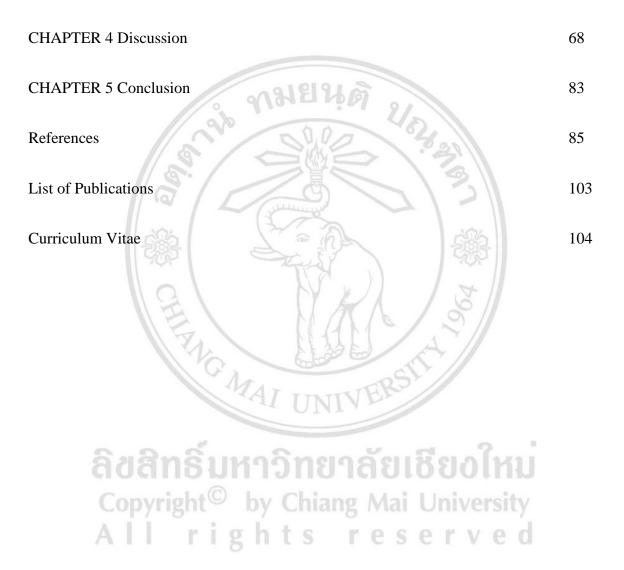
CONTENTS


	Page
Acknowledgements	c
Abstract in Thai	e
Abstract in English	h
List of Tables	q
List of Figures	t
List of Abbreviations	u
List of Symbols	x
Statements of Originality in Thai	у
Statements of Originality in English	Z
CHAPTER 1 Introduction by Chiang Mai University	1
1. General introduction	1
1.1 Statement and significance of problem	1
2. Literature review	4
2.1. Mosquitoes	4
2.2. Plant-derived repellents	9

2.3. Angelica sinensis (Oliv.) Diels the most effective	
plant sample	15
2.4. Novel technology	16
3. Purposes of the study	18
4. Usefulness of the study	19
CHAPTER 2 Materials and Methods	20
2.1 Materials	20
2.1.1 Plant materials	20
2.1.2 Human volunteers	22
2.1.3 Experimental animals	22
2.1.3.1 Mosquitoes	22
2.1.3.2 Albino rats	23
2.1.4 Chemicals	23
2.2 Methods rights reserved	24
2.2.1 Mosquito test populations and rearing	24
2.2.2 Plant preparations	26
2.2.2.1 Preparation of crude plant extracts	26
2.2.2.2 Preparation of active extracts from the most	
effective plant	27

2.2.2.3 Preparation of AHE-based repellent products	28	
2.2.2.3.1 AHE-ethanol solution	28	
2.2.2.3.2 AHE-nanoemulsion	28	
2.2.2.3.3 10% AHEv-nanoemulsion gel	29	
2.2.3 Chemical analysis of A. sinensis extracts	30	
2.2.4 Repellent bioassays		
2.2.4.1 Laboratory repellent bioassay		
2.2.4.1.1 Preliminary repellent screening	31	
2.2.4.1.2 Repellent investigation of active extracts		
from the most effective plant (A. sinensis)	32	
2.2.4.1.3 Repellent investigation of AHE-based		
repellent products	32	
2.2.4.1.3.1 AHE-ethanol solution	32	
2.2.4.1.3.2 AHE-nanoemulsion	32	
2.2.4.1.3.3 10% AHEv-nanoemulsion gel	33	
2.2.4.2 Field repellent bioassay 2.2.4.2.1 Field I		
		2.2.4.2.1.1 Preliminary survey
2.2.4.2.1.2 Field repellent bioassay	34	

2.2.4.2.2 Field II	35
2.2.4.2.2.1 Preliminary survey	35
2.2.4.2.2.2 Field repellent bioassay	35
2.2.5 Evaluating potential skin irritation from AHE-based repellent products	36
2.2.6 Testing the physical and biological stability of AHE-based repellent products2.2.6.1 Temperature-time method	37 37
2.2.6.2 Heating and cooling method	38
2.2.7 Statistical analysis	38
CHAPTER 3 Results	39
3.1 Plant preparations	39
3.1.1 Preparation of crude plant extracts	39
3.1.2 Preparation of active extracts from A. sinensis	41
3.1.3 Preparation of AHE-based repellent products	42
3.2 Chemical analysis of A. sinensis products	43
3.3 Repellent bioassays	46
3.3.1 Laboratory repellent bioassay	46
3.3.1.1 Preliminary repellent screening	46

