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CHAPTER 2 

Literature review 

2.1 Gait assessment 

Assessment of spatiotemporal gait parameters is commonly used by rehabilitation 

professionals to identify gait deviations, and to provides essential information relating to 

overall health (1), falls status (2), cognitive performance ( 3 ) , quality of life ( 4 ) , 

and mortality rate (5). Lord et al. (1) studied the associations between gait parameters and 

motor, cognitive, and behavioral characteristics in 189 older adults. Sixteen 

spatiotemporal gait variables (i.e. gait velocity, step length, step width, step time, swing 

time, stance time, and their variability, as well as step time asymmetry, swing time 

asymmetry, stance asymmetry, and step length asymmetry) were assessed using a 7-m 

instrumented walkway (GAITRite). Motor characteristics were measured using the one 

leg stance test and the timed chair stand test. Cognitive performance test consisted of a 

spatial recognition memory test and a pattern recognition memory test. Behavioral 

characteristics were assessed using the Activities-specific Confidence Scale (ABC), the 

Geriatric Depression Scale, and the physical fatigue scale. The results showed that step 

time was associated with scores on the fatigue test, while gait velocity and swing time 

asymmetry were associated with the ABC score. 

Maki (2) examined the association between spatiotemporal measures and the 

likelihood of future falls and fear of falling. Seventy-five older adults were asked to walk 

on an 8-m walkway wearing comfortable walking shoes. Footprints and footswitches 

were used to measure the spatial and temporal gait parameters, respectively. Fall events 

were monitored prospectively on a weekly basis for one year. In addition, all participants 

were asked whether they were afraid of falling. The results showed that increased stride 

width was associated with both falls history and fear of falling. Increased stride-to-stride 

variability in stride length, gait speed, and double-support time contributed to the history 

of falls. Alternatively, decreased gait speed, 
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reduced stride length, and increased double-support time were associated with fear of 

falling. 

Verghese et al. (3) investigated whether spatiotemporal gait parameters could 

predict future risk of cognitive decline and dementia in older adults. Five hundred and ten 

older adults were asked to walk along a 7-m walkway at their self-selected comfortable 

walking speed. Two markers placed on the ground were used to indicate the start and end 

of the 7-m path, with the GAITRite walkway placed on a 5-m section in the middle of 

this path. An extensive neuropsychological test battery was used to assess general 

cognition, memory, executive function, and attention. Dementia was diagnosed using 

established criteria for Alzheimer’s disease, vascular dementia, and other dementias. 

Neuroimaging and blood tests were also used to confirm the diagnosis. A 

neuropsychological test battery was administered at the first visit and five years follow-

up. However, only older adults with suspected dementia received the neuroimaging and 

blood tests during the follow-up visit. The result showed that gait velocity and stride 

length were associated with both global cognitive decline and executive function. In 

addition, cadence, swing time, stride time, and double support time were associated with 

memory decline. Furthermore, it was found that gait variability, cadence, and temporal 

variables can predict future risk of dementia. Thus, spatiotemporal gait parameters can be 

used as an indicator for preclinical stages of dementia.  

The association between gait parameters and mortality rate have also been studied. 

Hardy et al. (5) determined the relationship between 1-year improvement in measures of 

health, physical function, and 8-year mortality rate in older adults. Four hundred and 

thirty-nine older adults were assessed for their physical performance, health status, and 

functional status at baseline, 3, 6, 9, and 12 months in their homes. Physical performance 

was performed using the Short Physical Performance Battery and 4-m gait speed test. 

Health status was assessed using the ordinal global health item from the 36-item Short 

Form Health Survey (SF-36). Functional status was measured using the 32-point basic 

and instrumental activity of daily living scale from the National Health Interview Survey 

and the physical function index of the SF-36. Based on their score using the prior 

definitions of meaningful change on each test, all participants were categorized into three 

groups: 1-year improver (improved at 1 year), transient improvers (improved at 3, 6, or 9 
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months, but not at 1 year) and never improvers (never improved) group. Lastly, the date 

of death was determined using the Social Security National Death Index. The results 

showed that of all measures, only gait speed was able to predict survival. An improvement 

in gait speed at 1 year was significantly associated with a reduction in subsequent 

mortality. The mortality rate at the 8-year follow-up was 31.6% in 1-year improvers, 

41.2% in transient improvers, and 49.3% in never improvers. Thus, gait parameters are 

useful outcome measures to identifying high-risk individuals and evaluating preventive 

interventions. 

2.2 Tri-axial accelerometer  

Since gait performance is a marker of health status and a predictor for survival, the 

ability to correctly quantify gait is of great importance. Gait analyses are commonly 

performed by using sophisticated measurement tools such as optoelectronic motion 

capture systems, force plates, and instrumented walkways. However, these systems are 

time consuming, expensive, require training, and dependent on assessment being 

performed indoors or in laboratory settings. Recently, accelerometers have 

been increasingly used as a possible alternative to measuring gait due to its cost-

effectiveness and portability. 

