CHAPTER 4

Conclusions

In Section 3.1, we addressed some properties of T(X, Y). The important theorems are in the below.

- 1. $\langle A \rangle$ is a completely simple semigroup and T(X, Y)A = T(X, Y) if and only if $Y\alpha = Y$ for all $\alpha \in A$.
- 2. If $Y\alpha = Y$ for all $\alpha \in A$, then $\langle A \rangle$ is a left simple semigroup.

In Section 3.2, we characterized the Cayley digraphs of T(X, Y) as in the following. Let $A = \{\alpha_1, \alpha_2, \dots, \alpha_r\} \subseteq T(X, Y)$. Define a relation \sim on T(X, Y) by

 $\begin{array}{l} \beta \sim \gamma \quad \Leftrightarrow \quad \text{there are representatives } \tau_1, \tau_2, \ldots, \tau_k \quad \text{of dicycles } C_{\tau_1}^{\alpha_{n_1}}, C_{\tau_2}^{\alpha_{n_2}}, \ldots, C_{\tau_k}^{\alpha_{n_k}} \\ \\ \text{where } \alpha_{n_1}, \alpha_{n_2}, \ldots, \alpha_{n_k} \in A, \text{there exist } \beta_1, \beta_2, \ldots, \beta_k \in T(X,Y) \text{ such that} \\ \\ \beta = \beta_1, \gamma = \beta_k \text{ and } \beta_i \alpha_{n_i}^{s_i} = \tau_i = \beta_{i+1} \alpha_{n_i}^{t_i} \text{ for some } s_i, t_i \in \mathbb{N}, i = 1, 2, \ldots, \\ \\ k - 1. \end{array}$

Then the relation \sim on T(X, Y) is an equivalence relation and

$$\operatorname{Cay}(T(X,Y),A) \cong \bigcup_{\overline{\beta} \in T/\sim} [\overline{\beta}].$$

In Section 3.3, we addressed the connectedness and undirected properties of the Cayley digraphs of T(X, Y) which are shown in the following table.

Properties of Cay $(T(X,Y),A)$	Necessary and Sufficient Conditions
1. strongly connected	Y = 1. eserved
2. weakly connected	$\sigma_z \in \langle A \rangle$ for some $z \in Y$.
3. unilaterally connected	3.1 r = 1,
	$3.2 \ r = n = 2$ and $\{[2, 1], [1, 1]\} \subseteq A$, or
	$3.3 \ r = n = 2 \text{ and } \{[2, 1], [2, 2]\} \subseteq A.$
4. undirected	$Y\alpha = Y$ for all $\alpha \in A$ and $A_Y = (A_Y)^{-1}$.

In Section 3.4, we gave necessary and sufficient conditions being vertex-transitive and color-preserving vertex-transitive of Cayley digraphs of T(X, Y). We obtained that the following statements are equivalent:

- 1. Cay(T(X, Y), A) is Aut(T(X, Y), A)-vertex-transitive;
- 2. Cay(T(X, Y), A) is ColAut(T(X, Y), A)-vertex-transitive;
- 3. $Y\alpha = Y$ for all $\alpha \in A$ and $|\beta\langle A\rangle|$ is independent of the choice of $\beta \in T(X, Y)$;
- 4. $\operatorname{Cay}(T(Y), A_Y)$ is $\operatorname{Aut}(T(Y), A_Y)$ -vertex-transitive.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved