CHAPTER 7

Endomorphisms on Cayley Digraphs

of Rectangular Groups

The purpose of this chapter is to present the results for endomorphisms on Cayley
digraphs of some rectangular groups related to the according connection sets. Let (V, E') be
a digraph with a vertex set V' and an arc set E. Recall that a function f : (V, E) — (V, E)
is called an endomorphism on (V, E) if for each (x,y) € E implies (f(x), f(y)) € E as well.
We divide this chapter into three sections. In the first section, we give some results for
endomorphisms on Cayley digraphs of rectangular groups with their connection sets. The
remaining sections are studied about endomorphisms on Cayley digraphs of left groups
and right groups, respectively.

In order to study the structure of endomorphisms on Cayley digraphs of rectangular
groups, we need to prescribe some notations used in what follows. For any digraph €2,
let us denote by this notation (T', E) the strong subdigraph of Q induced by I" in which a
vertex set is I' and an arc set is E. For each a function f : 2y — s from a digraph
to a digraph €2y and any subdigraph ¥ of €1, we mention f(X) as a strong subdigraph
(f(X2), E") of Q9 induced by f(X).

7.1 Endomorphisms on Cayley Digraphs of Rectangular Groups

We now study the endomorphisms on a Cayley digraph A of a rectangular group
G x L x R with respect to a connection set A. Before we give those results, we first define
the useful function which is used in the sequel. Let f: A — A be a function from A into

A itself and [ € L. For each o € R, we define ¢y, : Cay(G,p1(A)) — Cay(G,pi1(A)) by

®;,(a) = b if and only if there exist t € L and § € R
such that f(a,l,a) = (b,t,3) for all a € G.

It is easy to verify that ®;, is well-defined. Some results for endomorphisms on a Cayley
digraph A := Cay(G x L x R, A) are obtained such that the connection set A is in the
form of a direct product K x P x T where K CG, PC Land T C R.
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Theorem 7.1.1. Let A= K x P x T be a connection set of A andl € L. If f : A — A,
then f € End(A) if and only if the following statements hold:
(1). f((K) x{l} x R, E}) is a subdigraph of (c(K) x {t} x R, E})
for somet € L, c € G and for allb € G;
(2). ®14 € End(Cay(G, K)) for alla € T';
(3). for each g € K and a € G, there exists g, € K such that
{Pu(a)gy '} x {u} x T if O €T,

flag™',1,0) €
{®in(a)gy '} x {u} x R if § € R\T

for all A\ € T and for some u € L.

Proof. Let A= K x P x T be a connection set of A, [l € L and f: A — A.
(=) Assume that f € End(A).

Let b € G. We prove that f(b(K)x{l} xR, E}) is a subdigraph of (¢(K) x{t} x R, E})
for some t € L and ¢ € G. Let (g,p,7),(h,k,s) € V(f(b(K) x {l} x R, E;)) be such
that (g,p,7) € V(c(K) x {t} x R, E;) and (h,k,s) € V(d(K) x {u} x R, E,) for some
t,u € L and ¢,d € G. Thus p =t and k = u and hence (g,t,7) = (g,p,7) = f(¢',p',7)
for some (¢',p/,7") € b(K) x {I} x R and (h,u,s) = (h,k,s) = f(I, k&) for some
(W, K, s") € b(K) x {l} x R. Then p’ =1 =Fk. Since ((¢/,1,7"),(d,1,7")(a,i,z)) € E(A)
where (a,i,x) € Aand f € End(A), we have (f(¢',1,7), f(¢'a,l,z)) € E(A). Similarly, we
conclude that ((h',1,s"), (W, 1,8 )(a,i,x)) € E(A) implies (f(h',1,s"), f(Wa,l,x)) € E(A).
From ¢',h' € b(K) and a € K, we get ¢'a,ha € b(K). Consider the strong subdigraph
(b(K) x {l} x {x}, Ej;) of A which is isomorphic to Cay((K), K), we obtain that there

