
CHAPTER 6

Independent Domination on Cayley Digraphs

of Rectangular Groups

This chapter provides some results of independent domination parameters on Cayley

digraphs of rectangular groups, left groups, and right groups with their connection sets.

We divide this chapter into four parts comprising of the independent domination number,

weakly independent domination number, dipath independent domination number, and

weakly dipath independent domination number of those Cayley digraphs.

6.1 Independent Domination Number

In this section, we present some results about the independent domination number

of Cayley digraphs of rectangular groups with their connection sets. Furthermore, some

results on Cayley digraphs of left groups and right groups are also given.

Recall that we let ∆ be a Cayley digraph Cay(G×L×R,A) of a rectangular group

G×L×R with a connection set A. The following theorem is directly obtained by applying

Theorem 3.1.1.

Theorem 6.1.1. If A = {(a, α) ∈ G × R : (a, l, α) ∈ A for some l ∈ L}, then i(∆) =

|L|(i(Cay(G×R,A))).

For each l ∈ L, we now clarify the corresponding relation between an i−set of ∆ and

an i−set of the strong subdigraph (G×{l}×R,El) which is isomorphic to Cay(G×R,A)

as follows.

Theorem 6.1.2. If I is an i−set of ∆, then I ∩ (G×{l}×R) is an i−set of the digraph

(G× {l} ×R,El) for all l ∈ L.

Proof. Let I be an i−set of ∆ and l ∈ L. We will show that I ∩ (G×{l}×R) is an i−set

of the digraph (G × {l} × R,El). It is easy to see that I ∩ (G × {l} × R) is a nonempty

subset of G× {l} × R. Since I ∩ (G× {l} × R) ⊆ I, we get that I ∩ (G× {l} × R) is an

independent set of (G×{l}×R,El). Let (g, l, γ) ∈ (G×{l}×R)\ [I∩(G×{l}×R)]. Then

(g, l, γ) ∈ (G×{l}×R)\ I. Since I is a dominating set of ∆, there exists (x, k, δ) ∈ I such
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that ((x, k, δ), (g, l, γ)) ∈ E(∆), that is, (g, l, γ) = (x, k, δ)(a, p, τ) = (xa, k, τ) for some

(a, p, τ) ∈ A which implies that l = k. Thus (x, k, δ) = (x, l, δ) ∈ G × {l} × R and hence

(x, k, δ) ∈ I ∩ (G×{l}×R). We can conclude that ((x, k, δ), (g, l, γ)) ∈ E(G×{l}×R,El)

that means I ∩ (G × {l} × R) is a dominating set of (G × {l} × R,El). We obtain that

i(G×{l}×R,El) ≤ |I∩(G×{l}×R)|. Assume that there exists an independent dominating

set X of (G×{l}×R,El) in which |X| < |I ∩ (G×{l}×R)|. Then [I \ (G×{l}×R)]∪X

is an independent dominating set of ∆ and

|[I \ (G× {l} ×R)] ∪X| = |I \ (G× {l} ×R)|+ |X|

< |I \ (G× {l} ×R)|+ |I ∩ (G× {l} ×R)|

= |[I \ (G× {l} ×R)] ∪ [I ∩ (G× {l} ×R)]|

= |I| which is a contradiction.

Therefore, I ∩ (G× {l} ×R) is an i−set of (G× {l} ×R,El), as required.

Theorem 6.1.3. If T is an i−set of Cay(G × R,A), then
⋃

(t,γ)∈T

({t} × L × {γ}) is an

i−set of ∆.

Proof. Let T be an i−set of Cay(G×R,A) and K =
⋃

(t,γ)∈T

({t}×L×{γ}). We will prove

that K is an i−set of ∆. It is easily seen that K is a nonempty subset of G×L×R. We

first show that K is independent in ∆. Assume that there exist (t1, l1, λ1), (t2, l2, λ2) ∈ K

such that they are not independent in ∆, that is,

((t1, l1, λ1), (t2, l2, λ2)) ∈ E(∆) or ((t2, l2, λ2), (t1, l1, λ1)) ∈ E(∆).

