2(A) to any vertex in G × (R \ p2(A)), we can totally conclude that

αwp(Λ) ≥
|G|

|〈p1(A)〉|+ |G|(|R|−|p2(A)|). It is not complicated to observe that every αwp−set

of Λ must contain the set G × (R \ p2(A)). Hence if we let X be an αwp−set of Λ such
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that |X| > |G|
|〈p1(A)〉| + |G|(|R| − |p2(A)|), then there exist at least

|G|
|〈p1(A)〉| + 1 elements in

G × p2(A) such that they are contained in X. Thus there exist at least two elements of

X belonging to the same strongly connected subdigraph Cay(g〈p1(A)〉 × p2(A), A) of Λ

for some g ∈ G. Hence those elements are not weakly dipath independent in Λ which

contradicts to the weakly dipath independence of X. Therefore,

αwp(Λ) =
|G|

|〈p1(A)〉| + |G|(|R| − |p2(A)|).

However, we can evidently observe from the results described in Theorem 5.3.8 and

Theorem 5.4.3 that αp(Λ) =
|G|

|〈p1(A)〉| = αwp(Λ) in the case where p2(A) = R.
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