exists a dipath connecting between (¢'a,l,z) and (h'a,l, z), say M. We may assume that
A=K 0N D Frhdes } v ed GGy el
where m; € b(K) x {l} x {z} and j =1,2,...,q. Since f € End(A), we have
fld'a,l,x), f(ma), f(ma2),..., f(mg), f(Ra,l z)

is a diwalk in A. Hence there exists a semi-diwalk connecting between f(¢’,p’,r’") and
f(W, K, §"). Since two digraphs (¢(K) x {t} x R, E;) and (d(K) x {u} x R, E,,) are maximal

semi-connected subdigraphs of A, we can conclude that
(c(K) x {t} x R, E}) = (d(K) x {u} x R, Ey,),

that is, ¢ = u. Therefore, V(f(b(K) x {l} x R, E;)) C V(c(K) x {t} x R, E;). We now let
((91,p1,71), (92, P2, 72)) € E(f(b(K) x {I} x R, E})). We then obtain that
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(91, p1,71), (92, p2,72) € V(F(0(K) x {l} x R, Ey)) € V(e(K) x {t} x R, Ey).

Thus ((g1,p1,71), (92,p2,72)) € E(c(K) x {t} x R, E;) since (c¢(K) x {t} x R, E;) is a
strong subdigraph of A. Consequently, the digraph f(b(K) x {l} x R, E}) is a subdigraph
of (¢(K) x {t} x R, E}), as required.

We next prove that @, € End(Cay(G, K)) for all « € T. Let o € T and (z,y) €
E(Cay(G, K)). Thus y = xa for some a € K. Assume that ®;,(z) = v and ®;,(y) = v for
some u,v € G. Then f(z,l,«a) = (u,k,B) and f(y,l,a) = (v,q,7) for some k,q € L and
B,y € R. Since (#,1,0), (5.1,0)) = ((,1,0), (za,1,0)) = (2,1, ), (2,1, 0) (0, p,2)) €
E(A) where (a,p,a)) € A and f € End(A), we have (f(z,l, ), f(y,l,a)) € E(A), that
is, f(y,l,a) = f(z,l,a)(b,m,\) for some (b,m,\) € A. Hence (v,q,7) = f(y,l,a) =
flz, l,a)(b,m,\) = (u,k,B)(b,m,\) = (ub,k,\). We obtain that v = ub that means
D10 (y) = v = ub = Py (z)b where b € K. Therefore, (Pjo(z), P1n(y)) € E(Cay(G, K))
which implies that ®;, € End(Cay(G, K)).

In order to prove the statement (3), we now let A € T and # € R. For each
g € K and a € G, consider (ag~!,1,6) € V(A). Since (a,l,\) = (ag~',1,0)(g,p, \) where
(9,p,\) € A, we get ((ag™1,1,0),(a,l,\)) € E(A). Because f € End(A), we obtain that
(fag=1,1,0), f(a,1,\)) € E(A). We may assume that f(ag~',1,0) = (h,u,d) for some
(h,u,d) € V(A). Then there exists (gq,1, 1) € A such that

fla,1,2) = f(ag™,1,0)(Ga, i, 1) = (b, u,0)(gas i, 1) = (hGar u, ).
Hence ®;)(a) = hg,. Thus f(ag™t,1,0) = (h,u,8) = (hgagy ', u,8) = (®1a(a)g, L, u, d).
If & € T, then (g,p,0) € A. Since (ag~',1,0) = (ag=2,1,0)(g,p,0), we obtain that
((ag=2,1,0),(ag4,1,0)) € E(A) and hence (f(ag=2,1,0), f(ag=',1,0)) € E(A) because
f € End(A). Suppose that f(ag=2,1,0) = (c, e, &) for some (c,e,e) € V(A). Hence

flag™',1,0) = f(ag™2,1,0)(m,w,n) = (c,e,&)(m,w,n) = (cm, e,7)
for some (m,w,n) € A. We can conclude that (®;)(a)g, !, u,d) = (em,e,n) which leads

to § =n € T. Therefore,

oL gy e | PN@) X (W X T it 9ET,
{®n(a)gy '} x {u} x R if 6 € R\T.

(<) We now suppose that the conditions hold. Let ((a,l, p), (b,7,A)) € E(A). Thus there
exists (k,p,t) € A such that (b,7,\) = (a,l, p)(k,p,t) = (ak,l,t). Then b = ak, j =1 and
A=t eT. Since (a,b) = (a,ak) € E(Cay(G, K)) and ¢;, € End(Cay(G, K)), we get
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that (®yx(a), P;A(b)) € E(Cay(G, K)). Hence ®;)(b) = ®;\(a)c for some ¢ € K. By our
supposition, there exist u € L, 4 € R and ¢ € K in which

fla,l,p) = flakk™", 1, p) = (®ia(ak)g™ " u, 1) = (Pia(D)g ™, u, 1) = (Pia(a)eq™ u, ).

By the definition of ®;y, there exist m € L and w € R such that f(b,j,A) = f(b,l,A) =
(®ir(b),m,w). Since A =t € T, we obtain by our supposition that there exists s € K
such that f(b,7,A) = f(bnn=1,j,\) = (®;,(bn)s™ 1, v,€) for some n € K, v € L and
€e€T. Thus w = ¢ € T and hence f(b,5,\) = (Pin(b),m,w) = (Px(a)e, m,w). Since
j=1land ((a,l,p),(b,j,\) € E(A), we gain that (a,l, p), (b, j,\) € V(g(K) x {l} x R, E})
for some g € G. We obtain that f(a,l,p), f(b,7,\) € V(f(g(K) x {l} x R, E})). Since
f(g(K) x {l} x R, E}) is a subdigraph of (h(K) x {p} x R, E,) for some h € G and p € L,
both f(a,l,p) and f(b, 7, A) must belong to the vertex set of the same strong subdigraph
of A. From f(a,l,p) = (®1r(a)eq™t,u, ) and f(b, j, \) = (®;2(b), m,w), we can conclude
that f(a,l,p), f(b,4,\) € V(d(K) x {u} x R, E,) for some d € G that means m = u. For
fixed y € P, we have (q,y,w) € K x P x T = A and then

f(b,4,A) = (Pia(a)e,m,w) = (Prp(a)c, u,w)
= (Pr(a)eg™ !, u, 1) (g, y, w)
= f(aa l: p)(‘]a yaw)'

Hence (f(a,l,p), f(b,j,A)) € E(A) which leads to f € End(A), as required. O

Now, we will illustrate an example of an endomorphism of a Cayley digraph of a
rectangular group with a connection set A as stated in Theorem 7.1.1 and indicate that

the endomorphism satisfies three conditions as shown in Theorem 7.1.1.

Example 7.1.2. Let A = Cay(Zs x {l,k} x {a, 8}, A) where A = {1} x {i} x {a}.

ol 1B 208 OkB 1kB 2kp

Figure 7.1: Cay(Zs x {l,k} x {«, 5},{(1,1,)}).
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We obtain that

Ola 1lla 2la 0ka 1ka 2ka OlB 1B 218 O0kB 1kB 2k(3
= € End(A).
lka 2ka Oka 2la Ola lla 1kB 2ka Oka 218 015 115

From p;(A) = {1}, we have (p1(A4)) = {0,1,2}. Consider
f(pi(A)) x {1} x{a, B}) = {1ke, 2ka, Oka, 1k},

we get that f((p1(A)) x {l} x {e, B}, Ey) is the subdigraph of ((p1(4)) x {k} x {e, B}, Ej)
as shown in Figure 7.2 where f((p1(A4)) x {l} x {«, 8}, E}) is a subdigraph of A induced

by F((p1(A)) x {1} x {a, B}).
ol 10 o

k83

Figure 7.2: Subdigraph of A induced by {0ka, 1ka, 2ka, 1k5}.

Similarly, we can observe that the digraph f({p1(A)) x {k} x {a, 5}, E}) is a subdigraph
of ({(p1(A)) x {1} x {e, B}, Ey).

Moreover, we have
012 012
¢la = a,nd @ka ==
120 201

which are endomorphisms on Cay(Zs, {1}).

In addition, f satisfies the condition (3) in Theorem 7.1.1 as shown as follows:

fO+1741a) = £(2,1,a) = (0,k,a) = (1+2,k,a) = (21o(0) + 171, &, ),
fA+175La) = £(0,l,0) = (1,k,a) = (2+ 2,k a) = (P1o(1) + 171, k, a),
f+175La)=f(1,l,0) = (2,k,a) = (0+ 2,k a) = (®1n(2) + 171, Kk, ),
fO+17Yk a) = f(2,ka) = (1,l,a) = (2+2,1,a) = (Pra(0) + 1711, ),
fA+171 ko) = f0,k,a)=(2,l,a) = (0+2,1,a) = (Pra(1) +171,1,a),
fe+17VEka)=f(1,ka)=(0,l,a) = (1 +2,l,a) = (Pra(2) + 171, 1, ).

Similarly, for each t € {I,k}, we have f(x + 171,t,8) € {®sa(z) + 171} x {u} x R for all
x € Zs and for some u € {l, k}.

The next proposition describes the relation between two mappings for studying an

endomorphism of a Cayley digraph A of a rectangular group G x L x R with respect to
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the connection set mentioned in the above theorem via an arc-preserving property. Before
we show the result, we need to define the notation for convenience to use in the proof.

Let f: A— A,l € L and a € R. We denote by fa. the restriction function

f|G><{l}><{a} (G x {1} x {a}, Bin) = A

where Ej, is an arc set of the strong subdigraph (G x {l} x {a}, Ejs) of A.

Proposition 7.1.3. Let A= K x P x T be a connection set of A. For eachl € L and
a €T, the function ®;, € End(Cay(G, K)) if and only if p1 o fgia is arc-preserving.

Proof. Let | € L and « € T. Suppose that ®;, € End(Cay(G, K)). Let g,h € G be such
that ((g,1, @), (h,l,a)) € E(A). Then there exists (a,q,\) € A such that
(h7 l7 a) = (g’ l’ a)(a7 q7 A) = (ga7 l? )\)7
that is, h = ga where a € K which implies that (g,h) € E(Cay(G, K)). Since ¥y, is an
endomorphism of Cay(G, K), we have (914(g9), P1n(h)) € E(Cay(G, K)). We may assume
that ®;,(g9) = = and ®;,(h) =y for some x,y € G. Thus
fGla(ga L Oé) . f(g7 L, Ck) = (%t;/ﬁ) and fGla(h7 L a) = f(h7 l,Oé) T (ya S, 77)

for some s,t € L and pu,n € R. Hence

(P10 faia)(h, 1, ) =y = ®jo(h) = ®1n(9)k = 2k = (p1 © faia) (9,1, @)k

where £ € K. Then ((p1 o fcia)(9:1, ), (p1© faia)(h,1,a)) € E(A). Therefore, p1 o fgia
is arc-preserving.

Conversely, assume that p; o fgia is arc-preserving. We want to show that ®;, €
End(Cay(G, K)). Let x,y € G be such that (z,y) € E(Cay(G, K)). Thus y = xa for some
a € K. Since a € T, there exists u € P in which (a,u,a) € A because A = K x P x T.
Hence (y,l,a) = (za,l,a) = (x,1,a)(a,u, ) which leads to ((x,l,a), (y,l,a)) € E(A).
By our assumption, we obtain that

((pl © fGla)(‘Tﬂ [ a): (pl o fGla)(% [ a)) € E(Cay(GvK))

We take f(z,l,a) = (2/,0',d/) and f(y,l,«) = (¢/,I',a’) for some (2/,1', ), (v/,I',d) €
G x L x R. Hence ®;,(r) = 2’ and ®,(y) = v/ which implies that

(P10 (), Pia(y)) = (2',9)
= ((p1 o faa)(x, 1, @), (p1 © faia)(y,1,a)) € E(Cay(G, K)).

Consequently, ®;, € End(Cay(G, K)). O
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7.2 Endomorphisms on Cayley Digraphs of Left Groups

From the fact that a left group G x L is considered to be the special case of a
rectangular group G x L x R, we are also attentive to characterize endomorphisms on a
Cayley digraph I' of a left group G x L with an arbitrary connection set A.

Before we show the characterization of endomorphisms on Cayley digraphs of left
groups, we will define the following notation.

Let G/{(p1(A)) = {g1(p1(A)),g2(p1(A)),...,gk(p1(A))} such that g; € G for all
iel={12,...,k} where k € N. Let f : ' = I" be a function from I into I" itself and
I € L. We denote the restriction function f| = . . (9i(p1(A)) x {l}, Ey) — T by fi
in which (g;(p1(A)) x {l}, E;) is the strong subdigraph of T

Theorem 7.2.1. Let T’ be a Cayley digraph Cay(G x L, A) of a left group G x L with a
connection set A and f : ' — I'. The following statements are equivalent:
(1). f € End(T);
(2). fi is arc-preserving for alll € L and i € I;
(3). for each (z,l) € G x L and a € p1(4), f(za,l) = (p1(f(x,1))b,p2(f(z,1)))
for some b € p1(A).

Proof. Let A be a connection set of I'and f: " — I'.

(1)=-(2): Suppose that f € End(I'). Let | € L and i € I. We will prove that f
is arc-preserving. Let ((z,1), (y,1)) € E(gi(p1(A)) x {l}, Ey). Then ((x,1),(y,1)) € E(T).
We have (fi(x,1), fu(y, 1)) = (f(x,0), f(y,1)) € E(T) since f € End(I"). Therefore, f; is
arc-preserving, as required.

(2)=-(3): Assume that (2) is true. Let (z,1) € G x L and a € p;(A). We obtain that
(x,1) € gi(p1(A)) x {l} for some i € I. Thus there exists I’ € pa(A) such that (a,l') € A.
Consider (za,l) = (z,1)(a,l'), we have ((z,1), (za,l)) € E(g;(p1(A)) x {l}, E;) C E(T).
Since f; is arc-preserving, we get that (f(z,l), f(za,l)) = (fu(z,1), fu(za,l)) € E(T).
Suppose that f(x,l) = (y,l1) for some (y,11) € G x L. Then there exists (b,l2) € A such
that

f(za,l) = f(x,1)(b,12) = (y, 1) (b, l2) = (yb, 1) = (p1(f (2, 1))b, p2(f (1))
where b € pi(A).
(3)=-(1): Suppose that the statement (3) holds. We will show that f € End(I).
Let ((z,l1),(y,l2)) € E(T). Thus (y,l2) = (z,l1)(a,l3) = (za,ly) for some (a,l3) € A.
Hence y = za and [; = ly. Assume that f(z,11) = (u,l4) for some (u,l4) € G x L. By our

supposition, we obtain that
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f(y,l2) = f(za, 1) = (p1(f(x,11))b,p2(f (7, 11))) = (ub,l4)

for some b; € pi(A). Since b € p1(A), there exists I5 € pa(A) such that (b,15) € A. We

consequently obtain that

f(y7 12) = <Ub7 l4) = (u7 14)(177 l5> = f(x7l1)<b7 l5)7

that is, (f(z,l1), f(y,l2)) € E(T'). Therefore, f € End(T). O

The following example is presented for guaranteeing the properties of endomor-
phisms on Cayley digraphs of left groups with arbitrary connection sets shown in the

above theorem.

Example 7.2.2. Let I' = Cay(Z¢ x {l,k}, A) where A = {(2,1)}.

PCOON

Figure 7.3: Cay(Z¢ x {l,k},{(2,1)}).

We obtain that

0l 11 21 31 41 51 Ok 1k 2k 3k 4k 5k
— € End(T).
1k 21 3k 41 5k 01 31 51 51 11 11 3l

Since (p1(A4)) = ({2}) ={0,2,4}, if we let g1 = 0 and g2 = 1, then we obtain that

(91 + (p1(A))) x {1} = {(0,1),(2,0), (4, D)};

(91 + (p1(A))) x {k} = {(0,k), (2, k), (4, k) };
(92 + (p1(A))) x {1} = {(1,1), (3,1), (5,1)} and
(92 + (p1(A))) x {k} = {(1, k), (3, k), (5, %)}
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17 31 51 1k 3k 5k
2 = and fo, =
21 41 0l 50 11 3l

and they are arc-preserving.
The following computation shows that the endomorphism f defined as above satisfies

the third condition referred in Theorem 7.2.1.

FO+2,0) = f(2,1) = (3,k) = (1 +2,k) = (p(f(0,1)) + 2, p2(f(0,1))),

FA+2,0) =730 =10 =2+21) = (p(f(1,1) +2,p2(f(1,1))),

F2+2,0) =141 =(5,k) = (3+2,k) = (pu(f(2,0) +2,p2(f(2,0))),
FB+2,0)=f(5,1) =(0,1) = (4+2,1) = (p:(f(3,1)) + 2, p2(f(3,1))),
f(4+21)=f(0al) (Lk)=(5+2,k) = (p1(f(41) +2,p2(f(4,1))),

FG+2,0) = f(1,0) =(2,0) = (0+2,0) = (1(f(5,1)) +2,p2(f(5,1)))-

Similarly, we obtain that f(z +2,k) = (p1(f(z,k)) + 2, p2(f(x, k))) for all z € Zg.

7.3 Endomorphisms on Cayley Digraphs of Right Groups

As the fact that a Cayley digraph A of a rectangular group G x L x R with a
connection set A is a disjoint union of |L| isomorphic subdigraphs which each subdigraph
is isomorphic to a Cayley digraph A of a right group G x R with a connection set A defined

as follows:

A={(a,a) € GX R: (a,l,a) € A for some | € L},

we are also interested in the structure of endomorphisms on a Cayley digraph A of a right
group G X R where the connection set A is in the form of the cartesian product of sets.
Before we present some results of endomorphisms on Cayley digraphs of right groups,
we first define the gainful function which is used in this part.
Let f: A — A be a function from A into A itself. For each @ € R and for all a € G,
we define ¢, : Cay(G,p1(A)) — Cay(G,pi(A)) by

¢va(a) = b if and only if there exists 8 € R such that f(a,a) = (b, 5).

It is not hard to examine that ¢, is well-defined. The following theorem shows some

results of endomorphisms on Cayley digraphs of right groups with some connection sets.

Theorem 7.3.1. Let A = K XT be a connection set of A. If f : A — A, then f € End(A)
if and only if the following statements hold:
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(1). po € End(Cay(G, K)) for all « € T;
(2). for each g € K and a € G, there exists g, € K such that
{eala)ga '} x T if 0€T,

{oa(a)gs 'y x R if 6 € R\T

flag™',0) €

forall A eT.

Proof. Let A= K x T be a connection set of A and f: A — A.
(=) Suppose that f € End(A).

Let « € T. We first show that ¢, € End(Cay(G, K)). Assume that (z,y) €
E(Cay(G,K)). Thus y = xa for some a € K. We will let p,(x) = u and ¢,(y) = v for
some u,v € G. Then there exist 7,7 € R such that f(z,a) = (u,7v) and f(y,a) = (v,n),
respectively. Since f € End(A) and

((z, ), (y,2)) = ((z, ), (za,a)) = ((z,®), (z,a)(a,A)) € E(A)
for some X\ € T', we obtain that (f(z,a), f(y,«)) € E(A). Thus f(y,a) = f(z,a)(w,p)
for some (w, p) € A which implies that
(v,n) = f(y,a) = f(z,a)(w, p) = (u>7)(w7p) = (uw, p).

So we can conclude that v = uw, that is, pa(y) = v = vw = @o(z)w where w € K.
Therefore, (po(z), a(y)) € E(Cay(G, K)) that means ¢, € End(Cay(G, K)).