An accelerometer is a device used for measuring accelerations of a body, often in 

terms of gravity (g) (1g or 9.81 m/s2) (24). Sensors record the magnitude and direction of 

the acceleration in different axes of movement. These accelerometer sensors are described 

as uni-axial, bi-axial, or tri-axial depending on the axis or axes (e.g. vertical, antero-

posterior, and medio-lateral) in which the monitor is most sensitive at detecting 

accelerations. In human movement studies, the accelerometer is most commonly used to 

quantify the human body’s accelerations, as these accelerations can be used to explain the 

control of movement, associated with the change in velocity and direction of movement. 

The feasibility of body mounted tri-axial accelerometers in quantifying 

spatiotemporal gait parameters of step time, step length and gait velocity from the 

assessment of the antero-posterior, medio-lateral and vertical accelerations during 

ambulation have been demonstrated (25, 26). Examples of the raw acceleration values 

across all three axes during overground walking are shown in Figure 2.1 & 2.2. In order 
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to quantify gait spatiotemporal parameters from the raw accelerations, all data were 

filtered using a Butterworth 4th order low-pass filter with a 20Hz cutoff frequency (27, 

28). Antero-posterior accelerations were further filtered using a Butterworth 4th order 

low-pass filter with a cutoff frequency of 2Hz. All positive peaks in the filtered antero-

posterior data were identified as heel strikes, with the time difference between heel strikes 

characterized as the step times. The direction of the acceleration in the medio-lateral 

direction at the instant of heel strike (positive or negative), was used to identify right 

versus left steps. Step length was calculated from the change in height of the vertical 

position across each step cycle and the participant’s leg length. Vertical position was 

computed by double integrating the vertical acceleration data, and high pass filtering the 

result using a Butterworth 4th order filter with a 0.1 Hz cutoff frequency to remove 

integration drift (29). Step length was then computed by using the relationship: 

 𝑆𝐿 = 2 ∗ √2 ∗ ℎ ∗ 𝑙 − ℎ2 (Eq1) 

where SL was the step length, h was the change in vertical position and l was the leg 

length. Gait velocity was calculated as the ratio of step length to step time (27). 
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Figure 2.1 Examples of the raw accelerations measured at the level of the head, thoracic, 

and lumbar spine during walking at a preferred speed of 1.20 m/s (24). 

Figure 2.2 Vertical acceleration over one stride. The vertical acceleration pattern is 

repeated twice for each gait cycle with a similarity of specific events  

(indicated by arrows) between right and left steps (30). 
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Previous studies have demonstrated that using a tri-axial accelerometer was valid 

for assessing spatiotemporal gait parameters. For example, Hartmann et al. (14) examined 

the concurrent validity of a trunk tri-axial accelerometer system (DynaPort®MiniMod) with 

the GAITRite system for assessing spatiotemporal gait parameters at preferred, slow, and 

fast self-selected walking speed in an older adult population. Twenty-three older adults 

were asked to walk along the 13-m walkway, with only the data from the central 7.32 m 

active sensor area of GAITRite used. The tri-axial accelerometer was placed at the level 

of the second sacral vertebrae with sports tape. Gait data was collected simultaneously 

between the two systems. The older adults were first instructed to walk at their 

comfortable speed. Then, the order of the fast and slow walking speeds were randomized. 

The results showed that the levels of agreement was excellent between the tri-axial 

accelerometer and GAITRite system for walking speed, cadence, step duration, and step 

length (intraclass correlation coefficients (ICCs) between 0.99 and 1.00, ratios limits of 

agreement (RLOA) between 0.7% and 3.3%) (Figure 2.3). In addition, the levels of 

agreement between the two systems was moderate for variability of step duration (ICCs 

between 0.88 and 0.98 with RLOAs between 19% and 34%), and low for variability of 

step length (ICCs between 0.24 and 0.33 with RLOAs between 73% and 87%). Overall, 

temporal gait parameters (i.e. step duration and variability of step duration) showed 

higher levels of agreement compared to spatial gait parameters (i.e. step length and 

variability of step length).  
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Figure 2.3 Bland–Altman plots of all averaged gait parameters across four walking trials 

at preferred walking speed. Solid line systematic bias; dashed lines  

limits of agreements (14). 
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Accelerometers have become increasingly popular as instruments for assessing 

physical activity, energy expenditure, and gait. Additionally, accelerometers show a 

number of advantages, including a lower cost, portability, a small size, and ease of use. 

As a consequence, accelerometers can be used in real life environments to support 

rehabilitation, and continuous physical activity monitoring at home. Thus, user-friendly 

portable gait analysis systems which are able to collect data from many gait cycles and 

allow measurements in a more challenging context are potentially important for clinical 

and research settings.  

