APPENDIX A

Seismic Acquisition Parameters and Processing Workflow

18129 31
M/V GECO SAPPHIRE
between May to August 1998
40
6.25m inline x 25m crossline
Bolt Airgun array
2
140 bar (2000 psi)
1354 cu.in each
4m ± 0.5m
50 m
18.75 m (flip flop)
NAP-4B (Nessie 3)
3000m
6

Streamer Depth	5 m+- 1.0 m (seq1-138)
	6 m+- 1.0 m (seq139-end)
Streamer Separation	100m
Number of Receiver Groups	12
Number of Group per streamer	240
Receiver Group Interval	12.5m
4) Recording Parameters	เยนลิ
Recording System	GECO TRIACQ 1.4
Recording Format	SEGD-8015
Record Length	5sec
Sample Interval	2ms
Low Cut Filter	3Hz, 18 dB/Oct
High Cut Filter	180Hz, 70 dB/Oct
5) Geodetic Parameters	11.11 2.21
Datum	RTSD 181 EVEREST IND
Spheroid	UNIVERS
Semi Major Axis	6377276.345
Inverse Flat	300.8017
Projection Copyright ^C by (001 UTM NORTHERN HEMISPHERE
Zone All right	47N reserved
Central Meridian	99.00E
Scale Factor	0.999600
False Easting	500000.00E
False Northing	0.00N

A-2. Seismic Processing Workflow

- 1) Seismic Reformatting from SEGY into Geovation format
 - a. Recording length 5000 ms
 - b. Sampling rate 2 ms
- 2) Geometry update (seismic & navigation merge) and trace header update
- 3) Geometry QC
- 4) Gain recovery using T^2 gain function
- 5) Zero phase conversion using the zero phase operator derived from far field signature (Note: Negative Number of amplitude = Increase in Impedance Downward = Trough)
- 6) Linear noise attenuation in Tau-P domain:

A least squares anti-alias filter is applied to optimize the de-noise result.

- a. 1st pass linear noise attenuation is done in positive slope (shot gathers)
- b. 2nd pass linear noise attenuation is done in negative slope (shot gathers)

Slope range design of linear noise:

Time (ms)	Mute Zone (ms)
0	1300 to 4500
1500	1000 to 4500
3500	1000 to 4500
5100	1000 to 4500

Frequency range for attenuation 0 - 250 Hz

Application window is 1200 - 5000 ms with taper

- 7) Spike editing and Noise Burst attenuation (including swell) in shot domain by using spatial amplitude smoothing (SPASM)
 - a. Statistical spike editing on noisy traces
- 8) Shallow Water Demultiple (SWD)
 - a. 3:1 Shot point interpolation to perform 12.5 m shot interval prior to SWD
 & output only original traces after SWD.
 - b. Multiple subtraction is performed using Least Squares adaptive approach
- 9) 3D Surface Related Multiple Elimination (SRME)
 - a. 3:1 Shot point interpolation to perform 12.5 m shot interval prior to SRME and output only original traces after SRME.

- b. Multiple subtraction is performed using Least Squares adaptive approach
- 10) Tau-P predictive deconvolution
 - Forward and Reverse Tau-P transform
 - (Minimum offset 100 m, Maximum offset 3,200 m)

Time (ms)	GAP (ms)	Operator Length (ms)
500 - 2500	24	200
3000- 5500	64	200

11) Velocity Analysis

Using average trend of RMS Velocity data from previous processing (2001 seismic vintage) as reference with adjustment

- 12) 1st Pass high resolution Radon demultiple
 - a. 3:1 Shot point interpolation to perform 12.5 m shot interval prior to demultiple and output only original traces after demultiple
 - b. Parabolic model limit:

0

- c. Min slope = -8000 ms, Max Slope = 8000 ms, based on 3,200 m offset,
- d. Parabolic model scan is made based on 20 ms interval
- e. Time variant demultiple is made following water bottom reference with time variant cut off

Kept Zone (ms) Time (ms)

-1000 to 400

2000 -600 to 200

5000 -300 to 100

ัยเชียงไหม Reference offset = 3,200 m

f. Application window: Chiang Mai University

Start time: 200 ms, end time: 5100 ms with taper

g. Maximum frequency for computation: 120 Hz

13) Amplitude de-striping scalar estimation in sail line domain

This is to compensate amplitude variation due to acquisition seismic equipment:

Shot, Smoothing Operator = 41 shots

Channel, Smoothing Operator = 41 channels

CABLE, Smoothing Operator =3 cables

14) Trace regularization and interpolation

3D trace regularization and interpolation were performed to obtain:

