
CHAPTER 7

Endomorphisms on Cayley Digraphs

of Rectangular Groups

The purpose of this chapter is to present the results for endomorphisms on Cayley

digraphs of some rectangular groups related to the according connection sets. Let (V,E) be

a digraph with a vertex set V and an arc set E. Recall that a function f : (V,E)→ (V,E)

is called an endomorphism on (V,E) if for each (x, y) ∈ E implies (f(x), f(y)) ∈ E as well.

We divide this chapter into three sections. In the first section, we give some results for

endomorphisms on Cayley digraphs of rectangular groups with their connection sets. The

remaining sections are studied about endomorphisms on Cayley digraphs of left groups

and right groups, respectively.

In order to study the structure of endomorphisms on Cayley digraphs of rectangular

groups, we need to prescribe some notations used in what follows. For any digraph Ω,

let us denote by this notation (Γ, E) the strong subdigraph of Ω induced by Γ in which a

vertex set is Γ and an arc set is E. For each a function f : Ω1 −→ Ω2 from a digraph Ω1

to a digraph Ω2 and any subdigraph Σ of Ω1, we mention f(Σ) as a strong subdigraph

(f(Σ), E′) of Ω2 induced by f(Σ).

7.1 Endomorphisms on Cayley Digraphs of Rectangular Groups

We now study the endomorphisms on a Cayley digraph ∆ of a rectangular group

G×L×R with respect to a connection set A. Before we give those results, we first define

the useful function which is used in the sequel. Let f : ∆→ ∆ be a function from ∆ into

∆ itself and l ∈ L. For each α ∈ R, we define Φlα : Cay(G, p1(A))→ Cay(G, p1(A)) by

Φlα(a) = b if and only if there exist t ∈ L and β ∈ R

such that f(a, l, α) = (b, t, β) for all a ∈ G.

It is easy to verify that Φlα is well-defined. Some results for endomorphisms on a Cayley

digraph ∆ := Cay(G × L × R,A) are obtained such that the connection set A is in the

form of a direct product K × P × T where K ⊆ G, P ⊆ L and T ⊆ R.
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Theorem 7.1.1. Let A = K × P × T be a connection set of ∆ and l ∈ L. If f : ∆→ ∆,

then f ∈ End(∆) if and only if the following statements hold:

(1). f(b〈K〉 × {l} ×R,El) is a subdigraph of (c〈K〉 × {t} ×R,Et)

for some t ∈ L, c ∈ G and for all b ∈ G;

(2). Φlα ∈ End(Cay(G,K)) for all α ∈ T ;

(3). for each g ∈ K and a ∈ G, there exists ga ∈ K such that

f(ag−1, l, θ) ∈











{Φlλ(a)g
−1
a } × {u} × T if θ ∈ T,

{Φlλ(a)g
−1
a } × {u} ×R if θ ∈ R \ T

for all λ ∈ T and for some u ∈ L.

Proof. Let A = K × P × T be a connection set of ∆, l ∈ L and f : ∆→ ∆.

(⇒) Assume that f ∈ End(∆).

Let b ∈ G. We prove that f(b〈K〉×{l}×R,El) is a subdigraph of (c〈K〉×{t}×R,Et)

for some t ∈ L and c ∈ G. Let (g, p, r), (h, k, s) ∈ V (f(b〈K〉 × {l} × R,El)) be such

that (g, p, r) ∈ V (c〈K〉 × {t} × R,Et) and (h, k, s) ∈ V (d〈K〉 × {u} × R,Eu) for some

t, u ∈ L and c, d ∈ G. Thus p = t and k = u and hence (g, t, r) = (g, p, r) = f(g′, p′, r′)

for some (g′, p′, r′) ∈ b〈K〉 × {l} × R and (h, u, s) = (h, k, s) = f(h′, k′, s′) for some

(h′, k′, s′) ∈ b〈K〉 × {l} × R. Then p′ = l = k′. Since ((g′, l, r′), (g′, l, r′)(a, i, x)) ∈ E(∆)

where (a, i, x) ∈ A and f ∈ End(∆), we have (f(g′, l, r′), f(g′a, l, x)) ∈ E(∆). Similarly, we

conclude that ((h′, l, s′), (h′, l, s′)(a, i, x)) ∈ E(∆) implies (f(h′, l, s′), f(h′a, l, x)) ∈ E(∆).

