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CHAPTER 2 

Literature Reviews 

This chapter described the fundamental of megavoltage computed tomography on 

a Tomotherapy system in terms of the physical interactions and the theory of contrast 

resolution on MVCT when compared with the kVCT images. Then proposed the principle 

of the deformable images registration (DIR) process in various models to find the best 

estimated deformation vector field (DVF). Use of DIR for radiotherapy application and 

explained the function and general workflow of deformable image registration and 

adaptive radiotherapy software in cases of image deformation and dose processing for 

adaptive application. Finally, described the validation techniques for deformable image 

registration assessment. 

2.1    Megavoltage computed tomography on a Tomotherapy system  

Helical tomotherapy (HT) is a unique Intensity Modulated Radiation Therapy 

(IMRT) modality that combines elements of diagnostic radiology and radiation therapy 

in a single unit. The TomoTherapy system is capable of producing megavoltage computed 

tomography images (Figure 2.1) using the same beam line components that are used for 

treatment procedures by using the 6 MV Accelerator (tuned to 3.5 MV for MVCT).  

 

Figure 2.1 TomoTherapy MVCT Images acquisition 

                      Source: Tomotherapy Inc., Madison, Wisconsin, USA
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Physical interactions with soft tissues in term of MVCT is actually very similar to 

standard kVCT. In both cases, the incident photon beam is attenuated primarily by 

Compton scattering (Ruchala et al., 1999). For significantly higher-Z materials there will 

be an inherently better contrast per photon at the kV energies due to the increased amount 

of photoelectric interaction, yet these materials  (e.g. bone)  generally  have sufficiently  

high contrast at MV energies because of their density.   

Tomotherapy system is able to produce MVCT image quality that are useful for 

patient position verification in a reasonable time using an acceptable dose (Ruchala et al., 

1999). Therefore, daily MVCT image is the standard guidance for patient set-up 

verification. However, the theory of contrast resolution in MVCT, the ability to resolve 

soft-tissue contrast differences is fundamentally limited by the number of photons used 

to create the image (Keller et al., 2002) due to the use of MV photons results in a greater 

absolute dose deposition per photon. In order to maintain comparable doses for MV and 

kV tomography, the number of MV photons must be significantly reduced. Unfortunately, 

this reduction decreases the signal-to-noise ratio (SNR) and thus impairs soft tissue 

contrast detectability (Ruchala et al., 1999). It is generally understood that deformable 

image registration will work best with feature-rich images where there is little or no 

ambiguity between corresponding points in source and target images. The “goodness of 

fit” will likely be qualitatively assessed via inspection of these visible features, which are 

also the primary drivers of the calculation and so are naturally the best matched locations. 

Yeo et al. (2013) assess the accuracy of 12 DIR algorithms and quantitatively examine, 

in particular, low-contrast regions. As might be expected, the deformation is estimated 

less accurately for low-contrast regions than for high-contrast features. Ramadaan et al. 

(2013) demonstrated that deformable image registration on kVCT images can yield 

clinically acceptable results and time-saving benefits in contouring that improve clinical 

workflow. 

2.2 Deformable Image Registration (DIR)  

Deformable image registration is a process to find the best estimated deformation 

vector field (DVF), which forms the voxel correspondence between 2 different images 

set (Zitova et al., 2003).  The most exciting and challenging research on image registration 

involves the development of deformable registration algorithms (Goshtasby et al., 2003). 
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Deformable registration is an ill-posed problem because there is generally no unique 

solution to a registration problem. Usually image registration is formulated as an 

optimization problem (Zitova et al., 2003).  

Image registration can be defined as finding the function h and g in following 

equation 2.1 for mapping between two 3D images I1 and I2:  where I1 is called the “source 

or moving image” and I2 is called the “target or fix image”.  

                                         (2.1) 

 

The function g is called an “objective function” this term as matching criteria, (dis) 

similarity criterion or distance measure. The optimization problem consists of either 

maximizing or minimizing the objective function depending on how the matching term is 

chosen (Sotiras et al., 2013).  This function accounts for a difference in image intensities 

of the same object in I1 and I2 (Zitova et al., 2003).  

The function h is the “deformation model”, used to describe geometric differences. 

It is a spatial 3D transformation that describes the mapping homologous locations from 

the target physiology to the source physiology.  The result of the registration algorithm 

naturally depends on the deformation model and the objective function (Sotiras et al., 

2013).   

An image registration algorithm involves three main components:  

1)    Deformation model,  

2)    Objective function or matching criteria 

3)    Optimization method.  

2.2.1 Deformation models 

The choice of deformation model is of great importance for the registration 

process as it entails an important compromise between computational efficiency 

and richness of description (Sotiras et al., 2013).  It also reflects the class of 

transformations that are desirable or acceptable, and therefore limits the solution to 

a large extent.  Furthermore, the choice of the deformation model implies an 

assumption regarding the nature of the deformation to be recovered.  
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Deformable image registration finds a matrix that represents how individual 

voxels of one image are ‘‘deformed’’ (moved, etc.), so they optimally line up with 

corresponding voxels from another image (Haksoo et al., 2014). The transformation 

defines where any voxel of the target image 'comes from' in the source image, but 

it does not define where any voxel of the source image 'goes to' in the target image 

(Lourengo et al., 2013). The choice of deformation models depends on the mapping 

directions, transformation frameworks and deformation algorithms; 

1)  Forward and backward mapping 

For two images I and J, while I is the moving image and J is the fixed 

image, deformable image registration is to be computed the deformation 

vector field V. (Yang et al, 2010): Regarding the definition of the deformation 

vector field, V is defined on the coordinates on J. It is the “pull-back” vector 

field (backward mapping), has the same array dimension as J. Each element 

of V is a 3D vector, associated with a voxel in J, The direction of the 3D vector 

is from the point in I to the matching point in J. 

However, the “pull-back” motion field is the “push-forward” motion 

field (forward mapping) if the image registration direction is inverted (the two 

images are interchanged).  

If the moving image and the fixed image have been determined for a 

registration computation as illustrate in Figure 2.2., the most important 

difference between the two motion fields is that:  

The pull-back motion field is defined on the voxels in the fixed image, 

The push-forward motion field is defined on the voxels in the moving image.  
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Figure 2.2   Schematization of a deformable registration, (a) the pull-back motion field 

(BW) is defined on the voxels in the fixed image and the push-forward motion field 

(FW) is defined on the voxels in the moving image. (b) the pull-back and push-forward 

motion field when the moving and fixed images were interchanged.  

2) Asymmetric and Symmetric transformations 

Asymmetric transformation is the majority of the existing registration 

algorithms. As a consequence, when interchanging the order of input images, 

the registration algorithm does not estimate the inverse transformation. The 

statistical analysis that follows registration is biased on the choice of the target 

domain.  

To minimize this problem, Christensen and Johnson first proposed the 

inverse consistency by formulating the registration in both directions into an 

overall energy function in the optimization. This ensures the consistency of 

registration in two directions (Kristy et al., 2013). 

Symmetric transformation uses the method by simultaneously 

estimating both the forward and the backward transformation. The data 

matching term quantifies how well the images are aligned when one image is 

deformed by the forward transformation, and the other image of the backward 

transformation.   In theory, symmetric registration results are not biased 

towards the transformation direction which means that results should be the 
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same when registration is performed the source image to target image or 

interchanging the order of input images. The final mapping from one image 

to another is calculated by inverting one transformation function and 

composing it with the other. 

Lourengo et al. (2013) demonstrated the inverse methods gave the most 

robust results in terms of inverse-consistency between the composition of 

forward and inverse transformations. 

3) Deformation Algorithms 

Parametric algorithms: The parametric transformation models that are 

often described by a set of basic functions. In parametric, non-rigid medical 

image registration, the basis function is a spline (Kristy et al., 2013). 

Parametric image registration can be categorized by the spatial arrangement 

of landmarks or control points and characterized a quite limited number of 

parameters. 

Non-parametric algorithms: based on a vector per voxel describing the 

displacement and attempt to model the deformation of the anatomy in terms 

of well-studied models of fluid flow or the deformation of a viscoelastic 

material (Kristy et al., 2013). 

3.1) Horn and Schunck Optical flow algorithm:  A special kind of 

method is optical flow, which is used to find small deformations in 

temporal sequences of images. At a given point P, let s be the intensity 

function in S and m the intensity in M (see Figure 2.3). The basic 

hypothesis of optical flow is to consider that the intensity of a moving 

object is constant with time, which gives, for small displacements 

(Thirion et al., 1998).  These vectors can be thought of as ‘optical 

velocity’ vectors showing the direction of image intensity flow (Kristy 

et al., 2013). 
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Figure 2.3. Instantaneous velocity from image M to image S. 