Offset groups for every 50m

Re-gridding the seismic to 12.5m x 12.5m bin dimension

Nominal offset: 40

- 15) SEGY Output of Non-migrated CDP gathers after all pre-migration processing and after regularization (without NMO and without mute)
- 16) Velocity Analysis for 300 m x 300 m by manual velocity picking
- 17) Migration velocity analysis using high density velocity picking for 100 m x 100 m grid with anisotropic Eta field analysis at every 8 CDP interval
 - a. Semblance window interval: 20 ms

b.	Time Variant High	Density Picking Range for RMS Velocity:
	<u>Time (ms)</u>	Velocity Tolerance from Central Function (%)
	0 9 1	1
	500	5
	1000	10
	2000	10
	3000	10
	4000	15
	5000	5

 c. Time Variant High Density Picking Range for Anisotropic parameter: <u>Time (ms)</u> <u>SH from Central Function (Min, Max)</u>

8	18n5.ux08n	(-5, 50)
q	500	(-10,100)
C	1000 ght [©] by Chia	(-20,150)
A	2000 rights	(-20,250) <u>s</u> e r v e d
	3000	(-20,250)
	4000	(-20,100)
	5000	(-20,100)
d.	Smoothing operator for outliers	s: 300 m x 300 m x100 ms

18) 3D Anisotropic Kirchhoff Pre-Stack Time Migration

Aperture length:	4000 meters (half aperture)
Dip limit:	75°

Maximum frequency: 250 Hz

Using smoothed Vrms and Eta field from High Density Picking No.16

Geometrical spreading compensation: Applied

Input/ Output bin size: 12.5 m x 12.5 m

- 19) SEGY Output of Raw Kirchhoff APSTM CDP gathers (with NMO and without mute)
- 20) Residual move out analysis using high density velocity picking for 25 m x 25 m grid with Eta field analysis at every 2 CDP interval
 - a. Semblance window interval: 20 ms
 - b. Time Variant High Density Picking Range for RMS Velocity:

Time (ms)	Velocity tolerance from Central Function	(%)
0.		
500	5	
1000	10	
2000	10	
3000	10	
4000	15	
5000	15	

c. Time Variant High Density Picking Range for Anisotropic parameter:

	Time (ms) SH f	from Central Function (Min, Max)
	0	(-5, 50)
8.18	500	(-10,100)
ดบด	1000	(-20,150)
Copyr	2000 by Chi	(-20,250)
AII	3000 ights	(-20,250)
	4000	(-20,100)
	5000	(-20,100)
ີດີປີດີ Copyr A I I	500 1000 2000 3000 4000 5000	(-10,100) (-20,150) (-20,250) (-20,250) (-20,100) (-20,100)

d. Smoothing operator 100 m x 100 m x 100 ms

21) Residual high resolution radon demultiple on migrated CDP gathers

Parabolic model limit:

MIN Slope = -5000 ms, MAX Slope = 5000 ms,

Parabolic model interval is made for every 20 ms

Time variant multiple cut off following water bottom:

	Time (ms)	Kept Zone	e (ms)		
	0	-1000 to 3	00		
	1000	-400 to 15	0		
	1000	-200 to 10	0		
	5000	-150 to 60	1		
Re	eference offset = 3	,200 m			
Ар	plication window:	start time 200	ms, end time	5,100 ms	
Fre	equency limit = 24	0 Hz	8		
22) CDP gathe	ers flattening	10	210		
23) Random n	oise attenuation in	CDP domain	14	20	
Sp	atial model: 20 tra	ces	$\leq $	3	
Hi	gh frequency part:	(Community)	21	21	
Co	mputation window	v = 1,800 ms - 4	4,800 ms	1202	
Te	mporal model: 1,0	00 ms	>	魏	
Th	reshold:	Nor "))	*	
Freq. range (H	Iz) Impulse nois	se freq. (Hz)	Threshold	Operator	length (ms)
0-5	0-5		2.0	\sim	7
80-90	80-90	660000	3.0	`//	3
90-130	90-130	J INW	2.0		7
Low frequ	ency part:				
Computati	on Window: 20	0 ms – 4,400 m	sou g		1
Temporal	model: 1,000 ms	1.911.9.1	ຕຍເວ	goir	
Threshold	yright [©] b	y Chiang	Mai U	niversi	ity
Freq. range (Hz	z) Impulse nois	se freq. (Hz)	Threshold	Filter len	gth (ms)
0-5	0-5	2.0		10	
5-8	5-8	4.0		7	
8-15	8-15	2.0		7	
24) Time varia	ant amplitude scali	ng in CDP dom	ain		
Tin	me (ms)	Amplitude gain	(dB)		
	0	0			
	500	0			

5000

25) Inverse Q compensation (amplitude only)

Amplitude only Q compensation using Q = 135 with amplitude gain limit 5 dB (frequency = 80 Hz)

26) SEGY Output of Final Kirchhoff APSTM CDP gathers (after all post-migration processing and without mute)

20

27) Mute and stacking

Final mute is calculated using bending ray with 255m minimum offset preserved;

Stack mode	Angle range (degrees)
Full stack	0-12
Near angle stack	8-20
Mid angle stack	16-28
Far angle stack	24-36

- 28) SEGY output of Kirchhoff PSTM raw full stack (without any post-stack processing)
- 29) Acquisition footprint attenuation in the 3D F-Kx-Ky domain

Inline model:	300 traces
Crossline model:	300 traces
Time model:	400 ms
Frequency range:	0-100 Hz

30) Spectral whitening with two passes of frequency boosting

a. 1st pass: 25-60 Hz at 120% boost and smoothing bandwidth 15%

b. 2nd pass: 15-45 Hz at 100% boost and smoothing bandwidth 20%

31) 3D Random noise attenuation in F-X-Y domain

Inline model:	40 traces
Crossline model:	40 traces
Time model:	1000 ms
Computational window:	0 - 4900 ms
Frequency Range:	3 – 70 Hz

32) Nosie attenuation in decomposed frequency slice and reconstructed using Eigenvalues

Inline model:	13 traces
Crossline model:	13 traces
Time model:	250 ms

33) Post-stack residual Q-compensation in crossline and inline direction

Crossline direction

Background computational:

Temporal gate = 1200 ms, Spatial gate = 400 tracesLocal computational:

Temporal gate = 400 ms, Spatial gate = 100 traces

Inline direction

Background computational:

Temporal gate = 1200 ms, Spatial gate = 400 tracesLocal computational:

Temporal gate = 400 ms, Spatial gate = 100 traces

34) Time-variant frequency filter using Bandpass filter

Window (ms)	Bandpass filter (ORMSBY)
0-1200	06-10-120-150 Hz
1500-2700	05-08-100-120 Hz
3000-5000	03-05-60-80 Hz
0	

Operator Length 300 ms

35) Time Variant Amplitude Gain

Time	(ms) Amp	olitude Scala	r (dB)	Sere	?
a 6 a	แอกมะเร	01010	ດປເ	000	เทม
C 500	right [©] by	C-2.5 ang	Mai	Univ	ersity
1000	righ	t ⁴ s r	e s	er۱	/ e d
2000	0	10			
2500		12			
3000		13			
4000		13			
4500		13			
5000		10			

- 36) SEGY output of Intermediate full Kirchhoff PSTM Stack (with time-variant filter and amplitude scaling)
- 37) Automatic Gain Control (AGC)

1st pass:

Averaged amplitude level 5000

Operator Length 1000 ms

Sliding operator movement by half operator length

2nd pass:

Time variant AGC as f	following details;
Time window (ms)	Average amplitude level
0-400	5500
600-1200	5000
1400-2200	5000
2400-3400	4500
3400-3900	3500
3900-5000	2000

38) SEGY output of Final full Kirchhoff PSTM Stack (with filter & AGC)

WG MAI

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

APPENDIX B

Geostatistical Inversion Results

Copyright[©] by Chiang Mai University All rights reserved

Figure B.1 Geostatistical inversion results, including lithofacies, P-Impedance, Vp/Vs and density generated from inversion realization 1.

Figure B.2 Geostatistical inversion results, including lithofacies, P-Impedance, Vp/Vs and density generated from inversion realization 2.

Figure B.3 Geostatistical inversion results, including lithofacies, P-Impedance, Vp/Vs and density generated from inversion realization 4.

Figure B.4 Geostatistical inversion results, including lithofacies, P-Impedance, Vp/Vs and density generated from inversion realization 5.

Figure B.5 Geostatistical inversion results, including lithofacies, P-Impedance, Vp/Vs and density generated from inversion realization 7.

Figure B.6 Geostatistical inversion results, including lithofacies, P-Impedance, Vp/Vs and density generated from inversion realization 8.

Figure B.7 Geostatistical inversion results, including lithofacies, P-Impedance, Vp/Vs and density generated from inversion realization 10.

CURRICULUM VITAE

Author's Name	Miss Ratchadaporn Uttareun
Date of Birth	August 29 th , 1985
Place of Birth	Chiang Mai Province, Thailand
Education	2004-2008, Bachelor degree of Science in Physics, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University.
Scholarship	August 2016 – December 2017, sponsor by PTT Exploration and Production Public Company Limited, Thailand for study at international program of Petroleum Geophysics, Chiang Mai University.
Experience	2008 – present, Geophysicist for PTT Exploration and Production Public Company Limited.

ີ່ຮົ<mark>ມหາວົກຍາລັຍເຮີຍວໃหມ່</mark> ht[©] by Chiang Mai University rights reserved