From g′, h′ ∈ b〈K〉 and a ∈ K, we get g′a, h′a ∈ b〈K〉. Consider the strong subdigraph

(b〈K〉 × {l} × {x}, Elx) of ∆ which is isomorphic to Cay(〈K〉,K), we obtain that there

exists a dipath connecting between (g′a, l, x) and (h′a, l, x), say M . We may assume that

M := (g′a, l, x),m1,m2, . . . ,mq, (h
′a, l, x)

where mj ∈ b〈K〉 × {l} × {x} and j = 1, 2, . . . , q. Since f ∈ End(∆), we have

f(g′a, l, x), f(m1), f(m2), . . . , f(mq), f(h
′a, l, x)

is a diwalk in ∆. Hence there exists a semi-diwalk connecting between f(g′, p′, r′) and

f(h′, k′, s′). Since two digraphs (c〈K〉×{t}×R,Et) and (d〈K〉×{u}×R,Eu) are maximal

semi-connected subdigraphs of ∆, we can conclude that

(c〈K〉 × {t} ×R,Et) = (d〈K〉 × {u} ×R,Eu),

that is, t = u. Therefore, V (f(b〈K〉 × {l} ×R,El)) ⊆ V (c〈K〉 × {t} ×R,Et). We now let

((g1, p1, r1), (g2, p2, r2)) ∈ E(f(b〈K〉 × {l} ×R,El)). We then obtain that
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(g1, p1, r1), (g2, p2, r2) ∈ V (f(b〈K〉 × {l} ×R,El)) ⊆ V (c〈K〉 × {t} ×R,Et).

Thus ((g1, p1, r1), (g2, p2, r2)) ∈ E(c〈K〉 × {t} × R,Et) since (c〈K〉 × {t} × R,Et) is a

strong subdigraph of ∆. Consequently, the digraph f(b〈K〉× {l}×R,El) is a subdigraph

of (c〈K〉 × {t} ×R,Et), as required.

We next prove that Φlα ∈ End(Cay(G,K)) for all α ∈ T . Let α ∈ T and (x, y) ∈

E(Cay(G,K)). Thus y = xa for some a ∈ K. Assume that Φlα(x) = u and Φlα(y) = v for

some u, v ∈ G. Then f(x, l, α) = (u, k, β) and f(y, l, α) = (v, q, γ) for some k, q ∈ L and

β, γ ∈ R. Since ((x, l, α), (y, l, α)) = ((x, l, α), (xa, l, α)) = ((x, l, α), (x, l, α)(a, p, α)) ∈

E(∆) where (a, p, α)) ∈ A and f ∈ End(∆), we have (f(x, l, α), f(y, l, α)) ∈ E(∆), that

is, f(y, l, α) = f(x, l, α)(b,m, λ) for some (b,m, λ) ∈ A. Hence (v, q, γ) = f(y, l, α) =

f(x, l, α)(b,m, λ) = (u, k, β)(b,m, λ) = (ub, k, λ). We obtain that v = ub that means

Φlα(y) = v = ub = Φlα(x)b where b ∈ K. Therefore, (Φlα(x),Φlα(y)) ∈ E(Cay(G,K))

which implies that Φlα ∈ End(Cay(G,K)).

In order to prove the statement (3), we now let λ ∈ T and θ ∈ R. For each

g ∈ K and a ∈ G, consider (ag−1, l, θ) ∈ V (∆). Since (a, l, λ) = (ag−1, l, θ)(g, p, λ) where

(g, p, λ) ∈ A, we get ((ag−1, l, θ), (a, l, λ)) ∈ E(∆). Because f ∈ End(∆), we obtain that

(f(ag−1, l, θ), f(a, l, λ)) ∈ E(∆). We may assume that f(ag−1, l, θ) = (h, u, δ) for some

(h, u, δ) ∈ V (∆). Then there exists (ga, i, µ) ∈ A such that

f(a, l, λ) = f(ag−1, l, θ)(ga, i, µ) = (h, u, δ)(ga, i, µ) = (hga, u, µ).

Hence Φlλ(a) = hga. Thus f(ag
−1, l, θ) = (h, u, δ) = (hgag

−1
a , u, δ) = (Φlλ(a)g

−1
a , u, δ).

If θ ∈ T , then (g, p, θ) ∈ A. Since (ag−1, l, θ) = (ag−2, l, θ)(g, p, θ), we obtain that

((ag−2, l, θ), (ag−1, l, θ)) ∈ E(∆) and hence (f(ag−2, l, θ), f(ag−1, l, θ)) ∈ E(∆) because

f ∈ End(∆). Suppose that f(ag−2, l, θ) = (c, e, ε) for some (c, e, ε) ∈ V (∆). Hence

f(ag−1, l, θ) = f(ag−2, l, θ)(m,w, η) = (c, e, ε)(m,w, η) = (cm, e, η)

for some (m,w, η) ∈ A. We can conclude that (Φlλ(a)g
−1
a , u, δ) = (cm, e, η) which leads

to δ = η ∈ T . Therefore,

f(ag−1, l, θ) ∈











{Φlλ(a)g
−1
a } × {u} × T if θ ∈ T,

{Φlλ(a)g
−1
a } × {u} ×R if θ ∈ R \ T.