3.3.1.2 Repellent investigation of active extracts from A. sinensis	
3.3.1.3 Repellent investigation of AHE-based repellent products	
3.3.1.3.1 Repellency of AHE-ethanol solution	49
3.3.1.3.2 Repellency of AHE-nanoemulsion	50
3.3.1.3.3 Repellency of 10% AHEv-NEG	51
3.3.2 Field repellent bioassay	52
3.3.2.1 Field I	52
3.3.2.2 Field II	56
3.4 Evaluating potential skin irritation from AHE-based repellent product	s 60
3.5 Testing the physical and biological stability of AHE-based	
repellent products	61
3.5.1 Physical and biological stability of AHE	
(Temperature-time method)	61
3.5.2 Physical and biological stability of 10% AHEv-NEG	63
3.5.2.1 Temperature-time method	63
3.5.2.2 Heating and cooling method	66

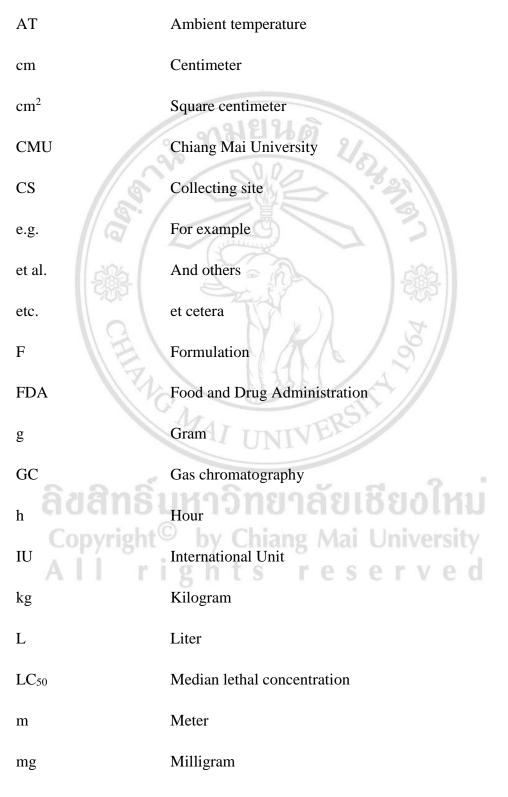
LIST OF TABLES

Table 2.1	Plant samples screened for repellent activity against female	
	Ae. aegypti	21
Table 2.2	The ingredient details of 10% AHEv-NEG and 10% DEETv-NEG	29
Table 2.3	Assessment of reactions	37
Table 3.1	Percentage yield (% Yield), color and appearance of plant products,	
	including essential oils and ethanolic extracts	40
Table 3.2	Percentage yield (% Yield), appearance and physical characteristics	
	of A. sinensis products, including AHE, AAE, AME, and AEE	41
Table 3.3	Apperance and physical characteristics of AHE-based	
	repellent products	42
Table 3.4	Chemical constituents of A. sinensis products, including essential oil	
	(AEO) and solvent extracts (AHE, AAE, AME, and AEE)	44
Table 3.5	Repellent activity of plant products, including essential oils and	
	ethanolic extracts, against female Ae. aegypti	47
Table 3.6	Repellent activity of DEET and A. sinensis products, including	
	essential oil (AEO) and solvent extracts (AHE, AAE, AME, and AEE)	
	against female Ae. aegypti	48
Table 3.7	Repellent activity of the ethanolic solutions of AHE and DEET	
	with and without 5% vanillin supplementation (AHE-ES, AHEv-ES,	
	DEET-ES, and DEETv-ES) against female Ae. aegypti	49

LIST OF TABLES (continued)

Table 3.8	Repellency of the ethanolic solutions of AHE	
	(AHE-ES and AHEv-ES) and nanoemulsions of AHE	
	(AHE-NE and AHEv-NE) against female Ae. aegypti	50
Table 3.9	Repellent activity of 10% AHEv-NEG and 10% DEETv-NEG	
	against female Ae. aegypti, Cx. quinquefasciatus, and An. minimus	51
Table 3.10	Number of mosquitoes and mosquito collecting rates	
	(Mean±standard error, SE) captured from human volunteers	
	during field repellent bioassays at Sunpesua subdistrict,	
	Muang district, Chiang Mai province, northern Thailand	54
Table 3.11	Results obtained from field repellent assessment of 25% AHEv-ES	
	and 25% DEETv-ES, undertaken at Sunpesua subdistrict,	
	Muang district, Chiang Mai province, northern Thailand	55
Table 3.12	Number of mosquitoes and mosquito collecting rates	
	(Mean±standard error, SE) captured from human volunteers	
	during field repellent bioassays at Sunpesua subdistrict,	
	Muang district, Chiang Mai province, northern Thailand	58
Table 3.13	Results obtained from field repellent testing of 10% AHEv-NEG	
	and 10% DEETv-NEG, showing the protection offered against	
	the various species of mosquitoes collected	59
Table 3.14	Skin irritant potential of 25% AHE-ES, 10% AHEv-NEG,	
	20% SLS, and absolute ethanol	61

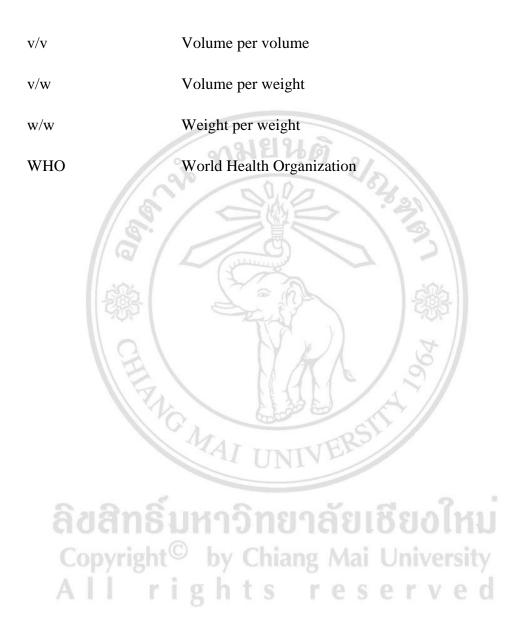
LIST OF TABLES (continued)


		Page
Table 3.15	Appearance, physical property, and repellent activity of the	
	fresh and stored samples of AHE against female Ae. aegypti	62
Table 3.16	Appearance, physical property, and repellent activity against	
	female Ae. aegypti of the fresh and stored products of	
	10% AHEv-NEG	64
Table 3.17	Appearance, physical property, and repellency against	
	Ae. aegypti of 10% AHEv-NEG samples after being kept	
	under 0, 2, and 4 cycles of heating and cooling	66
	ล ้อสิทธิ์มหาวิทยาลัยเชียงใหม ่ Copyright [©] by Chiang Mai University All rights reserved	

LIST OF FIGURES

Figure 1.1	The life-cycles of Anopheline and Culicine mosquitoes	5
Figure 1.2	Angelica sinensis (Oliv.) Diels	16
Figure 3.1	GC/MS total ion chromatograms of A. sinensis products,	
	including essential oil (AEO) and solvent extracts	
	(AHE, AAE, AME, and AEE)	45
Figure 3.2	Distribution of mosquito species collected during the	
	field repellent bioassays at Sunpesua subdistrict, Muang district,	
	Chiang Mai province, northern Thailand	56
Figure 3.3	Samples of 10% AHEv-NEG after kept at conditions that vary	
	in temperature and time storage compared with fresh preparation	65
Figure 3.4	Samples of 10% AHEv-NEG after being kept under	
	0, 2, and 4 cycles of heating and cooling	67
	ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่	
	Copyright [©] by Chiang Mai University All rights reserved	
	All rights reserved	

t


LIST OF ABBREVIATIONS

LIST OF ABBREVIATIONS (continued)

min	Minute
ml	Milliliter
mm	Millimeter
MS	Mass spectrometry
MPT	Median complete protection time
NIH	National Institute of Health
nm	Nanometer
No	Number
рН	Potential of hydrogen
ppm	Part per million
RD ₉₅	Repellent dose
s Sugas	Second
SE GOOMD	Standard errors
spp.	Species reserved
μl	Microliter
μm	Micrometer
USEPA	United States Environmental Protection Agency

LIST OF ABBREVIATIONS (continued)

LIST OF SYMBOLS

ข้อความแห่งการริเริ่ม

วิทยานิพนธ์นี้ได้รายงานฤทธิ์ป้องกันยุงกัดของสารสกัดจากพืชสมุนไพร โกฐเชียง (Angelica sinensis) เป็นครั้งแรก

 วิทยานิพนธ์นี้สามารถเตรียมผลิตภัณฑ์นาโนอิมัลชั่นจากสารสกัดเฮกเซนโกฐเชียง พร้อมทั้ง พัฒนาเป็นตำรับเจลขับไล่ยุงที่มีประสิทธิภาพสูงและมีเสถียรภาพทางด้านกายภาพและชีวภาพ

 วิทยานิพนธ์นี้ได้ทำการประเมินและรายงานถึงฤทธิ์ป้องกันยุงกัดของผลิตภัณฑ์ โกฐเชียงต่อยุง พาหะนำโรคหลากหลายสายพันธุ์ภายใต้ห้องปฏิบัติการและภาคสนาม

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

STATEMENTS OF ORIGINALITY

1. In this thesis, the mosquito repellent potential of *Angelica sinensis* extracts was reported for the first time.

2. In this thesis, nanoemulsions of *A. sinensis* hexane extract (AHE) was prepared and developed as AHE-nanoemulsion gel, with high repellency as well as physical and biological stability.

3. In this thesis, repellent activity of AHE-nanoemulsion products were investigated and reported against various mosquito vectors under laboratory and field conditions.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved