
CHAPTER 2

Preliminaries

In this chapter, we address some necessary basic definitions and notations. We

split this chapter into four sections, semigroups, transformation semigroups, digraphs and

Cayley digraphs, and vertex-transitivities.

2.1 Semigroups

The basic definitions of semigroups are taken from [23], [24] and [25].

Definition 2.1.1. Let S be a non-empty set. A binary operation on S is a function ∗

from S × S to S with (x, y) #→ x ∗ y and a pair (S, ∗) is called a groupoid. A semigroup is

a groupoid (S, ∗) where ∗ is associative on S, i.e., x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ S.

We abbreviate (S, ∗) by S and write simply xy instead of x ∗ y.

Definition 2.1.2. Let S be a semigroup. An element 1 of S is called an identity of S if

x1 = x = 1x for all x ∈ S and that S is called a semigroup with identity or a monoid.

A monoid G is a group if for each a ∈ G, there exists b ∈ G such that ab = 1 = ba. An

element z of S is called a zero if zx = z = xz for all x ∈ S and then S is called a semigroup

with zero.

Definition 2.1.3. Let A be a non-empty subset of a semigroup S. We say that A is a

subsemigroup of S if A is closed under the binary operation of S. A subsemigroup of S

which is a group will be called a subgroup of S.

Definition 2.1.4. Let S and T be semigroups. A mapping φ : S → T is called a

homomorphism if

(xy)φ = (xφ)(yφ)

for all x, y ∈ S.

We refer to S as the domain of φ and T as the codomain of φ. The subset

Sφ = {xφ : x ∈ S}

of T is called the range (or image) of φ and sometimes denoted by im(φ).
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Definition 2.1.5. Let S and T be semigroups and φ a homomorphism from S into T . If

φ is one-one, then it is called a monomorphism and S is embedded in T . If φ is onto, it is

an epimorphism. φ is called an isomorphism if it is one-one and onto. A homomorphism

from S into S is called an endomorphism, and if it is bijective it is called automorphism.

If there exists an isomorphism φ from S onto T , we say that S and T are isomorphic and

write S ∼= T .

Definition 2.1.6. The direct product S × T of semigroups S and T is a semigroup with

the binary operation defined by

(s1, t1)(s2, t2) = (s1s2, t1t2)

for all s1, s2 ∈ S, t1, t2 ∈ T .

Definition 2.1.7. An element x of a semigroup S is said to be periodic if there are positive

integers m,n such that xm+n = xm. S is called a periodic semigroup if every element of

S is periodic.

Definition 2.1.8. An element a of a semigroup S is said to be regular if there exists

x ∈ S such that a = axa and S will be called a regular semigroup if all elements in S are

regular.

Definition 2.1.9. For a non-empty subset A of a semigroup S, the subsemigroup generated

by A, denoted by ⟨A⟩, is the subsemigroup of S containing of the elements that can be

expressed as finite products of elements in A, i.e.,

⟨A⟩ = {a1a2 · · · an : a1, a2, . . . , an ∈ A and n ∈ N}.

In particular, if A is a finite set, namely A = {a1, a2, . . . , an}, we write

⟨A⟩ = ⟨a1, a2, . . . , an⟩.

Especially, if A = {a}, a singleton set, then

⟨a⟩ = {a, a2, a3, . . .}.

Definition 2.1.10. A subset A of a semigroup S is said to be a set of generators or a

generating set of S if ⟨A⟩ = S.

Definition 2.1.11. Let A and B be any non-empty subsets of a semigroup S. Put

AB = {ab : a ∈ A, b ∈ B}.
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When dealing with singleton sets we shall use the notational simplifications that are usual

in algebra, for example, writing Ab instead of A{b}. For any x ∈ S, xA and Ax is called

a left coset and right coset of A, respectively.

Definition 2.1.12. A non-empty subset A of a semigroup S is called a left ideal if SA ⊆ A,

a right ideal if AS ⊆ A and an (two-sided) ideal if it is both a left and right ideal. An

ideal of a semigroup S is proper if it is not equal to S.

Obviously, every ideal is a subsemigroup but some subsemigroups are not ideals.

Let (S, ∗) be a semigroup which has no an identity element. Define a set S ∪ {1}

under a binary operation · by

1 · 1 = 1, 1 · x = x = x · 1 and x · y = x ∗ y for all x, y ∈ S.