(⇐) We now suppose that the conditions hold. Let ((a, l, ρ), (b, j, λ)) ∈ E(∆). Thus there

exists (k, p, t) ∈ A such that (b, j, λ) = (a, l, ρ)(k, p, t) = (ak, l, t). Then b = ak, j = l and

λ = t ∈ T . Since (a, b) = (a, ak) ∈ E(Cay(G,K)) and Φlλ ∈ End(Cay(G,K)), we get
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that (Φlλ(a),Φlλ(b)) ∈ E(Cay(G,K)). Hence Φlλ(b) = Φlλ(a)c for some c ∈ K. By our

supposition, there exist u ∈ L, µ ∈ R and q ∈ K in which

f(a, l, ρ) = f(akk−1, l, ρ) = (Φlλ(ak)q
−1, u, µ) = (Φlλ(b)q

−1, u, µ) = (Φlλ(a)cq
−1, u, µ).

By the definition of Φlλ, there exist m ∈ L and ω ∈ R such that f(b, j, λ) = f(b, l, λ) =

(Φlλ(b),m, ω). Since λ = t ∈ T , we obtain by our supposition that there exists s ∈ K

such that f(b, j, λ) = f(bnn−1, j, λ) = (Φjλ(bn)s
−1, v, ξ) for some n ∈ K, v ∈ L and

ξ ∈ T . Thus ω = ξ ∈ T and hence f(b, j, λ) = (Φlλ(b),m, ω) = (Φlλ(a)c,m, ω). Since

j = l and ((a, l, ρ), (b, j, λ)) ∈ E(∆), we gain that (a, l, ρ), (b, j, λ) ∈ V (g〈K〉×{l}×R,El)

for some g ∈ G. We obtain that f(a, l, ρ), f(b, j, λ) ∈ V (f(g〈K〉 × {l} × R,El)). Since

f(g〈K〉 × {l}×R,El) is a subdigraph of (h〈K〉 × {p}×R,Ep) for some h ∈ G and p ∈ L,

both f(a, l, ρ) and f(b, j, λ) must belong to the vertex set of the same strong subdigraph

of ∆. From f(a, l, ρ) = (Φlλ(a)cq
−1, u, µ) and f(b, j, λ) = (Φlλ(b),m, ω), we can conclude

that f(a, l, ρ), f(b, j, λ) ∈ V (d〈K〉 × {u} ×R,Eu) for some d ∈ G that means m = u. For

fixed y ∈ P , we have (q, y, ω) ∈ K × P × T = A and then

f(b, j, λ) = (Φlλ(a)c,m, ω) = (Φlλ(a)c, u, ω)

= (Φlλ(a)cq
−1, u, µ)(q, y, ω)

= f(a, l, ρ)(q, y, ω).

Hence (f(a, l, ρ), f(b, j, λ)) ∈ E(∆) which leads to f ∈ End(∆), as required.

Now, we will illustrate an example of an endomorphism of a Cayley digraph of a

rectangular group with a connection set A as stated in Theorem 7.1.1 and indicate that

the endomorphism satisfies three conditions as shown in Theorem 7.1.1.

Example 7.1.2. Let ∆ = Cay(Z3 × {l, k} × {α, β}, A) where A = {1} × {l} × {α}.

0lα 1lα 2lα 0kα 1kα 2kα

0lβ 1lβ 2lβ 0kβ 1kβ 2kβ

Figure 7.1: Cay(Z3 × {l, k} × {α, β}, {(1, l, α)}).
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We obtain that

f =





0lα 1lα 2lα 0kα 1kα 2kα 0lβ 1lβ 2lβ 0kβ 1kβ 2kβ

1kα 2kα 0kα 2lα 0lα 1lα 1kβ 2kα 0kα 2lβ 0lβ 1lβ



 ∈ End(∆).

From p1(A) = {1}, we have 〈p1(A)〉 = {0, 1, 2}. Consider

f(〈p1(A)〉 × {l} × {α, β}) = {1kα, 2kα, 0kα, 1kβ},

we get that f(〈p1(A)〉×{l}×{α, β}, El) is the subdigraph of (〈p1(A)〉×{k}×{α, β}, Ek)

as shown in Figure 7.2 where f(〈p1(A)〉 × {l} × {α, β}, El) is a subdigraph of ∆ induced

by f(〈p1(A)〉 × {l} × {α, β}).

0kα 1kα 2kα

1kβ

Figure 7.2: Subdigraph of ∆ induced by {0kα, 1kα, 2kα, 1kβ}.

Similarly, we can observe that the digraph f(〈p1(A)〉 × {k} × {α, β}, Ek) is a subdigraph

of (〈p1(A)〉 × {l} × {α, β}, El).

Moreover, we have

Φlα =





0 1 2

1 2 0



 and Φkα =





0 1 2

2 0 1





which are endomorphisms on Cay(Z3, {1}).

In addition, f satisfies the condition (3) in Theorem 7.1.1 as shown as follows:

f(0 + 1−1, l, α) = f(2, l, α) = (0, k, α) = (1 + 2, k, α) = (Φlα(0) + 1−1, k, α),

f(1 + 1−1, l, α) = f(0, l, α) = (1, k, α) = (2 + 2, k, α) = (Φlα(1) + 1−1, k, α),

f(2 + 1−1, l, α) = f(1, l, α) = (2, k, α) = (0 + 2, k, α) = (Φlα(2) + 1−1, k, α),

f(0 + 1−1, k, α) = f(2, k, α) = (1, l, α) = (2 + 2, l, α) = (Φkα(0) + 1−1, l, α),

f(1 + 1−1, k, α) = f(0, k, α) = (2, l, α) = (0 + 2, l, α) = (Φkα(1) + 1−1, l, α),

f(2 + 1−1, k, α) = f(1, k, α) = (0, l, α) = (1 + 2, l, α) = (Φkα(2) + 1−1, l, α).

Similarly, for each t ∈ {l, k}, we have f(x+ 1−1, t, β) ∈ {Φtα(x) + 1−1} × {u} × R for all

x ∈ Z3 and for some u ∈ {l, k}.

The next proposition describes the relation between two mappings for studying an

endomorphism of a Cayley digraph ∆ of a rectangular group G × L × R with respect to
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the connection set mentioned in the above theorem via an arc-preserving property. Before

we show the result, we need to define the notation for convenience to use in the proof.

Let f : ∆→ ∆, l ∈ L and α ∈ R. We denote by fGlα the restriction function

f|G×{l}×{α}
: (G× {l} × {α}, Elα)→ ∆

where Elα is an arc set of the strong subdigraph (G× {l} × {α}, Elα) of ∆.

Proposition 7.1.3. Let A = K × P × T be a connection set of ∆. For each l ∈ L and

α ∈ T , the function Φlα ∈ End(Cay(G,K)) if and only if p1 ◦ fGlα is arc-preserving.

Proof. Let l ∈ L and α ∈ T . Suppose that Φlα ∈ End(Cay(G,K)). Let g, h ∈ G be such

that ((g, l, α), (h, l, α)) ∈ E(∆). Then there exists (a, q, λ) ∈ A such that

(h, l, α) = (g, l, α)(a, q, λ) = (ga, l, λ),

that is, h = ga where a ∈ K which implies that (g, h) ∈ E(Cay(G,K)). Since Φlα is an

endomorphism of Cay(G,K), we have (Φlα(g),Φlα(h)) ∈ E(Cay(G,K)). We may assume

that Φlα(g) = x and Φlα(h) = y for some x, y ∈ G. Thus

fGlα(g, l, α) = f(g, l, α) = (x, t, µ) and fGlα(h, l, α) = f(h, l, α) = (y, s, η)

for some s, t ∈ L and µ, η ∈ R. Hence

(p1 ◦ fGlα)(h, l, α) = y = Φlα(h) = Φlα(g)k = xk = (p1 ◦ fGlα)(g, l, α)k

where k ∈ K. Then ((p1 ◦ fGlα)(g, l, α), (p1 ◦ fGlα)(h, l, α)) ∈ E(∆). Therefore, p1 ◦ fGlα

is arc-preserving.

Conversely, assume that p1 ◦ fGlα is arc-preserving. We want to show that Φlα ∈

End(Cay(G,K)). Let x, y ∈ G be such that (x, y) ∈ E(Cay(G,K)). Thus y = xa for some

a ∈ K. Since α ∈ T , there exists u ∈ P in which (a, u, α) ∈ A because A = K × P × T .

Hence (y, l, α) = (xa, l, α) = (x, l, α)(a, u, α) which leads to ((x, l, α), (y, l, α)) ∈ E(∆).

By our assumption, we obtain that

((p1 ◦ fGlα)(x, l, α), (p1 ◦ fGlα)(y, l, α)) ∈ E(Cay(G,K)).

We take f(x, l, α) = (x′, l′, α′) and f(y, l, α) = (y′, l′, α′) for some (x′, l′, α′), (y′, l′, α′) ∈

G× L×R. Hence Φlα(x) = x′ and Φlα(y) = y′ which implies that

(Φlα(x),Φlα(y)) = (x′, y′)

= ((p1 ◦ fGlα)(x, l, α), (p1 ◦ fGlα)(y, l, α)) ∈ E(Cay(G,K)).

Consequently, Φlα ∈ End(Cay(G,K)).
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7.2 Endomorphisms on Cayley Digraphs of Left Groups

From the fact that a left group G × L is considered to be the special case of a

rectangular group G × L × R, we are also attentive to characterize endomorphisms on a

Cayley digraph Γ of a left group G× L with an arbitrary connection set A.

Before we show the characterization of endomorphisms on Cayley digraphs of left

groups, we will define the following notation.

Let G/〈p1(A)〉 = {g1〈p1(A)〉, g2〈p1(A)〉, . . . , gk〈p1(A)〉} such that gi ∈ G for all

i ∈ I = {1, 2, . . . , k} where k ∈ N. Let f : Γ → Γ be a function from Γ into Γ itself and

l ∈ L. We denote the restriction function f|gi〈p1(A)〉×{l}
: (gi〈p1(A)〉 × {l}, Eil) → Γ by fil

in which (gi〈p1(A)〉 × {l}, Eil) is the strong subdigraph of Γ.

Theorem 7.2.1. Let Γ be a Cayley digraph Cay(G× L,A) of a left group G× L with a

connection set A and f : Γ→ Γ. The following statements are equivalent:

(1). f ∈ End(Γ);

(2). fil is arc-preserving for all l ∈ L and i ∈ I;

(3). for each (x, l) ∈ G× L and a ∈ p1(A), f(xa, l) = (p1(f(x, l))b, p2(f(x, l)))

for some b ∈ p1(A).

Proof. Let A be a connection set of Γ and f : Γ→ Γ.

(1)⇒(2): Suppose that f ∈ End(Γ). Let l ∈ L and i ∈ I. We will prove that fil

is arc-preserving. Let ((x, l), (y, l)) ∈ E(gi〈p1(A)〉 × {l}, Eil). Then ((x, l), (y, l)) ∈ E(Γ).

We have (fil(x, l), fil(y, l)) = (f(x, l), f(y, l)) ∈ E(Γ) since f ∈ End(Γ). Therefore, fil is

arc-preserving, as required.

(2)⇒(3): Assume that (2) is true. Let (x, l) ∈ G×L and a ∈ p1(A). We obtain that

(x, l) ∈ gi〈p1(A)〉 × {l} for some i ∈ I. Thus there exists l′ ∈ p2(A) such that (a, l
′) ∈ A.

Consider (xa, l) = (x, l)(a, l′), we have ((x, l), (xa, l)) ∈ E(gi〈p1(A)〉 × {l}, Eil) ⊆ E(Γ).

Since fil is arc-preserving, we get that (f(x, l), f(xa, l)) = (fil(x, l), fil(xa, l)) ∈ E(Γ).

Suppose that f(x, l) = (y, l1) for some (y, l1) ∈ G× L. Then there exists (b, l2) ∈ A such

that

f(xa, l) = f(x, l)(b, l2) = (y, l1)(b, l2) = (yb, l1) = (p1(f(x, l))b, p2(f(x, l)))

where b ∈ p1(A).

(3)⇒(1): Suppose that the statement (3) holds. We will show that f ∈ End(Γ).

Let ((x, l1), (y, l2)) ∈ E(Γ). Thus (y, l2) = (x, l1)(a, l3) = (xa, l1) for some (a, l3) ∈ A.

Hence y = xa and l1 = l2. Assume that f(x, l1) = (u, l4) for some (u, l4) ∈ G×L. By our

supposition, we obtain that
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f(y, l2) = f(xa, l1) = (p1(f(x, l1))b, p2(f(x, l1))) = (ub, l4)

for some b1 ∈ p1(A). Since b ∈ p1(A), there exists l5 ∈ p2(A) such that (b, l5) ∈ A. We

consequently obtain that

f(y, l2) = (ub, l4) = (u, l4)(b, l5) = f(x, l1)(b, l5),

that is, (f(x, l1), f(y, l2)) ∈ E(Γ). Therefore, f ∈ End(Γ).

The following example is presented for guaranteeing the properties of endomor-

phisms on Cayley digraphs of left groups with arbitrary connection sets shown in the

above theorem.

Example 7.2.2. Let Γ = Cay(Z6 × {l, k}, A) where A = {(2, l)}.

0l 1l 2l 3l 4l 5l

0k 1k 2k 3k 4k 5k

Figure 7.3: Cay(Z6 × {l, k}, {(2, l)}).

We obtain that

f =





0l 1l 2l 3l 4l 5l 0k 1k 2k 3k 4k 5k

1k 2l 3k 4l 5k 0l 3l 5l 5l 1l 1l 3l



 ∈ End(Γ).

Since 〈p1(A)〉 = 〈{2}〉 = {0, 2, 4}, if we let g1 = 0 and g2 = 1, then we obtain that

(g1 + 〈p1(A)〉)× {l} = {(0, l), (2, l), (4, l)};

(g1 + 〈p1(A)〉)× {k} = {(0, k), (2, k), (4, k)};

(g2 + 〈p1(A)〉)× {l} = {(1, l), (3, l), (5, l)} and

(g2 + 〈p1(A)〉)× {k} = {(1, k), (3, k), (5, k)}.

We can conclude that

f1l =





0l 2l 4l

1k 3k 5k



 and f1k =





0k 2k 4k

3l 5l 1l



 ;
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f2l =





1l 3l 5l

2l 4l 0l



 and f2k =





1k 3k 5k

5l 1l 3l





and they are arc-preserving.

The following computation shows that the endomorphism f defined as above satisfies

the third condition referred in Theorem 7.2.1.

f(0 + 2, l) = f(2, l) = (3, k) = (1 + 2, k) = (p1(f(0, l)) + 2, p2(f(0, l))),

f(1 + 2, l) = f(3, l) = (4, l) = (2 + 2, l) = (p1(f(1, l)) + 2, p2(f(1, l))),

f(2 + 2, l) = f(4, l) = (5, k) = (3 + 2, k) = (p1(f(2, l)) + 2, p2(f(2, l))),

f(3 + 2, l) = f(5, l) = (0, l) = (4 + 2, l) = (p1(f(3, l)) + 2, p2(f(3, l))),

f(4 + 2, l) = f(0, l) = (1, k) = (5 + 2, k) = (p1(f(4, l)) + 2, p2(f(4, l))),

f(5 + 2, l) = f(1, l) = (2, l) = (0 + 2, l) = (p1(f(5, l)) + 2, p2(f(5, l))).

Similarly, we obtain that f(x+ 2, k) = (p1(f(x, k)) + 2, p2(f(x, k))) for all x ∈ Z6.

7.3 Endomorphisms on Cayley Digraphs of Right Groups

As the fact that a Cayley digraph ∆ of a rectangular group G × L × R with a

connection set A is a disjoint union of |L| isomorphic subdigraphs which each subdigraph

is isomorphic to a Cayley digraph Λ of a right group G×R with a connection set A defined

as follows:

A = {(a, α) ∈ G×R : (a, l, α) ∈ A for some l ∈ L},

we are also interested in the structure of endomorphisms on a Cayley digraph Λ of a right

group G×R where the connection set A is in the form of the cartesian product of sets.

Before we present some results of endomorphisms on Cayley digraphs of right groups,

we first define the gainful function which is used in this part.

Let f : Λ→ Λ be a function from Λ into Λ itself. For each α ∈ R and for all a ∈ G,

we define ϕα : Cay(G, p1(A))→ Cay(G, p1(A)) by

ϕα(a) = b if and only if there exists β ∈ R such that f(a, α) = (b, β).

It is not hard to examine that ϕα is well-defined. The following theorem shows some

results of endomorphisms on Cayley digraphs of right groups with some connection sets.

Theorem 7.3.1. Let A = K×T be a connection set of Λ. If f : Λ→ Λ, then f ∈ End(Λ)

if and only if the following statements hold:
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(1). ϕα ∈ End(Cay(G,K)) for all α ∈ T ;

(2). for each g ∈ K and a ∈ G, there exists ga ∈ K such that

f(ag−1, θ) ∈











{ϕλ(a)g
−1
a } × T if θ ∈ T,

{ϕλ(a)g
−1
a } ×R if θ ∈ R \ T

for all λ ∈ T .

Proof. Let A = K × T be a connection set of Λ and f : Λ→ Λ.

(⇒) Suppose that f ∈ End(Λ).

Let α ∈ T . We first show that ϕα ∈ End(Cay(G,K)). Assume that (x, y) ∈

E(Cay(G,K)). Thus y = xa for some a ∈ K. We will let ϕα(x) = u and ϕα(y) = v for

some u, v ∈ G. Then there exist γ, η ∈ R such that f(x, α) = (u, γ) and f(y, α) = (v, η),

respectively. Since f ∈ End(Λ) and

((x, α), (y, α)) = ((x, α), (xa, α)) = ((x, α), (x, α)(a, λ)) ∈ E(Λ)

for some λ ∈ T , we obtain that (f(x, α), f(y, α)) ∈ E(Λ). Thus f(y, α) = f(x, α)(w, ρ)

for some (w, ρ) ∈ A which implies that

(v, η) = f(y, α) = f(x, α)(w, ρ) = (u, γ)(w, ρ) = (uw, ρ).

So we can conclude that v = uw, that is, ϕα(y) = v = uw = ϕα(x)w where w ∈ K.

Therefore, (ϕα(x), ϕα(y)) ∈ E(Cay(G,K)) that means ϕα ∈ End(Cay(G,K)).

Let λ ∈ T and θ ∈ R. For each g ∈ K and a ∈ G, let us consider (ag−1, θ) ∈ G×R.

Since (a, λ) = (ag−1, θ)(g, λ) where (g, λ) ∈ K × T = A, we can directly obtain that

((ag−1, θ), (a, λ)) ∈ E(Λ). From f ∈ End(Λ), we have (f(ag−1, θ), f(a, λ)) ∈ E(Λ), that is,

f(a, λ) = f(ag−1, θ)(ga, β) for some (ga, β) ∈ A. We may assume that f(ag−1, θ) = (x, µ)

for some x ∈ G and µ ∈ R. Then

f(a, λ) = f(ag−1, θ)(ga, β) = (x, µ)(ga, β) = (xga, β)

which leads to ϕλ(a) = xga. Therefore,

f(ag−1, θ) = (x, µ) = (xgag
−1
a , µ) = (ϕλ(a)g

−1
a , µ).

If θ ∈ T , then (g, θ) ∈ K × T = A. Since (ag−1, θ) = (ag−2, θ)(g, θ), we get that

((ag−2, θ), (ag−1, θ)) ∈ E(Λ) which implies that (f(ag−2, θ), f(ag−1, θ)) ∈ E(Λ). Suppose

that f(ag−2, θ) = (c, ε) for some (c, ε) ∈ G×R. Hence

f(ag−1, θ) = f(ag−2, θ)(m, δ) = (c, ε)(m, δ) = (cm, δ)
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for some (m, δ) ∈ A. We have (ϕλ(a)g
−1
a , µ) = (cm, δ) which leads to µ = δ ∈ T .

Consequently, we can totally conclude that

f(ag−1, θ) ∈











{ϕλ(a)g
−1
a } × T if θ ∈ T,

{ϕλ(a)g
−1
a } ×R if θ ∈ R \ T.

(⇐) Assume that the conditions hold. We will prove that f ∈ End(Λ). Let ((x, ρ), (y, λ)) ∈

E(Λ). Thus (y, λ) = (x, ρ)(k, θ) = (xk, θ) for some (k, θ) ∈ A and then y = xk and

λ = θ ∈ T . Since ϕλ ∈ End(Cay(G,K)) and (x, y) = (x, xk) ∈ E(Cay(G,K)) because

k ∈ K , we gain that (ϕλ(x), ϕλ(y)) ∈ E(Cay(G,K)). Hence ϕλ(y) = ϕλ(x)s for some

s ∈ K. By our assumption, we obtain that there exist t ∈ K and µ ∈ R in which

f(x, ρ) = f(xkk−1, ρ) = (ϕλ(xk)t
−1, µ) = (ϕλ(y)t

−1, µ) = (ϕλ(x)st
−1, µ).

Since λ ∈ T , we have by our assumption that there exists u ∈ K such that

f(y, λ) = f(yzz−1, λ) = (ϕλ(yz)u
−1, ξ)

for some z ∈ K and ξ ∈ T . Consider the definition of ϕλ, we have f(y, λ) = (ϕλ(y), β) for

some β ∈ R. We get that β = ξ ∈ T . Hence there exists (t, β) ∈ K × T = A in which

f(y, λ) = (ϕλ(y), β) = (ϕλ(x)s, β) = (ϕλ(x)st
−1, µ)(t, β) = f(x, ρ)(t, β).

Therefore, (f(x, ρ), f(y, λ)) ∈ E(Λ), that is, f ∈ End(Λ), as desired.

We now present an example of an endomorphism on a Cayley digraph of a right

group with a connection set mentioned in Theorem 7.3.1.

Example 7.3.2. Let Λ = Cay(Z6 × {α, β}, A) where A = {2} × {α}.

0α 1α 2α 3α 4α 5α

0β 1β 2β 3β 4β 5β

Figure 7.4: Cay(Z6 × {α, β}, {(2, α)}).

We obtain that

f =





0α 1α 2α 3α 4α 5α 0β 1β 2β 3β 4β 5β

5α 3α 1α 5α 3α 1α 5β 3α 1α 5α 3β 1α



 ∈ End(Λ).
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Moreover, we have

ϕα =





0 1 2 3 4 5

5 3 1 5 3 1



 ∈ End(Cay(Z6, {2})).

In addition, f satisfies the condition (2) in Theorem 7.3.1 as shown as follows:

f(0 + 2−1, α) = f(4, α) = (3, α) = (5 + 4, α) = (ϕα(0) + 2−1, α),

f(1 + 2−1, α) = f(5, α) = (1, α) = (3 + 4, α) = (ϕα(1) + 2−1, α),

f(2 + 2−1, α) = f(0, α) = (5, α) = (1 + 4, α) = (ϕα(2) + 2−1, α),

f(3 + 2−1, α) = f(1, α) = (3, α) = (5 + 4, α) = (ϕα(3) + 2−1, α),

f(4 + 2−1, α) = f(2, α) = (1, α) = (3 + 4, α) = (ϕα(4) + 2−1, α),

f(5 + 2−1, α) = f(3, α) = (5, α) = (1 + 4, α) = (ϕα(5) + 2−1, α).