Let A € T and 6 € R. For each g € K and a € G, let us consider (ag~!,0) € G x R.
Since (a,\) = (ag=t,0)(g,\) where (g,\) € K x T = A, we can directly obtain that
((ag™1,0),(a,\)) € E(A). From f € End(A), we have (f(ag—',0), f(a,\)) € E(A), that is,
fla,\) = f(ag™',0)(ga, B) for some (gq,3) € A. We may assume that f(ag=!,0) = (z, )
for some x € G and p € R. Then

fa,\) = flag=".0)(ga, B) = (2, 1)(gas B) = (¥ga, B)
which leads to ¢y(a) = xg,. Therefore,
f(agila 0) = (x,,u) = (xgagglaﬂ) = (90/\(0’)9;1’ 14)-

If 6 € T, then (9,0) € K x T = A. Since (ag',0) = (ag=2,0)(g,0), we get that
((ag™2,0), (ag™",0)) € E(A) which implies that (f(ag=2,0), f(ag™",0)) € E(A). Suppose
that f(ag=2,0) = (c,e) for some (c,e) € G x R. Hence

f(ag_17‘9) = f(ag_2,9)(m,5) = (Cv 5)(m7 5) = (cmv 5)
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for some (m,8§) € A. We have (px(a)g; ', ) = (cm,8) which leads to u = § € T.

Consequently, we can totally conclude that

T if 0T
Hag1.0) € {oala)g '} x T if €T,
{pala)gs'} x R if € R\T.

(<) Assume that the conditions hold. We will prove that f € End(A). Let ((z, p), (y,A)) €
E(A). Thus (y,A\) = (x,p)(k,0) = (zk,0) for some (k,0) € A and then y = zk and
A =0 ¢eT. Since ) € End(Cay(G, K)) and (z,y) = (z,2k) € E(Cay(G, K)) because
k € K , we gain that (px(z),pa(y)) € E(Cay(G, K)). Hence y(y) = pa(z)s for some
s € K. By our assumption, we obtain that there exist ¢t € K and p € R in which

f(.l‘, ,O) = f(xkkilvp) = (@A(xk)tilmu) = (Sok(y)tilvu) = (@A(x)Stilau)'

Since A € T', we have by our assumption that there exists u € K such that

f(y7 )‘) = f(yzz_la >‘) = (QO)\(yZ)U_l,f)

for some z € K and & € T. Consider the definition of ¢y, we have f(y, A) = (pa(y), ) for
some 3 € R. We get that 8 =& € T. Hence there exists (t,3) € K x T'= A in which

f(yv)‘) = (ka(y)aﬁ) = (QD/\(Q?)S,ﬁ) 2 (QD)\(QT)St_l,,u)(t”B) = f(:B,p)(t,B)

Therefore, (f(x,p), f(y,A)) € E(A), that is, f € End(A), as desired. O

We now present an example of an endomorphism on a Cayley digraph of a right

group with a connection set mentioned in Theorem 7.3.1.

Example 7.3.2. Let A = Cay(Zg x {a, f}, A) where A = {2} x {a}.

Figure 7.4: Cay(Z¢ x {a, 5},{(2,)}).

We obtain that

Oa la 2a 3a 4o 5a 058 13 28 38 48 5
f= P15 20 36 45 5F € End(A).
S5a 3a la ba 3a 1la 58 3a la ba 36 1la
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Moreover, we have

012345
o0 = € End(Cay(Zg, {2})).
531531

In addition, f satisfies the condition (2) in Theorem 7.3.1 as shown as follows:

fO+27a) = f(4,0) = (3,a) = (5+4,a) = (va(0) + 271, ),
fA+270) = £(5,0) = (1,a) = 3+ 4,0) = (pa(1) + 271, 0),
F2+271a)=f(0,a) = (5,a) = (1+4,0) = (pa(2) + 271, ),
fB+27ha) = f(l,a)=(3,0) = (5+4,0) = (a(3) + 271, a),
fA+27ha) = f(2,0) = (L,a) = B+4,0) = (pa(4) + 27}, ),
fG+271a) = f(3,0) = (5,a) = (1 +4,0) = (pa(5) + 271, )

Similarly, we have f(x + 271, 8) € {pa(x) + 271} x R for all x € Z.