Without loss of generality, we may suppose that ((t1, l1, λ1), (t2, l2, λ2)) ∈ E(∆), that is,

(t2, l2, λ2) = (t1, l1, λ1)(a, l, µ) = (t1a, l1, µ) for some (a, l, µ) ∈ A. Hence (a, µ) ∈ A and

(t2, λ2) = (t1a, µ) = (t1, λ1)(a, µ) which implies that ((t1, λ1), (t2, λ2)) ∈ E(Cay(G×R,A))

where (t1, λ1), (t2, λ2) ∈ T which contradicts to the independence of T . Thus K is an

independent set of ∆. Next, we will show that K is a dominating set of ∆. Let (g,m, ρ) ∈

(G×L×R)\K. Then (g, ρ) ∈ (G×R)\T . Since T is a dominating set of Cay(G×R,A),

we have ((g′, ρ′), (g, ρ)) ∈ E(Cay(G × R,A)) for some (g′, ρ′) ∈ T , that is, there exists

(d, δ) ∈ A such that (g, ρ) = (g′, ρ′)(d, δ). Thus g = g′d and ρ = δ. By the definition of

A, there exists j ∈ L in which (d, j, δ) ∈ A which implies that (g,m, ρ) = (g′d,m, δ) =

(g′,m, ρ′)(d, j, δ) where (g′,m, ρ′) ∈ K. Hence ((g′,m, ρ′), (g,m, ρ)) ∈ E(∆) which leads

to the result that K is a dominating set of ∆. We now obtain that K is an independent

dominating set of ∆.

Next, we assume that there exists an independent dominating set X of ∆ such that
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i(∆) = |X| < |K| = |
⋃

(t,γ)∈T

({t} × L× {γ})| = |T ||L|.

Then there exists l ∈ L such that |X ∩ (G × {l} × R)| < |T |. Since X is an i−set

of ∆, we obtain that X ∩ (G × {l} × R) is an i−set of the digraph (G × {l} × R,El)

by Theorem 6.1.2. Thus i(G × {l} × R,El) = |X ∩ (G × {l} × R)|. By the fact that

(G× {l} ×R,El) ∼= Cay(G×R,A), we can conclude that

i(Cay(G×R,A)) = i(G× {l} ×R,El) = |X ∩ (G× {l} ×R)| < |T |

which contradicts to the property of an i−set T of Cay(G×R,A). Consequently, we can

conclude that K =
⋃

(t,γ)∈T

({t} × L× {γ}) is an i−set of ∆.

Next, we will present the results about an independent domination number i(Γ) of

a Cayley digraph Γ of a left group G× L with a connection set A. We recall that

[p1(A)]
−1 = {a−1 ∈ G : a ∈ p1(A)}.

The sufficient condition for the existence of the independent domination number i(Γ) of

a Cayley digraph Γ is described as in the following theorem.

Theorem 6.1.4. Let Γ be a Cayley digraph of a left group G × L with a connection set

A. If p1(A) = [p1(A)]
−1, then i(Γ) exists.

Proof. Let A be a connection set of Γ such that p1(A) = [p1(A)]
−1. We first show that

every maximal independent set of Γ is also a dominating set of Γ. Let M be a maximal

independent set of Γ and (x, l) ∈ V (Γ) \M . Assume to the contrary that ((m, q), (x, l)) /∈

E(Γ) for all (m, q) ∈M . If ((x, l), (x′, l′)) /∈ E(Γ) for all (x′, l′) ∈M , then M ∪ {(x, l)} is

an independent set containing M which is impossible because M is maximal independent.

Thus there exists (y, k) ∈ M such that ((x, l), (y, k)) ∈ E(Γ). It follows that there exists

(a, t) ∈ A in which (y, k) = (x, l)(a, t) = (xa, l). We now have a ∈ p1(A) = [p1(A)]
−1,

that is, a = b−1 for some b ∈ p1(A) and then yb = (xa)b = x(b−1b) = x. Since b ∈ p1(A),

there exists j ∈ p2(A) such that (b, j) ∈ A and we get (x, l) = (yb, k) = (y, k)(b, j). Thus

((y, k), (x, l)) ∈ E(Γ) which contradicts to our assumption. Therefore, M is a dominating

set of Γ. So we now get that M is an independent dominating set of Γ. Consequently, we

can conclude by the definition of i(Γ) that i(Γ) ≤ |M | which guarantees the existence of

i(Γ), this completes the proof of our assertion.