Similarly, we have f(x+ 2−1, β) ∈ {ϕα(x) + 2−1} ×R for all x ∈ Z6.

The next result gives the necessary and sufficient conditions for endomorphisms on

Cayley digraphs of right groups which connection sets are in the form {g}×R, the special

case of the connection set in Theorem 7.3.1.

Corollary 7.3.3. Let A = {g} ×R be a connection set of Λ where g ∈ G.

If f : Λ→ Λ, then f ∈ End(Λ) if and only if the following statements hold:

(1). ϕα ∈ End(Cay(G, {g})) for all α ∈ R;

(2). ϕβ = ϕγ for all β, γ ∈ R.

Proof. Let A = {g} ×R be a connection set of Λ for some g ∈ G.

Suppose that f ∈ End(Λ). By Theorem 7.3.1, we have ϕα ∈ End(Cay(G, {g}))

for all α ∈ R. Next, we will prove the statement (2). Let β, γ ∈ R and x ∈ G.

Suppose that ϕβ(x) = s and ϕγ(x) = t for some s, t ∈ G. Then f(x, β) = (s, λ)

and f(x, γ) = (t, µ) for some λ, µ ∈ R. Since (xg, γ) = (x, β)(g, γ) and (xg, γ) =

(x, γ)(g, γ) where (g, γ) ∈ A, we have ((x, β), (xg, γ)), ((x, γ), (xg, γ)) ∈ E(Λ). Hence

(f(x, β), f(xg, γ)), (f(x, γ), f(xg, γ)) ∈ E(Λ) since f ∈ End(Λ). Thus

f(xg, γ) = f(x, β)(g, δ) and f(xg, γ) = f(x, γ)(g, η)

for some δ, η ∈ R. We conclude that f(x, β)(g, δ) = f(x, γ)(g, η) which implies that

(sg, δ) = (s, λ)(g, δ) = f(x, β)(g, δ) = f(x, γ)(g, η) = (t, µ)(g, η) = (tg, η).

Hence sg = tg and then s = t by the cancellation law of a group G. Therefore,

ϕβ(x) = s = t = ϕγ(x), that is, ϕβ = ϕγ , as required.
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Conversely, assume that (1) and (2) are true. We want to show that f ∈ End(Λ).

Let (x, α), (y, β) ∈ E(Λ). Then (y, β) = (x, α)(g, λ) = (xg, λ) for some λ ∈ R which

implies that y = xg. Thus (x, y) ∈ E(Cay(G, {g})). By our assumption, we obtain that

ϕα, ϕβ ∈ End(Cay(G, {g})) and ϕα = ϕβ . We have (ϕα(x), ϕα(y)) ∈ E(Cay(G, {g})), that

is, ϕβ(y) = ϕα(y) = ϕα(x)g. Hence there exists θ ∈ R such that f(y, β) = (ϕα(x)g, θ).

Suppose that ϕα(x) = u for some u ∈ G that means there exists µ ∈ R in which f(x, α) =

(u, µ). Therefore, f(y, β) = (ϕα(x)g, θ) = (ug, θ) = (u, µ)(g, θ) = f(x, α)(g, θ) where

(g, θ) ∈ {g} ×R = A. Hence (f(x, α), f(y, β)) ∈ E(Λ). Consequently, f ∈ End(Λ).

Furthermore, the number of endomorphisms on a Cayley digraph of a right group

with the connection set {g} ×R is obtained in the following proposition.

Proposition 7.3.4. Let G be a group of order n and R a right zero semigroup of order

m where m,n ∈ N. Let A = {g} ×R be a connection set of Λ where g ∈ G.

If |End(Cay(G, {g}))| = d for some d ∈ N, then |End(Λ)| = d ·mmn.

Proof. Let A = {g}×R be a connection set of the Cayley digraph Λ where g ∈ G. Suppose

that |End(Cay(G, {g}))| = d for some d ∈ N. In order to construct an endomorphism f

of Λ, let φ ∈ End(Cay(G, {g})) be fixed. For each (x, α) ∈ G×R, we define f : Λ→ Λ by

f(x, α) = (φ(x), β) for some β ∈ R.

Then f is an endomorphism of Λ followed from Corollary 7.3.3. It can be easily seen that

β is arbitrary, this means that it does not matter when we choose whatever β ∈ R,

the function f is always an endomorphism of Λ. So we can conclude that for each

φ ∈ End(Cay(G, {g})) and for each (x, α) ∈ G × R, we have m ways to construct en-

domorphisms of Λ. On the other hand, if we pick f ∈ End(Λ), we can obtain by Corollary

7.3.3 that f must be one of those functions that we defined above. Consequently, we can

conclude that |End(Λ)| = |End(Cay(G, {g}))||R||G×R| = d ·mmn, as required.
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