Source: Thirion et al. (1998) 

3.2) Original Demons algorithms:  The concept of the Demons 

algorithm is that the voxels in the static or target image S act as local 

forces that move the voxels in the moving or source image. The moving 

image is iteratively deformed by applying a displacement vector u as in 

equation 2.2. 

                                  (2.2)                                                                                                              

where ui+1 is the displacement at i + 1 iteration, S is the static image, Mi  is 

the moving image at the ith iteration, and ∇S is the gradient of the static 

image S. There are two forces in the equation (i) the internal image 

gradient-based force ∇S and (ii) external force (Mi – S). The internal 

force does not change during the iterations, whereas the external force 

changes after each iteration. The term (Mi – S)2 is added to make the 

deformation field computation more stable. Before the next iteration, 

the displacement is convolved with a Gaussian kernel, as the Gaussian 

convolution removes noise and improves geometric continuity (Kristy 

et al., 2013). 
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Varadhan et al. (2013) demonstrated the DIR results in a daily 

clinical environment might be very variable and affected by various 

factors such as patient anatomy, image quality, and registration 

parameters of the particular algorithm. Yeo et al. (2013) demonstrated 

the model studied, optical flow algorithms performed better than 

demons algorithms, with the original Horn and Schunck performing 

best. The degree of error is influenced more by the magnitude of 

displacement than the geometric complexity of the deformation. 

However, Ramadaan et al. (2013) demonstrated the deformable image 

registration using a Modified Demons algorithm yields clinically 

acceptable results and time-saving benefits in contouring that improve 

clinical workflow. 

2.2.2 Matching Criteria  
 

Matching criteria can be distinguished three groups of registration methods 

according to how they exploit the available information to drive the matching 

process: Geometric Methods, Iconic methods and Hybrid methods combine both 

types of information. Geometric methods aim to register two images by minimizing 

a criterion that takes into account landmark information. However, Interpolation 

results in a decrease in accuracy as the distance from the landmarks increases. 

Nevertheless, geometric methods constitute a reliable approach for specific 

applications. Geometric registration has also important applications in image-

guided interventions (Sotiras et al., 2013). 

Iconic methods, often referred to as either voxel-based or intensity-based 

methods, quantify the alignment of the images by evaluating an intensity-based 

criterion over the whole image domain. When compared to the geometric methods, 

this approach has the potential to better quantify and represent the accuracy of the 

estimated dense deformation field. In iconic methods, the matching term integrates 

the evaluation of a dissimilarity criterion that takes into account the intensity 

information of the image elements. Two cases should be distinguished regarding 

the iconic: 1) the mono-modal case, involving images from one modality, and 2) 

the multi-modal one, involving images from multiple modalities. 
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1) Mono-Modal Registration: In the mono-modal case, the same imaging 

device is used to capture the same type of information for both volumes. 

Intensity-Differences methods: As in equation 2.3, image A be the 

reference static image and image B be the moving image to be transformed to 

match with image A.   and  are the intensity values at the locations 

with spatial coordinates x in images A and B, respectively. The symbol T will 

be used to represent a registration transformation. The simplest pixel 

similarity metrics are based on the difference in image intensities at 

corresponding points between two images. The most commonly used metric 

is the mean squared difference MSD (A, B), which is minimized during 

registration (Kristy et al., 2013).  

                          (2.3) 

Correlation-Based Methods: Cross-correlation is a basic statistical 

criterion to measure similarity in signal and image processing. The cross-

correlation metric has the disadvantage of being sensitive to changes in image 

amplitude of A and B. An approach frequently used to overcome this difficulty 

is to perform matching via the correlation coefficient (CC) metric, or the 

normalized cross-correlation (NCC) as in equation 2.4. 

                         (2.4) 

where  is the mean pixel value in image A in the overlapping region 

and  is the mean pixel value of image B in the overlapping region. 

 

2) Multi-Modal Registration: multi-modal registration is more challenging as 

the choice of an appropriate matching criterion is a harder task.  
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Information-Based Methods: Information theory is based on probability 

theory and statistics. The most important quantities of information are 

entropy, the information in a random variable, and mutual information (MI), 

the amount of information in common between two random variables. MI 

does not entirely solve the overlapping problem. In particular, changes in the 

overlap of very low intensity regions of the image (especially noise around 

the patient) can disproportionately contribute to the MI. The normalized 

mutual information (NMI) is the alternative normalizations of the joint 

entropy have been proposed to overcome this problem as in equation 2 5. 

                                     (2.5) 

H(A) and H(B) are the marginal entropies of image A and B, 

respectively, and H(A,B) the joint entropy. NMI can range between 0 and 2 

and values of NMI>1 typically represent a good match between images. 

2.2.3 Optimization methods; 

After constructing a cost function and selecting the transformation model 

(which may require regularization) appropriate for the image registration problem, 

the final step is to obtain the transformation parameters that yield the best or optimal 

registration. Mathematically, this problem can be stated as follows: given a cost 

function f and unknown transformation parameters, find the optimal set of 

parameters that maximize (or minimize) the cost function. Optimization strategies, 

which seek to determine the parameters of the transformation model to maximize 

or minimize the cost function, are selected based on accuracy, computational 

efficiency, and robustness. A termination condition is often used in conjunction 

with a computational method because, in practice, the extremum is not precisely 

known and must be estimated. Due to the empirical nature of the termination 

condition, a simple optimization method, which yields a similar but not necessarily 

the best parameters compared with a more complex method, is usually preferred in 

radiation therapy applications due to the practical limits of registration accuracy in 

clinical implementation. Unlike the rigid or affine transformation, the nonrigid 
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transformation is normally a local free-form mapping. Due to the degeneracy of 

deformation, it is impossible to perform realistic transformation without proper 

regularization (Kristy et al., 2013). 

 

Figure 2.4   Component diagram of image registration 

Source: Kristy et al. (2013) 

In Figure 2.4 illustrated the component diagram of image registration. Solid 

lines represent required input/output, whereas broken lines represent optional 

input/output depending on the registration problem. 

2.3 Use of deformable image registration for radiotherapy applications 

 Deformable Image Registration has become commercially available in the field of 

radiotherapy. DIR is an exciting and interesting technology for multi-modality image 

fusion, anatomic image segmentation, Four-dimensional (4D) dose accumulation and 

lung functional (ventilation) imaging. Furthermore, DIR is playing an important role in 

modern radiotherapy included Image-Guided Radiotherapy (IGRT) and Adaptive 

Radiotherapy (ART). DIR is essential to link the anatomy at one time to another while 

maintaining the desirable one-to-one geographic mapping (Jingu et al., 2013).   

2.3.1 Dose accumulation with deformable image registration 

The schematic diagram of creating dose accumulation with dose warping is 

shown in Figure 2.5. First, DIR is performed between CT1 (moving image) and 
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CT2 (reference image) to create a transformation, T1. Then, Resultant 

transformation was applied to dose 1 to create dose 1´, which is warped dose 

distribution according to reference CT image. Finally, we added the two dose 

distributions (dose 1 and dose 1´) to create dose accumulation. 

This dose warping technique is expected to be useful for evaluation of dose 

accumulation between previous plan and current plan for re-irradiated patient, and 

interfraction dose. Arai et al evaluated the differences between cumulative dose in 

the spinal cord using rigid registration and that using DIR for two-step adaptive 

IMRT for head and neck cancer and showed the difference between the two 

registrations was 1.6 Gy and demonstrated that the difference might depend on the 

accuracy of the registration (Arial et al.,2013). Furthermore, Modern radiotherapy 

can use multimodality treatments to evaluate the irradiated dose for tumor and other 

organ at risks accurately, dose accumulation between different treatments is 

required. 

 

Figure 2.5 Schematic diagram for dose accumulation with deformable image 

registration (DIR). DIR was perfumed between CT1 and CT2 to create transformation, 

T1. Then, T1 was applied to Dose 1 to make Dose 1´. Finally, the Dose 1´ added to 

Dose 2 to create dose accumulation. Source: Jingu et al. (2014) 
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Nowadays, many the open source toolkits software for deformable 

registrations were developed such as the ITK/VTK/MITK software. However, they 

are large software toolkits and not only for radiation oncology, but for the entire 

image-processing community (Yang et al., 2011). In 2010 the software suite call 

deformable image registration and adaptive radiotherapy (DIRART) was developed 

by Yang (Yang et al., 2011).  DIRART is the open source software toolkits which 

more focused on medical imaging, radiation oncology, and ART, and could be more 

natural to start with for users from these focused fields.  

 

2.3.2 Deformable Image Registration and Adaptive Radiotherapy (DIRART) 

software  

DIRART software suite for deformable image registration (DIR) plus 

adaptive radiotherapy (ART). DIRART has undergone several major revisions and 

currently consists of 450+ MATLAB program files with 40,000+ lines of code. It 

contains DIR algorithms, common ART functions. 

Design of DIRART: As illustrated in Figure 2.6, DIRART is designed around 

the concepts of RT objects, including images, structures, doses, and DVFs. These 

RT objects (in ovals) interact via different DIR and ART tasks (in rectangles). The 

dashed arrows emphasize how DVFs or voxel mapping are applied to remap 

structures and doses. The dotted arrows emphasize that DIRART calls external 

Computational Environment for Radiotherapy Research (CERR) functions to do 

dose metric operations (DVHs, etc.) (Yang et al., 2011).   
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Figure 2.6 General workflow of DIRART software 

Source: Yang et al. (2011) 

DIRART implemented two common DIR frameworks, the asymmetric 

registration framework and the inverse consistency registration framework. Both 

frameworks support multi-resolution approach and multiple pass approach.  An 

ART toolkit which is able to perform dose and structure remapping, dose 

accumulation and analysis using the DIR results, with a complimentary package to 

CERR to provide additional DIR and ART functions. Moreover, by exchanging 

DICOM-RT data, it could be used an external interface to the commercial treatment 

planning system (Yang et al., 2011).     

DIRART software can provide many functions for ART, especially on the 

following tasks: 1) automatic contour propagation between treatment planning CT 

and daily CT, 2) remap data between planning CT and daily CT either way for 

evaluation purpose, 3) register all daily dose (to planning dose grid), to accumulate 

them for evaluation. Figure 2.7 illustrated the offline ART workflow in DIRART 

software when DIRART is able to perform the few tasks in the general working 

flow: 1) structure contour propagation, 2) dose deformation; 3) dose accumulation. 
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Figure 2.7 Offline ART workflow in DIRART software 

Source: Yang et al. (2011) 

Different operational parameters, used by the same algorithm, can also affect 

the registration accuracy. This implies that using automated, standard, or default 

settings may not give estimates with the greatest accuracy, suggesting a need for 

parameter optimization. Yeo et al. (2013) performed DIR with DIRART software, 

the greatest accuracy was exhibited by the original Horn and Schunck optical flow 

algorithm. Some algorithms failed to reproduce the geometry at all, while others 

accurately deformed high contrast features but not low contrast regions.  

2.4 Validation techniques of deformable Image Registration 

Validation of image registration is a challenging task. The goal of image registration 

is to find the correspondence of each voxel between image A and image B. Unlike the 

goal of autosegmentation, where the algorithm only needs to find the boundary of the 

organ, image registration has the additional burden of needing to find the correspondence 

of voxels within the organs as well. This becomes particularly important for advanced 

applications of deformable registration, such as dose accumulation, adaptive 

radiotherapy, and response assessment (Kristy et al., 2013). 
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There are several different methods to validate image registration. They can be 

broadly categorized into the following groups. 

2.4.1 Volume-based criterion: propagation of region of interest (ROI) contours 

between registered images  

Every image contains some number of ROIs, including tumors, organs, or 

other identifiable substructures. Once an expert user has contoured these ROIs, they 

can be used to validate the image registration algorithm. In an ideal situation, the 

expert user would perfectly contour the ROIs on each image. (contours A on image 

A and contours B on image B) and the image registration algorithm would 

propagate the contours on image A onto image B (resulting in contours A′). The 

differences between contours A′ and contours B would be due to uncertainties in 

the image registration algorithm. The most common overlap metric is the Dice 

similarity coefficient (DSC): The metric computes the number of pixels that overlap 

between the two volumes as in equation 2.6, which is defined as two times the 

overlap of A′ and B, divided by the sum of the volume of A′ and B as shown below.   

                                      (2.6) 

If A′ and B have no overlap, then the DSC is 0, and as the contours become 

identical, the DSC approaches a value of 1 (Kristy et al., 2013). Goldberg–Zimring 

et al. (2005) suggested that satisfactory volume matching should be 70% or more 

for adaptive radiotherapy applications.  