The following theorem presents the bounds of an independent domination number

i(Γ) of Γ under the condition p1(A) = [p1(A)]
−1.
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Theorem 6.1.5. Let A be a connection set of Γ where the identity e /∈ p1(A). If p1(A) =

[p1(A)]
−1, then

|G||L|
|〈p1(A)〉|

⌈

|〈p1(A)〉|
|p1(A)|+1

⌉

≤ i(Γ) ≤ |G||L|
|〈p1(A)〉|

⌊

|〈p1(A)〉|
2

⌋

.

Proof. Let A be a connection set of Γ such that p1(A) = [p1(A)]
−1 where e /∈ p1(A). Then

i(Γ) exists by Theorem 6.1.4. Now, we consider the independent domination number of

Cay(〈p1(A)〉, p1(A)) which can be considered as a strong subdigraph of Γ. Suppose that

i(Cay(〈p1(A)〉, p1(A))) = k for some k ∈ N. Since every vertex of Cay(〈p1(A)〉, p1(A))

dominates other |p1(A)| vertices, we can conclude that k(|p1(A)| + 1) ≥ |〈p1(A)〉| which

implies that k ≥
⌈

|〈p1(A)〉|
|p1(A)|+1

⌉

. By applying Lemma 2.2.6, we can conclude that

i(Γ) = |G||L|
|〈p1(A)〉| [i(Cay(〈p1(A)〉, p1(A)))] ≥

|G||L|
|〈p1(A)〉|

⌈

|〈p1(A)〉|
|p1(A)|+1

⌉

.

Furthermore, it is uncomplicated to examine that every independent set of the digraph

Cay(〈p1(A)〉, p1(A)) contains at most
⌊

|〈p1(A)〉|
2

⌋

elements. Again from Lemma 2.2.6, we

can conclude that i(Γ) ≤ |G||L|
|〈p1(A)〉|

⌊

|〈p1(A)〉|
2

⌋

.

Proposition 6.1.6. Let A be a connection set of Γ. If p1(A) satisfies the condition that

x−1y ∈ p1(A) for any two different elements x, y ∈ 〈p1(A)〉, then i(Γ) = |G||L|
|〈p1(A)〉| .

Proof. Suppose that the condition holds. Consider the Cayley digraph Cay(〈p1(A)〉, p1(A))

of a subgroup 〈p1(A)〉 with a connection set p1(A), by our supposition, we obtain that

y = x(x−1y) where x−1y ∈ p1(A) for all x, y ∈ 〈p1(A)〉 and x 6= y. Then (x, y) ∈

E(Cay(〈p1(A)〉, p1(A))). Similarly, we can obtain that (y, x) ∈ E(Cay(〈p1(A)〉, p1(A))).

This means that there exists an arc connecting between two different vertices in 〈p1(A)〉.

Hence the set {v} is an independent dominating set of Cay(〈p1(A)〉, p1(A)) for fixed v in

〈p1(A)〉. Thus i(Cay(〈p1(A)〉, p1(A))) = 1. By Lemma 2.2.6, we conclude that Γ is the

disjoint union of |G||L|
|〈p1(A)〉| strong subdigraphs which each subdigraph is isomorphic to the

Cayley digraph Cay(〈p1(A)〉, p1(A)). It follows that

i(Γ) = |G||L|
|〈p1(A)〉| [i(Cay(〈p1(A)〉, p1(A)))] =

|G||L|
|〈p1(A)〉| , as desired.

Proposition 6.1.7. If A = {a} × T where the order of an element a is even and T is a

nonempty subset of L, then i(Γ) = |G||L|
2 .

Proof. Let A = {a} × T be a connection set of Γ such that |a| is even and T is a

nonempty subset of L. By the proof of the above proposition, we can conclude that

i(Γ) = |G||L|
|〈p1(A)〉| [i(Cay(〈p1(A)〉, p1(A)))]. Therefore, we have to consider the independent

domination number of Cay(〈p1(A)〉, p1(A)). Since p1(A) = {a} and |a| is even, we have

that Cay(〈p1(A)〉, p1(A)) is the dicycle of even order |a| = |〈p1(A)〉|. In addition, it is not

63



difficult to verify that i(Cay(〈p1(A)〉, p1(A))) =
|〈p1(A)〉|

2 . Consequently, we can conclude

that i(Γ) = |G||L|
|〈p1(A)〉|

|〈p1(A)〉|
2 = |G||L|

2 , as required.

The next proposition shows the exact value of an independent domination number

of Γ with the given connection set A where p1(A) is a subgroup of G. In addition, we

can easily obtain that i(Cay(〈p1(A)〉, p1(A))) = 1. By applying Lemma 2.2.6, we have the

following result.

Proposition 6.1.8. If A = K × T where K is a subgroup of G and T is any nonempty

subset of L, then i(Γ) = |G||L|
|K| .

Here we will show some results about an independent domination number of Cayley

digraphs of right groups with their connection sets. Recall that we denote by Λ a Cayley

digraph Cay(G×R,A) of a right group G×R with a connection set A.

Theorem 6.1.9. If p2(A) 6= R, then i(Λ) = |G|(|R| − |p2(A)|).

Proof. Let A be a connection set of Λ in which p2(A) 6= R. By applying the result about

a domination number of Cayley digraphs of right groups as stated in Theorem 4.1.17, we

can conclude that i(Λ) ≥ |G|(|R| − |p2(A)|). We now consider the subset G× (R \ p2(A))

of G× R. If there exist (x, α), (y, β) ∈ G × (R \ p2(A)) such that ((x, α), (y, β)) ∈ E(Λ),

then (y, β) = (x, α)(a, λ) for some (a, λ) ∈ A, that is, β = αλ = λ ∈ p2(A) which is a

contradiction. Hence G× (R \ p2(A)) is an independent set of Λ. So we now obtain that

G×(R\p2(A)) is an independent dominating set of Λ. Therefore, i(Λ) ≤ |G×(R\p2(A))| =

|G|(|R| − |p2(A)|). Thus we can conclude that i(Λ) = |G|(|R| − |p2(A)|), as required.

Theorem 6.1.10. If A = {a} ×R where the order of a is even, then i(Λ) = |G||R|
2 .

Proof. Suppose that A = {a} × R where |a| is even. We shall show that the set I :=

{a, a3, a5, . . . , ak−1} × R is an independent dominating set of Cay(〈A〉, A) where |a| = k

for some an even positive integer k. Since p1(A) = {a}, it is easy to verify that I

is independent. Now, we let (g, γ) ∈ 〈A〉 \ I. Thus g = a2t for some t ∈ N. Since

(g, γ) = (a2t, γ) = (a2t−1, γ)(a, γ) where (a, γ) ∈ A and (a2t−1, γ) ∈ I that means I is a

dominating set of Cay(〈A〉, A). Hence I is an independent dominating set of Cay(〈A〉, A)

which implies that i(Cay(〈A〉, A)) ≤ |I|. We now assume that there exists an independent

dominating set X of Cay(〈A〉, A) such that |X| < |I|. Define the subset X ′ of 〈A〉 as

follows:

X ′ = {(x′, δ′) ∈ 〈A〉 : ((x, δ), (x′, δ′)) ∈ E(Cay(〈A〉, A)) for some (x, δ) ∈ X}.
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Thus X ∩ X ′ = ∅ by the independence of X and we have X ∪ X ′ = 〈A〉 since X is the

dominating set of Cay(〈A〉, A). Hence

|〈A〉| = |X ∪X ′| = |X|+ |X ′| = |X|+ k
2 |R| = |X|+ |I| < |I|+ |I| = 2|I|.