We see that S ∪ {1} is a monoid with the identity element 1. Let S be a semigroup.

The monoid S1 is defined by

S1 =

⎧
⎪⎨

⎪⎩

S if S has an identity element,

S ∪ {1} otherwise.

We refer to S1 as the monoid obtained from S by adjoining an identity if necessary.

If a is an element of a semigroup S without the identity, Sa need not contain a.

Remark 2.1.13.

S1a = Sa ∪ {a},

aS1 = aS ∪ {a},

S1aS1 = SaS ∪ Sa ∪ aS ∪ {a}.

Definition 2.1.14. Let S be a semigroup and a ∈ S. The set S1a (aS1 and S1aS1) is

called the principal left ideal (right ideal and ideal, respectively) generated by a.

Definition 2.1.15. Let S be a semigroup and a, b ∈ S. The equivalence relations

L,R,J ,H and D on S are defined by

1. aLb if and only if S1a = S1b;

2. aRb if and only if aS1 = bS1;

3. aJ b if and only if S1aS1 = S1bS1;

4. H = L ∩R and D = L ◦R.
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The relations L,R,J ,H and D are called Green’s relations on S.

It is immediate that H ⊆ L,R ⊆ D ⊆ J . In a group G,

H = L = R = D = J = G×G.

Since the Green’s relations are equivalence relations, we define the notations about equiv-

alence classes for convenience: the L-class containing a will be denoted by La. Likewise,

the R-class, H-class, D-class and J -class containing a are denoted by Ra, Ha, Da and Ja,

respectively.

Proposition 2.1.16 ([23]). If S is a periodic semigroup, then D = J .

Definition 2.1.17. A semigroup S without zero is said to be left simple if it has no proper

left ideals, S is right simple if it has no proper right ideals and S is simple if it has no

proper ideals.

Theorem 2.1.18. Let S be a semigroup. The following statements hold:

1. S is left simple if and only if Sa = S for all a ∈ S;

2. S is right simple if and only if aS = S for all a ∈ S;

3. S is simple if and only if SaS = S for all a ∈ S.

Definition 2.1.19. An element e in a semigroup S is an idempotent if e2 = e. If all

elements in S are idempotents, S is called a band or an idempotent semigroup.

Definition 2.1.20. A nonzero idempotent e in a semigroup S is called primitive if e is

minimal in the set of all nonzero idempotents of S with respect to the following partial

order on the set of all idempotents of S, i.e., e ≤ f if and only if ef = fe = e.

Definition 2.1.21. A semigroup without zero is completely simple if it contains only one

element or it is simple and contains a primitive idempotent.

Definition 2.1.22. Let G be a group, I and Λ non-empty sets, and let P = (pλi) be

a (Λ × I)-matrix with entries pλi ∈ G for all λ ∈ Λ, i ∈ I. The Rees matrix semigroup

M(G; I,λ;P ) over G with sandwich matrix P consists of all triples (i, g,λ), where i ∈

I,λ ∈ Λ, and g ∈ G, with multiplication defined by

(i, a,λ)(j, b, µ) = (i, apλjb, µ),

for all a, b ∈ G, i, j ∈ I,λ, µ ∈ Λ.
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Theorem 2.1.23 ([23]). (The Rees Theorem) Every completely simple semigroup is iso-

morphic to a Rees matrix semigroup M(G; I,λ;P ) over a group G.

Theorem 2.1.24 ([23]). Let S be a semigroup without zero. Then the following conditions

are equivalent:

1. S is completely simple;

2. S is regular, and has the weak cancellation property: for all a, b, c ∈ S,

if ca = cb and ac = bc, imply a = b;

3. S is regular, and for all a ∈ S

if aba = a, implies bab = b;

4. S is regular and every idempotent is primitive.

Theorem 2.1.25. Every finite simple semigroup is a completely simple semigroup.

Definition 2.1.26. A semigroup S is said to be the left cancellative semigroup if ab = ac

implies b = c and the right cancellative semigroup if ba = ca implies b = c for all a, b, c ∈ S.

Definition 2.1.27. A semigroup S is called a left zero semigroup if xy = x and a right

zero semigroup if xy = y for all x, y ∈ S.