2.3 The use of smartphones to measure gait  

The use of smartphones for medical purposes by health care providers is increasing 

because of the steadily growing number of downloadable applications that transform the 

mobile phone into a medical device (31). Modern smartphones have built-in sensors (i.e. 

accelerometer, gyroscope, compass, and camera) which health applications utilize to 

quantify minute-by-minute activity of patients (e.g. walk or sit) and to obtain 

measurements useful for clinical practice. Mobile medical applications are an emerging 

technology that needs to be appropriately validated, along with the specific mobile 

platform, to ensure their safe and effective operation. 

2.3.1 Smartphone-enabled camera-based system 

Kim et al. (21) examined the concurrent validity of the wearable smartphone-

enabled camera-based system (SmartGait; Figure 2.4) with a pressure-sensing walkway 

(GAITRite) for measurement of spatiotemporal gait parameters. Fifteen healthy young 

adults were asked to walk along an 8-m walkway at three different speeds: slow, 

preferred, and fast speeds. A GAITRite mat was placed in the middle of the walkway, 

whereas the SmartGait was attached at the participant’s waist. Step length (SL), step 

width (SW), step time (ST), gait speed, double support time (DS) and their variability 

were collected concurrently with the two systems. The results found that SmartGait 

demonstrated modest to excellent concurrent validity with GAITRite (ICCs between 

0.731 and 0.982) for all parameters at all speeds in healthy young adults. The absolute 

difference ranged from 0.3-9.6 cm for SL, 0.1-1.4 cm for SW, 10.9-42.9 ms for ST, and 

0.03-0.14 m/s for gait speed. Thus, the results of this study demonstrated that a wearable 
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smartphone camera-based system was a valid tool for the assessment of gait in clinical 

practice. Furthermore, this application did not require extensive equipment or trained 

personnel, allowed for home-based evaluations, and provided continuous real-time 

assessment. 

 

 

Figure 2.4 (a) SmartGait system and its various hardware components  

  and (b) a participant wearing the SmartGait (21). 
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2.3.2 Smartphone-based accelerometer system  

Furrer et al. (22) determined the intra-session reliability as well as concurrent 

validity of a smartphone-based accelerometer as compared to a marker-based motion 

capture system. Twenty-two healthy young adults were asked to walk barefoot at a self-

selected speed across a 10-m walkway. Vertical center of mass displacement and step 

duration were assessed simultaneously between two systems: a smartphone attached over 

the region of the third lumbar vertebrae and an eight-camera motion capture system with 

34 reflective markers placed on bony landmarks of the entire body. The results showed 

good to excellent reliability (ICCs between 0.71 and 0.80) for spatial parameters and fair 

to excellent reliability (ICCs ranged from 0.49 to 0.86) for temporal variables. All 

variables correlated significantly with measurements of the motion capture system with 

moderate correlation (ranging from 0.61 to 0.68) for spatial parameters and moderate to 

strong correlations (ranging from 0.62 to 0.92) for temporal variables. Hence, the 

smartphone application utilizing an accelerometer, a strong alternative wearable system 

for laboratory and community-based gait assessment, was a reliable and valid tool for the 

quantification of level walking in healthy young adults. 

Since smartphones are normally used for communication and leisure, it will 

not always be oriented or fixed to the body in the same manner. Based on results from 

questionnaires provided to over 1500 persons from 11 cities in nine countries, phones are 

carried upwards of 60% of the time in bags or pant pockets for women and men, 

respectively (32). The following most common locations are on a belt-clip (13.8% for 

men, 0.8% for women), on the upper body (8.3% for men, 2.2% for women), and in the 

hands (3.5% for men, 9.1% for women).  

Antos et al. (23) investigated the accuracy of activity tracking using a 

smartphone-based accelerometer when placed at four locations (i.e. hand, belt, pants 

pocket, and bag) while performing five activities (i.e. sitting, standing, walking, and 

transition between sitting and standing), and quantified which phone locations were most 

suitable for activity tracking (Figure 2.5). The results showed that both the activity and 

phone location could be accurately predicted using the smartphone built-in accelerometer, 

with 88% accuracy for activities and 96.4% accuracy for phone locations. The best 

tracking accuracy was while the phone was in the pocket (94.2%), followed by the belt 
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(93.1%), the bag (89.1%), and the hand (79.0%). In different location tracking, it was 

found that walking had the highest tracking accuracy (99.6%), followed by sitting 

(97.1%), standing (94.5%), sit to stand transitions (89.9%), and then stand to sit 

transitions (87.3%). Thus, placing the smartphone in the pocket or on a belt (positioned 

close to the body’s center of mass) is recommended because these locations provided the 

highest accuracy to characterize gross body movements. 

 

 

 

 

 

 

 

 

Figure 2.5 Carrying a mobile phone in the pocket, belt, hand, or bag (23). 

 

  