Since p2(A) = R and by Lemma 2.2.8, we obtain that

|〈A〉| < 2|I| = 2(k2 |R|) = k|R| = |〈a〉||R| = |〈p1(A)〉||R| = |〈p1(A)〉 ×R| = |〈A〉|

which is a contradiction. Therefore, i(Cay(〈A〉, A)) = |I| = k
2 |R|. Since Λ is the disjoint

union of |G|
|〈p1(A)〉| strong subdigraphs which each subdigraph is isomorphic to Cay(〈A〉, A)

as stated in Lemma 2.2.7, we can conclude that

i(Λ) = |G|
|〈p1(A)〉|(i(Cay(〈A〉, A))) =

|G|
|〈p1(A)〉|(

k
2 |R|) =

|G||R|
2 .

Hence our assertion is completely proved.

Theorem 6.1.11. If A = K ×R where K is a subgroup of G, then i(Λ) = |G|
|K| .

Proof. Let A be a connection set of Λ such that A = K ×R where K is a subgroup of G.

By Lemma 2.2.8, we can conclude that

〈A〉 = 〈p1(A)〉 × p2(A) = 〈K〉 ×R = K ×R = A.

For any two elements (x, α) and (y, β) in 〈A〉, we have (y, β) = (x, α)(x−1y, β) where

(x−1y, β) ∈ K × R = A. This means that there exists an arc in Cay(〈A〉, A) connecting

between two different vertices of Cay(〈A〉, A). Thus we can use only one vertex in 〈A〉

for dominating other vertices in 〈A〉 which implies that i(Cay(〈A〉, A)) = 1. By Lemma

2.2.7, we obtain that i(Λ) = |G|
|〈p1(A)〉|(i(Cay(〈A〉, A))) =

|G|
|K|(i(Cay(〈A〉, A))) =

|G|
|K| .

6.2 Weakly Independent Domination Number

This section provides some results of the weakly independent domination number

of Cayley digraphs of rectangular groups, left groups, and right groups, respectively.

For the weakly independent domination number iw(∆) of a Cayley digraph ∆ of a

rectangular group G×L×R with a connection set A, we can similarly follow those results

from Theorems 6.1.1, 6.1.2 and 6.1.3 to obtain the following results.

Theorem 6.2.1. If A = {(a, α) ∈ G × R : (a, l, α) ∈ A for some l ∈ L}, then iw(∆) =

|L|(iw(Cay(G×R,A))).

Theorem 6.2.2. If I is an iw−set of ∆, then I∩(G×{l}×R) is an iw−set of the digraph

(G× {l} ×R,El) for all l ∈ L.
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Theorem 6.2.3. If T is an iw−set of Cay(G × R,A), then
⋃

(t,γ)∈T

({t} × L × {γ}) is an

iw−set of ∆.

Here we will present some results about a weakly independent domination number

iw(Γ) of a Cayley digraph Γ of a left group G× L with a connection set A.

Proposition 6.2.4. If p1(A) is a subgroup of G, then iw(Γ) =
|G||L|
|〈p1(A)〉| .

Proof. Let A be a connection set of Γ such that p1(A) is a subgroup of a group G. By

applying the similar argument in the proof of Proposition 6.1.6, we can conclude that

iw(Cay(〈p1(A)〉, p1(A))) = 1. Hence iw(Γ) =
|G||L|
|〈p1(A)〉| by using Lemma 2.2.6.

Proposition 6.2.5. If p1(A) = {a, a
−1} for some a ∈ G and a is not the identity of G,

then iw(Γ) =
|G||L|
|〈p1(A)〉|

⌈

|〈p1(A)〉|
3

⌉

.

Proof. Let A be a connection set of Γ such that p1(A) = {a, a−1} where a is not the

identity of a group G. Consider Cay(〈p1(A)〉, p1(A)), we obtain that for each g ∈ 〈p1(A)〉,

g can dominate other two vertices ga and ga−1. Then it is not difficult to verify that

iw(Cay(〈p1(A)〉, p1(A))) =
⌈

|〈p1(A)〉|
3

⌉

. Therefore, we can certainly conclude that iw(Γ) =

|G||L|
|〈p1(A)〉|

⌈

|〈p1(A)〉|
3

⌉

which completes the proof.