Ramadaan et al. (2013) evaluates the performance and accuracy of a 

commercial DIR system with Demons-based algorithm by using the standard 

radiotherapy phantoms and one in-house built phantom. The algorithm performance 

was assessed quantitatively, using volume analysis and the DSC, and also assessed 

for 5 head and neck cancer patients using clinical CT images. Phantom 

investigations gave varying results with average DSC scores ranging from 0.69 to 

0.93, with an overall average of 0.86 ± 0.08. Clinical results were generally better 

with a DSC range of 0.75-0.99 and an overall average of 0.89 ± 0.05, DIR reduced 
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the time required by physicians to contour the images of head and neck cancer 

patients by ~47%.  

2.4.2 Image matching Quality: Evaluating the intensity correlation 
 

Similarity measure is a quantitative measure which tells us the degree of 

similarity between two images. The most popular metrics include the sum of the 

squared intensity difference (SSD), correlation coefficient (CC), and mutual infor-

mation (MI). The intensity difference-based metrics are computationally attractive, 

but they require that the two objects have intensity values in the same range; the 

correlation coefficient requires that the intensities of the two images are related by 

a linear transformation, whereas MI is the metric of choice when images from 

different modalities need to be registered (Kristy et al., 2013). 

 Mean square difference (MSD) will be zero when the images are correctly 

aligned and will increase with misregistration (registration error). These measures 

are normalized so that they are not affected by the number N to solve the problem 

when use the sum square difference. 

Correlation coefficient can take values between -1 and +1 where +1 represents 

a maximum of correlation between images. The CC method assumes a linear 

relationship between the intensity values in the images; therefore, it can deal with 

differences in image contrast and brightness (Kristy et al., 2013). 

NMI method is the alternative normalizations of the joint entropy, which 

proposed to overcome the overlap problem in mutual information (Kristy et al., 

2013). NMI can range between 0 and 2 and values of NMI >1 typically represent a 

good match between images (Penney et al., 1998) 

Varadhan et al. (2013) demonstrated the evaluation based on anatomical 

correspondence, physical characteristics of deformation field, and image 

characteristics can facilitate DIR verification with the ultimate goal of 

implementing adaptive radiotherapy. Rigaud et al. (2013) compared the 

performance of multiple deformable image registration methods. The two most 
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effective DIR methods were the demons and the free form deformation (FFD), with 

both the mutual information (MI) metric and the filtered CTs. 

2.4.3 Deformation fields analysis 

The analysis of deformation fields enables to ensure that the deformations are 

physically plausible and that forward and backward transformations are inverse-

consistent. 

1) Inverse consistency error (ICE): The inverse consistent error measures the 

degree of consistency between forward and backward transformation. The 

forward transformation, TFW maps the point i to j the backward 

transformation, TBW maps the point j to i′. The distance between i and i′ 

consists on the inverse consistent error (Figure 2.8):   IC =  ║I - i′║. The 

optimal transformation is found minimizing d distance. 

 

Figure 2.8 Schematization of the inverse consistent error: d = IC error = ║I - i′║ 

Source: Lourengo et al. (2013) 

2) Jacobian analysis: The Jacobian matrix contains 9 values (for a 3D 

transformation) and describes how the transformation changes in each of the 

3 directions. The determinant of the Jacobian matrix gives the local volume 

change and both can be calculated at any point in the transformation and 

describe the local properties of the transform at that point. 

To ensure that no folding had occurred during registration the 

transformation must be invertible, i.e., it has an inverse. The Jacobian is an 

indicator of the invertibility of the transformation and it is given by the 

following equation (Lourengo et al., 2013): 
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JT (x) = 1 if the volume at x remains the same after the transformation, 

JT (x) > 1 if there is volume expansion and JT (x) <1 if there is volume 

shrinkage. JT (x) ≤ 0 means that folding had occurred which is physically 

impossible and mathematically not invertible (Lourengo et al., 2013). 

Varadhan et al. (2013) assessed the DIR on the head and neck case, the 

ICE was much larger for the demons algorithm (6.5 mm) as compared to B-

spline (0.7 mm). The MSD was comparable for both algorithms. The 

minimum Jacobian was used to assess the registration algorithms in forward 

and inverse directions for all three anatomical sites. Lourenco et al. (2013) 

evaluated the DIR performance based on visual inspection of registration 

results and computation of similarity measures to ensure image matching 

quality, deformation field analysis and calculation of the inverse consistent 

error to ensure that the transformations are physically plausible. The inverse 

methods gave the most robust results in terms of inverse-consistency between 

the composition of forward and inverse transformations with a median mean 

ICE of 0.009 mm.  

 

 