Definition 2.1.28. A semigroup S is called a left group if S is left simple and right

cancellative. Similarly, S is called a right group if S is right simple and left cancellative.

Theorem 2.1.29 ([24]). Let S be a semigroup. Then the following statements are equiv-

alent:

1. S is a left (right) group;

2. S is a left (right) simple semigroup which contains an idempotent;

3. S is isomorphic to the direct product of a left (right) zero semigroup and a group.

Theorem 2.1.30 ( [24]). For any periodic semigroup S, the following statements are

equivalent:

1. S is left (right) simple;

2. S is a left (right) group;

3. S is isomorphic to the direct product of a left (right) zero band and a group.
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2.2 Transformation Semigroups

Definition 2.2.1. Let X be any non-empty set. A partial transformation semigroup on

X is the set of functions from a subset of X into X under composition which is denoted

by P (X). A transformation on X is a function from X into itself. The full transformation

semigroup on X is the set of all transformations on X under composition and denoted by

T (X).

It is well known that P (X) and T (X) are regular semigroups with identity.

Definition 2.2.2. A transformation which is one-one and onto is called a permutation.

The set of all permutations from X onto X is called the symmetric group and denoted by

G(X). A permutation group is a subgroup of the symmetric group.

By the simple combinatorial arguments, we obtain that if |X| = n, then |T (X)| = nn

and |G(X)| = n!.

Definition 2.2.3. For α ∈ T (X), x ∈ X and Z ⊆ X, the notation xα means that the

image of x under α and let Zα denote the set of all images of elements in Z under α. The

rank of α is the cardinal number of im(α) and denoted by rank(α). The kernel of α is

given by

ker(α) = {(a, b) ∈ X ×X | aα = bα}.

The symbol πα denotes the partition of X induced by α, namely

πα = {yα−1 : y ∈ im(α)}

where yα−1 is the set of all x ∈ X such that xα = y.

It is easy to check that for any α,β ∈ T (X),

ker(α) = ker(β) if and only if πα = πβ . (2.1)

Definition 2.2.4. For a ∈ X, the constant map σa in T (X) is the transformation which

im(σa) = {a}.

Theorem 2.2.5 ([24]). For φ ∈ T (X), φ is an idempotent if and only if xφ = x for all

x ∈ im(φ).

Theorem 2.2.6 ([24]). Let α,β ∈ T (X). Then

1. αLβ if and only if im(α) = im(β);
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2. αRβ if and only if ker(α) = ker(β);

3. αDβ if and only if rank(α) = rank(β);

4. D = J .

Theorem 2.2.7 ( [24]). Every semigroup can be embedded in some full transformation

semigroup.

By the above theorem, the transformation semigroups are very consequential in

semigroup theory.

Definition 2.2.8. For a non-empty subset Y of X, the full transformation semigroup

with restricted range

T (X,Y ) = {α ∈ T (X) : im(α) ⊆ Y }

is a subsemigroup of T (X).

Obviously, T (X,X) = T (X). Thus T (X,Y ) can be considered as a generalization

of T (X).

The set

F (X,Y ) = {α ∈ T (X,Y ) : Xα = Y α}

consisting of all regular elements in T (X,Y ) is the largest regular subsemigroup of T (X,Y )

( [22]).

Lemma 2.2.9 ([26]). Let α,β ∈ T (X,Y ). Then Xβ ⊆ Y α if and only if there exists

γ ∈ T (X,Y ) such that γα = β.

Theorem 2.2.10 ([22]). Let α,β ∈ T (X,Y ). Then β = αµ for some µ ∈ T (X,Y ) if and

only if ker(α) ⊆ ker(β).

The Green’s relations on T (X,Y ) were studied by Sanwong and Sommanee [22] in

2008 as follows.

Theorem 2.2.11 ([22]). Let α,β ∈ T (X,Y ).

1. αLβ if and only if (α,β ∈ F (X,Y ) and im(α) = im(β))

or (α,β ∈ T (X,Y )\F (X,Y ) and α = β);

2. αRβ if and only if ker(α) = ker(β);
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3. αDβ if and only if (α,β ∈ F (X,Y ) and rank(α) = rank(β))

or (α,β ∈ T (X,Y )\F (X,Y ) and ker(α) = ker(β));

4. αJ β if and only if ker(α) = ker(β) or rank(α) = |Y α| = |Y β| = rank(β).

Lemma 2.2.12 ([20]). Let X be a finite set and Y1, Y2 be non-empty subsets of X. Then

T (X,Y1) ∼= T (X,Y2) if and only if |Y1| = |Y2|.

By the above lemma, there is no loss of generality in assumingX = Xn = {1, 2, . . . , n}

and Y = {1, 2, . . . , r}. For convenience, we use the notations Tn and Tn,r instead of T (X)

and T (X,Y ), respectively. Again by combinatorial arguments, we have that |Tn,r| = rn.

The notation α =

⎛

⎝X1 X2 . . . Xk

y1 y2 . . . yk

⎞

⎠means toX =
⋃̇k

i=1Xi, yi ∈ im(α), yiα−1 =

Xi for all i = 1, 2, . . . , k and the least element in Xi less than the least element in Xi+1

for all i = 1, 2, . . . , k − 1. For convenience, if α ∈ T (X) where α =

⎛

⎝ 1 2 . . . n

a1 a2 . . . an

⎞

⎠,

we write α = [a1, a2, . . . , an].

Definition 2.2.13. An element ε in T (X,Y ) is called an identity on Z, a non-empty

subset of Y , if im(ε) = Z and zε = z for all z ∈ Z.

Definition 2.2.14. For α ∈ T (X,Y ) and a non-empty subset Z of X, α is called a

permutation on Z if α|Z , the restriction of α to Z, is one-one and Zα = Z.

By [27], we obtain the following lemma.

Lemma 2.2.15 ( [27]). Let Y ⊆ X and α ∈ T (X,Y ). If Y α = Y , then T (X,Y ) =

T (X,Y )α.

Definition 2.2.16. Let C be a collection of sets. A transversal is a set which contains

exactly one element from each member of the collection.

Proposition 2.2.17 ([28]). Let ∅ ̸= A ⊆ T (X). Then ⟨A⟩ is a completely simple semi-

group if and only if for all α,β ∈ A, im(α) is a transversal of πβ.

Definition 2.2.18. The number of k-combination from a set of n elements, usually de-

noted by
(n
k

)
, is equal to ⎛

⎝ n

k

⎞

⎠ =
n!

(n− k)!k!
.

Given nonnegative integers n and k, the Stirling number of the second kind, denoted

by S(n, k), is the number of ways to partition a set of n objects into k non-empty subsets.
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The recurrence relation is

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1)

for n, k > 0 with initial conditions S(0, 0) = 1 and S(0, n) = 1 = S(n, 0) and the explicit

formula is

S(n, k) =
1

k!

k∑

i=0

(−1)i

⎛

⎝ k

i

⎞

⎠ (k − i)n.

The Table 2.1 shows the values for the Stirling numbers of the second kind with

k ≥ 0.

n \ k 0 1 2 3 4 5 6 7 8 9 10
1 1 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
6 0 1 31 90 65 15 1
7 0 1 63 301 350 140 21 1
8 0 1 127 966 1701 1050 266 28 1
9 0 1 255 3025 7770 6951 2646 462 36 1
10 0 1 511 9330 34105 42525 22827 5880 750 45 1

Table 2.1: The values of S(n, k) where 0 ≤ k ≤ n ≤ 10

From Theorem 2.2.11 and (2.1), we get for α,β ∈ T (X,Y ), αRβ if and only if

πα = πβ. This means α and β are in the same R-class if and only if πα = πβ . Therefore,

S(n, k) = the number of R-classes of T (X,Y ) with rank k.

2.3 Digraphs and Cayley Digraphs

In this part, we present about basic knowledge of digraphs and Cayley digraphs

adduced from [1], [29] and [30].

Definition 2.3.1. A directed graph or digraph D = (V,E) composes a vertex set V

together with an edge set or arc set E ⊆ V × V . For the edge e = (u, v) of E, u is called

the tail of e, and v is the head of e. If u = v, the edge (u, v) is said to be a loop.

In a drawing of a digraph, the direction of an edge is indicated with an arrow.

Definition 2.3.2. Let u and v be vertices of the digraph D. A (u, v)-semi-diwalk in D

is a sequence

u = u0, u1, u2, . . . , uk = v
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of vertices, beginning with u and ending at v, such that (ui−1, ui) or (ui, ui−1) is an edge

for i = 1, 2, . . . , k. The number of edges in a semi-diwalk is called the length of the

semi-diwalk. A (u, v)-semi-diwalk is called (u, v)-diwalk if (ui−1, ui) is an edge for all i.

A (u, v)-semi-dipath is a (u, v)-semi-diwalk in which no vertex is repeated, and a (u, v)-

dipath is a (u, v)-diwalk in which no vertex is repeated. A dicycle is a diwalk in which no

vertex is repeated except for the beginning and ending vertices. An n-dicycle is a dicycle

of length n and denoted by Cn.

Definition 2.3.3. Let D be a digraph and u, v be distinct vertices in D. The digraph

D is strongly connected if a (u, v)-dipath exists. It is unilaterally (one-sided) connected

if a (u, v)-dipath or (v, u)-dipath exists. It is called weakly connected (or connected) if

a (u, v)-semi-dipath exists. A maximal connected subgraph of a digraph D is called a

component of D.

Definition 2.3.4. A subgraph H of a digraph D is called an induced subgraph of D if

whenever u, v ∈ V (H) and (u, v) ∈ E(D), then (u, v) ∈ E(H). Let A be a non-empty set

of vertices of a digraph D. The subgraph of D induced by A is the induced subgraph with

vertex set A and denoted by D[A] or simply [A]. For a positive integer n, the digraph nD

is the union of n disjoint copies of D.

Definition 2.3.5. Let D1 = (V1, E1) and D2 = (V2, E2) be digraphs. A mapping

φ : V1 → V2 is called a (digraph) homomorphism if (uφ, vφ) ∈ E2 for all (u, v) ∈ E1,

i.e., φ preserves edges and denoted by φ : D1 → D2. Let D be a digraph. A digraph

homomorphism φ : D → D will be called an (digraph) endomorphism. If φ : D1 → D2

is a bijective homomorphism and φ−1 is also a homomorphism, then φ is called an (di-

graph) isomorphism. A digraph isomorphism φ : D → D will be called an (digraph)

automorphism.

We will denote by End(D) the set of all endomorphisms of D and Aut(D) the set

of all automorphisms of D.

Definition 2.3.6. Let S be a semigroup and A ⊆ S. The Cayley digraph Cay(S,A)

of a semigroup S with respect to A (which is simply called Cayley graph) is defined as

the digraph with vertex set S and edge set E(Cay(S,A)) consisting of those ordered pairs

(x, y) such that y = xa for some a ∈ A. The set A is called the connection set of Cay(S,A).

Clearly, if A is an empty set, Cay(S,A) is an empty graph. Therefore in the sequel,

we suppose that the connection set A is a non-empty set.
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Definition 2.3.7. A digraph D = (V,E) is said to be undirected if, for each (u, v) ∈ E,

the edge (v, u) belongs to E.

In a drawing of an undirected graph, the direction of edges are not given. The next

proposition characterizes some properties of Cayley digraphs of groups.

Proposition 2.3.8 ( [31]). For a group G and a subset A of G, the following hold:

1. Cay(G,A) is weakly connected if and only if ⟨A⟩ = G;

2. Cay(G,A) is undirected if and only if A = A−1 where A−1 = {x−1 : x ∈ A}.

The undirected Cayley digraphs of periodic semigroups were characterized by Ke-

larev [6] as follows.

Lemma 2.3.9 ([6]). Let S be a semigroup with a subset A such that ⟨A⟩ is a periodic

subsemigroup. The the following conditions are equivalent:

1. the Cayley digraph Cay(S,A) is undirected;

2. SA = S, the semigroup ⟨A⟩ = M(G; I,Λ;P ) is completely simple and, for each

(i, a,λ) ∈ A and j ∈ I, there exists µ ∈ Λ such that (j, p−1
λj a

−1p−1
µi , µ) ∈ A.

Theorem 2.3.10 ([6]). For a periodic semigroup S, the following statements are equiva-

lent:

1. there exists a subset A of S such that Cay(S,A) is undirected;

2. S has a completely simple subsemigroup C such that SC = S.

Now, we introduce a new definition which is used in this dissertation.

Definition 2.3.11. The representative graph (graphical presentation, in [32]) Gα of a

transformation α ∈ T (X,Y ) is a digraph with the vertex set V (Gα) = X and the edge

set E(Gα) = {(x, y) ∈ X × X : xα = y}. For A = {α1,α2, . . . ,αk} which is a subset of

T (X,Y ), a representative graph GA is a digraph with V (GA) = X and E(GA) = {(x, y) ∈

E(Gα) : α ∈ A}.

Example 2.3.12. Let n = 13 and let α be the map
⎛

⎝ 1 2 3 4 5 6 7 8 9 10 11 12 13

2 3 4 5 6 7 4 7 2 11 12 10 13

⎞

⎠ . (2.2)

Then the representative graph Gα can be drawn as in Figure 2.1.
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Figure 2.1: The representative graph Gα

In [32], Ayık et al. determined a new class for elements of T (X), indeed it can be

also defined for T (X,Y ). For B = {x1, x2, . . . , xm} ⊆ X, α ∈ T (X) is defined by

x1α = x2, . . . , xm−1α = xm, xmα = xr and xα = x (x ∈ X\B)

where xr ∈ B, α is called a path-cycle of length m and denoted by α = [x1 x2 . . . xm | xr].

Moreover, if m = r = 1, α is called a loop. Hereafter, we let s(α) denote the set B =

{x1, x2, . . . , xm}.

Furthermore, they described how to find a linear notation for elements of Tn by

using the decomposition algorithm presented as follows.

Decomposition Algorithm.

Let α ∈ Tn be a non-identity map and x ∈ Xn. Then there is unique nx ∈ N such

that x, xα, . . . , xαnx are all distinct but xαnx+1 ∈ {x, xα, . . . , xαnx}. Each path-cycle

αi = [x xα . . . xαnx | xnx+1] is called a divisor of α.

1. α1 is the first factor of α which is the divisor having the longest length. If there

are divisors that the longest length is more than one, choose the one having the

smallest first entry among them. Write each cycle [x1 x2 . . . xk | x1] where x1 =

min{x1, x2, . . . , xk}.

2. Then define the first residue of α, α(1), which is the function from Xn into itself

given by

xα(1) =

⎧
⎪⎨

⎪⎩

x if x ∈ s(α1),

xα if x /∈ s(α1).

3. Carry out a similar procedure on α(1), obtaining α2 and α(2), the second factor of α

and the second residue of α, respectively. Continue this procedure until

αp ̸= I,α(p) = I
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where I is the identity function of Tn and α = α1α2 · · ·αp.

The integer p is called the path-cycle rank of α and denoted by pcr(α). If α is the identity

function, then pcr(α) = 0.

Example 2.3.13. From (2.2) in Example 2.3.12, the linear notation of α is the decom-

position of the map into path-cycles as follows:

α = [1 2 3 4 5 6 7 | 4] [10 11 12 | 10] [8 7 | 7] [9 2 | 2] (2.3)

and then pcr(α) = 4.

In this dissertation, we will add all loops of the map to the right-side of the decom-

position which does not affect to the decomposition. We call the number of path-cycles

and loops of α that path-cycle-loop rank of α and denoted by pclr(α).

Example 2.3.14. From the above example, we add [13 | 13] into (2.3) at the right-side

of the decomposition, hence that α is equal to

[1 2 3 4 5 6 7 | 4] [10 11 12 | 10] [8 7 | 7] [9 2 | 2] [13 | 13] (2.4)

and pclr(α) = 5.

2.4 Vertex-Transitivities of Graphs

In this section, we give the definition of a vertex-transitive graph referred from

[30]. Moreover, we address the characterizations of vertex-transitive Cayley digraphs of

semigroups which are quoted from [8].

Definition 2.4.1. A digraph D = (V,E) is said to be Aut(D)-vertex-transitive or vertex-

transitive (End(D)-vertex-transitive) if for any two vertices x, y ∈ V , there exists an

automorphism (endomorphism) φ such that xφ = y. More generally, a subset C of End(D)

is said to be vertex-transitive on D, and D is said to be C-vertex-transitive if, for any two

vertices x, y ∈ V , there exists an endomorphism φ ∈ C such that xφ = y.