Next, we will present the results about a weakly independent domination number

iw(Λ) of a Cayley digraph Λ of a right group G×R with respect to a connection set A.

Theorem 6.2.6. If p2(A) 6= R, then iw(Λ) = |G|(|R| − |p2(A)|).

Proof. By using the similar argument of the proof of Theorem 6.1.9, we can conclude that

iw(Λ) = |G|(|R| − |p2(A)|), as desired.

Theorem 6.2.7. If p1(A) = G, p2(A) = R and |A| = |R|, then iw(Λ) = |G|.

Proof. Let A be a connection set of Λ such that p1(A) = G, p2(A) = R and |A| = |R|.

Consider γ ∈ R in which (e, γ) ∈ A where e is the identity of a group G, we obtain

from the proof of Theorem 4.1.22 that G × {γ} is a dominating set of Λ such that the

domination number of Λ equals |G × {γ}|. Since all arcs of a strong subdigraph of Λ

induced by G × {γ} are loops, every two vertices in G × {γ} are weakly independent.

So we can conclude that G × {γ} is an iw−set that means iw(Λ) = |G × {γ}| = |G|, an

assertion of the theorem is proved.

Proposition 6.2.8. If A = {a} ×R where |a| = 2, then iw(Λ) =
|G||R|

2 .
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Proof. Let A = {a} × R be a connection set of Λ such that |a| = 2. We can observe by

Lemma 2.2.7 that Λ is the disjoint union of |G|
|〈a〉| strong subdigraphs which each strong

subdigraph is isomorphic to Cay(〈A〉, A). Since 〈A〉 = 〈p1(A)〉 × p2(A) = 〈a〉 × R as

shown in Lemma 2.2.8, we obtain that {a}×R is a weakly independent dominating set of

Cay(〈A〉, A). Let Y be any weakly independent dominating set of Cay(〈A〉, A). For each

(y, µ) ∈ Y , we can obtain that {ya}×R must be dominated by (y, µ). Thus any element of

{ya}×R can not belong to Y since Y is weakly independent. Hence Y precisely contains

all elements of {y} ×R which makes us conclude that

iw(Cay(〈A〉, A)) = |Y | = |{y} ×R| = |R|.

Therefore, iw(Λ) =
|G|
|〈a〉|(iw(Cay(〈A〉, A))) =

|G||R|
2 , as required.

Theorem 6.2.9. If A = K ×R where K is a subgroup of G, then iw(Λ) =
|G|
|K| .

Proof. Similar to the proof of Theorem 6.1.11.

6.3 Dipath Independent Domination Number

In this section, some results about a dipath independent domination number of

Cayley digraphs of rectangular groups with respect to their connection sets are presented.

For convenience, we will recall that ∆ is the Cayley digraph Cay(G × L × R,A) of a

rectangular group G× L×R with a connection set A.

Actually, we can obtain the corresponding results from Theorems 6.1.1, 6.1.2 and

6.1.3 for a dipath independent domination number of Cayley digraphs of rectangular

groups with arbitrary connection sets as follows.

Theorem 6.3.1. If A = {(a, α) ∈ G × R : (a, l, α) ∈ A for some l ∈ L}, then ip(∆) =

|L|(ip(Cay(G×R,A))).

Theorem 6.3.2. If I is an ip−set of ∆, then I ∩ (G×{l}×R) is an ip−set of the digraph

(G× {l} ×R,El) for all l ∈ L.

Theorem 6.3.3. If T is an ip−set of Cay(G × R,A), then
⋃

(t,γ)∈T

({t} × L × {γ}) is an

ip−set of ∆.

Next, we will show other results for the dipath independent domination number of

Cayley digraphs of rectangular groups with their connection sets.

Theorem 6.3.4. Let ∆ be a Cayley digraph of a rectangular group G × L × R with a

connection set A. If p3(A) 6= R, then ip(∆) = |G||L|(|R| − |p3(A)|).
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Proof. Let A be a connection set of ∆ such that p3(A) 6= R. Since ∆ is the disjoint

union of |L| strong subdigraphs which each subdigraph is isomorphic to Cay(G × R,A)

where A = {(a, γ) ∈ G × R : (a, l, γ) ∈ A for some l ∈ L} as stated in Theorem 3.1.1,

we need to consider the dipath independent domination number of that Cayley digraph

Cay(G×R,A). From p3(A) 6= R, it follows that p2(A) 6= R. We can conclude by applying

Theorem 4.1.17 that G × (R \ p2(A)) is a dominating set and its cardinality equals the

domination number of Cay(G×R,A). In addition, we can verify that G× (R \ p2(A)) is

a dipath independent set of Cay(G×R,A), clearly. So we now have that G× (R \ p2(A))

is a dipath independent dominating set of Cay(G× R,A). Therefore, G× (R \ p2(A)) is

an ip−set of Cay(G×R,A) that means ip(Cay(G×R,A)) = |G|(|R|− |p2(A)|). From the

fact that p2(A) = p3(A), we get that ip(∆) = |G||L|(|R| − |p3(A)|), certainly.

We now give the necessary and sufficient conditions for the existence of a dipath

independent domination number of ∆ := Cay(G× L×R,A) where the connection set A

satisfies the condition that p3(A) = R.

Theorem 6.3.5. If p3(A) = R, then the following statements are equivalent:

(1). ip(∆) exists; (2). A = 〈p1(A)〉 ×R; (3). ip(∆) =
|G||L|
|〈p1(A)〉| .

Proof. Let A be a connection set of ∆ such that p3(A) = R.

(1)⇒ (2) : Suppose that ip(∆) exists, that is, ip(∆) = |X| for some an ip−set X of

∆. We first let (a, γ) ∈ A. Hence there exists l ∈ L in which (a, l, γ) ∈ A which implies

that a ∈ p1(A) ⊆ 〈p1(A)〉, whence (a, γ) ∈ 〈p1(A)〉 × R. Next, we need to give (b, τ) ∈

〈p1(A)〉 × R for proving the reverse containment. Since p3(A) = R, we have by Theorem

3.2.1 that Cay(〈A〉, A) is strongly connected, that is, there exists a dipath joining between

any two vertices in Cay(〈A〉, A). We obviously obtain that p2(A) = R. By Lemma 2.2.8

and Proposition 3.2.2, we can obtain that 〈A〉 = 〈p1(A)〉×R = 〈p1(A)〉×R = p1(〈A〉)×R.

For each l ∈ L, we also get that p1(〈A〉)×R is isomorphic to p1(〈A〉)× {l} ×R. We will

denote p1(〈A〉)× {l} ×R by 〈A〉l. Thus the strong subdigraph of ∆ induced by 〈A〉l can

be considered to be strongly connected. Since X is a dipath independent dominating set

of ∆, we obtain that |X ∩ 〈A〉l| = 1. We may assume that X ∩ 〈A〉l = {(x, l, λ)} for some

(x, l, λ) ∈ 〈A〉l, that is, x ∈ p1(〈A〉). Applying Proposition 3.2.2 gives (xb, l, τ) ∈ 〈A〉l. By

the definition of X, we conclude that (xb, l, τ) must be dominated by (x, l, λ) that means

there exists (y, k, δ) ∈ A such that (xb, l, τ) = (x, l, λ)(y, k, δ) = (xy, l, δ). Thus xb = xy

and τ = δ which implies by the cancellation law that (b, τ) = (y, δ) ∈ A since (y, k, δ) ∈ A.

So we can conclude that A = 〈p1(A)〉 ×R, as required.
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(2) ⇒ (3) : Assume that A = 〈p1(A)〉 × R. We first prove that there exists

an arc connecting between any two vertices of Cay(〈A〉, A). Let (a, γ), (b, δ) ∈ 〈A〉.

Thus (a, γ) = (a1, γ1)(a2, γ2) · · · (am, γm) and (b, δ) = (b1, δ1)(b2, δ2) · · · (bn, δn) for some

(a1, γ1), (a2, γ2), . . . , (am, γm), (b1, δ1), (b2, δ2), . . . , (bn, δn) ∈ A. Hence a = a1a2 · · · am and

b = b1b2 · · · bn in which a1, a2, . . . , am, b1, b2, . . . , bn ∈ p1(A) = 〈p1(A)〉. Therefore, we can

directly observe that

a−1b = (a1a2 · · · am)
−1b1b2 · · · bn = a−1m a−1m−1 · · · a

−1
2 a−11 b1b2 · · · bn ∈ 〈p1(A)〉.

Hence (a−1b, δ) ∈ 〈p1(A)〉×R = A such that (b, δ) = (a, γ)(a−1b, δ) which leads to the fact

that ((a, γ), (b, δ)) ∈ E(Cay(〈A〉, A)). So we can conclude that {(x, τ)}, (x, τ) ∈ 〈A〉, is a

dipath independent dominating set of Cay(〈A〉, A) which follows that ip(Cay(〈A〉, A)) = 1.

By Theorem 3.1.1, we get that ∆ is the disjoint union of |L| strong subdigraphs which each

subdigraph is isomorphic to Cay(G × R,A). In addition, we have by Lemma 2.2.7 that

Cay(G×R,A) is the disjoint union of |G|

|〈p1(A)〉|
strong subdigraphs which each subdigraph

is isomorphic to Cay(〈A〉, A). Therefore, we obtain that

ip(∆) =
|G||L|

|〈p1(A)〉|
[ip(Cay(〈A〉, A))] =

|G||L|

|〈p1(A)〉|
.

It is easy to see from our assumption that 〈p1(A)〉 = 〈p1(A)〉 which certainly follows that

ip(∆) =
|G||L|
|〈p1(A)〉| , proving the assertion. It is obvious for (3)⇒ (1).

6.4 Weakly Dipath Independent Domination Number

This section shows some results about a weakly dipath independent domination

number of Cayley digraphs of rectangular groups with respect to their connection sets.

We will recall that ∆ is the Cayley digraph Cay(G × L × R,A) of a rectangular group

G× L×R with a connection set A.

The following three theorems are analogous results of Theorems 6.3.1, 6.3.2 and

6.3.3 which describe the results for a weakly dipath independent domination number of

Cayley digraphs of rectangular groups relative to their connection sets.

Theorem 6.4.1. If A = {(a, α) ∈ G × R : (a, l, α) ∈ A for some l ∈ L}, then iwp(∆) =

|L|(iwp(Cay(G×R,A))).

Theorem 6.4.2. If I is an iwp−set of ∆, then I ∩ (G × {l} × R) is an iwp−set of the

digraph (G× {l} ×R,El) for all l ∈ L.

Theorem 6.4.3. If T is an iwp−set of Cay(G×R,A), then
⋃

(t,γ)∈T

({t} × L× {γ}) is an

iwp−set of ∆.
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The following two theorems are stated to show the results for a weakly dipath

independent domination number of Cayley digraphs of rectangular groups with respect to

their connection sets. The last theorem gives the sufficient condition for a weakly dipath

independent domination number and a dipath independent domination number of ∆ to

be equal.

Theorem 6.4.4. If p3(A) 6= R, then iwp(∆) = |G||L|(|R| − |p3(A)|).

Proof. It is easy to verify that the ip−set mentioned in the proof of Theorem 6.3.4 is an

iwp−set of ∆ which completely leads to our assertion.

Theorem 6.4.5. If p3(A) = R, then iwp(∆) = ip(∆).

Proof. Assume that p3(A) = R. By Theorem 3.2.1, we obtain that Cay(〈A〉, A) is strongly

connected, that is, there exists a dipath connecting between any two different vertices of

Cay(〈A〉, A). Therefore, we can consider the property of the weakly dipath independent

domination number of the Cayley digraph ∆ to be the same as the property of the dipath

independent domination number of ∆ which concludes the result of our theorem.
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