The next result gives the necessary and sufficient conditions for endomorphisms on
Cayley digraphs of right groups which connection sets are in the form {g} x R, the special

case of the connection set in Theorem 7.3.1.

Corollary 7.3.3. Let A= {g} X R be a connection set of A where g € G.
If f: A — A, then f € End(A) if and only if the following statements hold:
(1). o € End(Cay(G,{g})) for all « € R;
(2). pg =y for all B,y € R.

Proof. Let A ={g} x R be a connection set of A for some g € G.

Suppose that f € End(A). By Theorem 7.3.1, we have ¢, € End(Cay(G,{g}))
for all @ € R. Next, we will prove the statement (2). Let 8,7 € R and =z € G.
Suppose that ¢g(z) = s and ¢,(z) = t for some s,t € G. Then f(z,8) = (s,A)

and f(z,y) = (t,u) for some A\,u € R. Since (zg,7) = (z,8)(9,7) and (xg,v) =
(,7)(g,7) where (g,7) € A, we have ((z,8),(zg,7)), ((z,7),(zg,7)) € E(A). Hence
(f(z,B), f(zg,7)), (f(®,7), f(zg,7)) € E(A) since f € End(A). Thus

f(zg,7) = f(x,5)(g,6) and f(zg,7) = f(2,7)(g,n)
for some §,n € R. We conclude that f(z,3)(g,9) = f(x,7v)(g,n) which implies that
(s9,0) = (s,)(9,0) = [f(=,B)(g,0) = f(z,7)(g,n) = (t, n)(g,n) = (tg,n)-
Hence sg = tg and then s = ¢ by the cancellation law of a group G. Therefore,

pg(x) = s =t =p,(x), that is, pg = ¢,, as required.
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Conversely, assume that (1) and (2) are true. We want to show that f € End(A).
Let (z,a),(y,B) € E(A). Then (y,0) = (z,a)(g,\) = (zg,A) for some A € R which
implies that y = zg. Thus (z,y) € E(Cay(G,{g¢})). By our assumption, we obtain that
Pa;pp € End(Cay(G, {g})) and o = @3. We have (¢a(2), pa(y)) € E(Cay(G,{g})), that
is, s(y) = Ya(y) = wal(x)g. Hence there exists 6 € R such that f(y,3) = (¢a(x)g,0).
Suppose that ¢, () = u for some u € G that means there exists p € R in which f(z,a) =
(u,p). Therefore, f(y,B) = (pa(2)g,0) = (ug,0) = (u,u)(9,0) = f(z,)(g,0) where
(9,0) € {g} x R= A. Hence (f(z,«a), f(y,B)) € E(A). Consequently, f € End(A). O

Furthermore, the number of endomorphisms on a Cayley digraph of a right group

with the connection set {g} x R is obtained in the following proposition.

Proposition 7.3.4. Let G be a group of order n and R a right zero semigroup of order
m where m,n € N. Let A= {g} x R be a connection set of A where g € G.
If |[End(Cay(G, {g}))| = d for some d € N, then |End(A)| = d - m™".

Proof. Let A = {g} x R be a connection set of the Cayley digraph A where g € G. Suppose
that |End(Cay(G,{g}))| = d for some d € N. In order to construct an endomorphism f
of A, let ¢ € End(Cay(G, {g})) be fixed. For each (z,a) € G x R, we define f : A — A by

f(z,a) = (¢(x), B) for some 5 € R.

Then f is an endomorphism of A followed from Corollary 7.3.3. It can be easily seen that
[ is arbitrary, this means that it does not matter when we choose whatever 8 € R,
the function f is always an endomorphism of A. So we can conclude that for each
¢ € End(Cay(G,{g})) and for each (z,a) € G x R, we have m ways to construct en-
domorphisms of A. On the other hand, if we pick f € End(A), we can obtain by Corollary
7.3.3 that f must be one of those functions that we defined above. Consequently, we can

conclude that |End(A)| = |[End(Cay(G, {g}))||R|IC*Fl = d - m™", as required. O
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