Definition 2.4.2. For a Cayley digraph Cay(S,A), an element ψ ∈ End(Cay(S,A))

is said to be a color-preserving endomorphism if xa = y implies (xψ)a = yψ, for all

x, y ∈ S and a ∈ A. Let us denote by ColEnd(S,A) and ColAut(S,A) the set of all color-

preserving endomorphisms of Cay(S,A) and the set of all color-preserving automorphisms

of Cay(S,A), respectively.
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For a Cayley digraph Cay(S,A), we denote End(Cay(S,A)) by End(S,A) and

Aut(Cay(S,A)) by Aut(S,A). Obviously,

ColAut(S,A) ⊆ Aut(S,A),

ColEnd(S,A) ⊆ End(S,A),

ColAut(S,A) ⊆ ColEnd(S,A),

and

Aut(S,A) ⊆ End(S,A).

It is well known that for every group G and A ⊆ G, Cay(G,A) is Aut(G,A)-

vertex-transitive. In 2003, Kelarev and Praeger [8] characterized all Aut(S,A)-vertex-

transitive and all ColAut(S,A)-vertex-transitive Cayley digraphs of semigroups. They

defined Cayley digraphs by the left action, i.e., (x, y) is an edge in the graph if ax = y for

some a ∈ A. For the right action, the theorems in this part are still true. Hence we give

some results in the sense of right action.

Lemma 2.4.3 ([8]). Let S be a semigroup with a subset A, let s ∈ S and let Cs be the

set of all vertices v of the Cayley digraph Cay(S,A) such that there is a dipath from s to

v. Then Cs is equal to the left coset s⟨A⟩.

Lemma 2.4.4 ([8]). Let S be a semigroup with a subset A such that ⟨A⟩ is completely

simple and SA = S. Then every connected component of the Cayley digraph Cay(S,A) is

strongly connected and, for each v ∈ S, the component containing v is [v⟨A⟩].

Lemma 2.4.5 ([8]). Let S be a semigroup and A a subset of S.

1. If the Cayley digraph Cay(S,A) is End(S,A)-vertex-transitive, then SA = S.

2. If the Cayley digraph Cay(S,A) is ColEnd(S,A)-vertex-transitive, then Sa = S for

each a ∈ A.

The following two theorems are the characterizations of all ColAut(S,A)-vertex-

transitive and Aut(S,A)-vertex-transitive Cayley digraphs such that all principal left ideals

of the subsemigroup ⟨A⟩ are finite.

Theorem 2.4.6 ( [8]). Let S be a semigroup and let A be a subset of S such that all

principal left ideals of the subsemigroup ⟨A⟩ are finite. Then the Cayley digraph Cay(S,A)

is ColAut(S,A)-vertex-transitive if and only if the following conditions hold:
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1. Sa = S for all a ∈ A;

2. ⟨A⟩ is isomorphic to a direct product of a left zero band and a group;

3. |s⟨A⟩| is independent of the choice of s ∈ S.

Theorem 2.4.7 ( [8]). Let S be a semigroup and let A be a subset of S such that all

principal left ideals of the subsemigroup ⟨A⟩ are finite. Then the Cayley digraph Cay(S,A)

is Aut(S,A)-vertex-transitive if and only if the following conditions hold:

1. SA = S;

2. ⟨A⟩ is a completely simple semigroup;

3. the Cayley digraph Cay(⟨A⟩, A) is Aut(⟨A⟩, A)-vertex-transitive;

4. |s⟨A⟩| is independent of the choice of s ∈ S.

Corollary 2.4.8 ([8]). Let S be a finite rectangular band and A a subset of S. Then the

Cayley digraph Cay(S,A) is Aut(S,A)-vertex-transitive if and only if A ∩ sS ̸= ∅ for all

s ∈ S.

Given a family of digraphs Di = (Vi, Ei), where i ∈ I, their union is the digraph

D =
⋃

i∈I Di defined by

D =
(⋃

i∈I
Vi,

⋃

i∈I
Ei

)
.

Lemma 2.4.9 ([8]). Let S be a semigroup and A a subset of S. Then

Cay(S,A) =
⋃

a∈A
Cay(S, {a}).

If Cay(S,A) is ColAut(S,A)-vertex-transitive, then, for each a ∈ A, the Cayley digraph

Cay(S, {a}) is ColAut(S, {a})-vertex-transitive.
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