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CHAPTER 1 

Introduction 

The study area is Arthit field, located in the northwestern part of the North Malay 

Basin, Gulf of Thailand (Figure 1.1). The basin developed during Cenozoic extension, 

which produced Northwest-Southeast (NW-SE) and North-South (N-S) trending 

asymmetric half-grabens (Shoup, 2009). The sediments supplied into the basin were both 

marine and non-marine siliciclastics deposited during the rifting period, marked by Late 

Eocene to Late Oligocene lacustrine and other continental deposits, of Formation 0 

(Shoup, 2009). The Arthit gas field reservoirs (Figure 1.2) consist of Miocene paralic-

environment sands (FM1-FM3) (Shoup, 2009). 

The reservoir section of Arthit field is dominated by multiple stacked sandstone 

layers interbedded with shale and coal (Turner et al., 2004). The sandstone thickness 

varies, but is predominantly relatively thin and in many cases below seismic resolution 

(approximately 7-10 m) (Turner et al., 2004 and Geologist Team, 2005). Several 

geophysical studies have been conducted to characterize reservoir and pore fluid 

distribution in the field, using methods based on seismic attributes, AVO analysis 

(Kliangglom et al., 2008; Limpornpipat et al., 2008 and Kaewprain and Sognnes, 2013) 

or deterministic elastic inversion (Kliangglom et al., 2016). These studies had only 

limited ability to identify thin reservoirs beyond seismic resolution, and provided only a 

solution that can be considered a most-likely case within the boundaries of the seismic 

bandwidth (Kliangglom et al., 2016). In an attempt to overcome some of the constraints 

related to seismic resolution, a pre-stack geostatistical inversion can be carried out to 

resolve thin reservoir beds and achieve a better understanding of the reservoir distribution 

away from input well locations (Contreras et al., 2005a). As such methodology allows for 

multiple solutions that honor the seismic data, well log data, and geostatistical 

information, sensitivities related to the reservoir distribution can also be accounted for 

when applying this methodology (Moradi et al., 2015). 
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Geostatistical inversion allow integration of low-frequency seismic data, high-

resolution well log data, and additional statistical information to provide results consisting 

of spatial distributions of elastic properties with a vertical resolution intermediate 

between those of seismic data and well logs (Leggett and Chesters, 2005 and McCrank et 

al., 2009). Moreover, the method provides quantitative estimates of non-uniqueness based 

on the statistical distribution of inversion products to better understand the range of 

uncertainty. Simultaneously, geostatistical inversion allows for direct estimation of facies 

by utilizing the multi-dimensional statistical relationship of elastic properties (McCrank 

et al., 2009). 

 

Figure 1.1. a) Map showing the location of Arthit Field in the Gulf of Thailand (Oil and 

Gas Online, 2000). b) AOI for 3D seismic pre-stack geostatistical inversion study (red 

polygon) and deterministic inversion study (blue polygon). 
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Figure 1.2. Stratigraphic column of the North Malay Basin (Turner et al., 2004). 

1.1 Data Availability in Study Area 

1.1.1 Seismic data 

The Arthit 3D seismic data was acquired by Geco-Prakla in 1998, and covered 

approximately 4,000 km2, as shown in Figure 1.3. The study area covered 85 km2 of 3D 

seismic data, which was reprocessed by DPC (PTTEP in-house processing center) prior 

to pre-stack deterministic inversion (150 km2) in 2016 (Figure 1.3). The seismic 

acquisition parameters and processing workflow are presented in Appendix A. After 

migration, angle stack volumes were created using the following angle ranges: 

• Angle stack 1: 0-12 (near) 

• Angle stack 2: 8-20 (near mid) 

• Angle stack 3: 16-28 (mid) 

• Angle stack 4: 24-36 (far) 
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Due to the limited maximum offset of the Arthit 3D seismic survey (3.1 km), the 

final angle stacks were slightly overlapping to provide sufficient amount of input angles 

(minimum four), and at the same time considering the level of S/N in these stacks. 

Examples of angle stack sections can be seen in Figure 1.4.  

Several processing steps were applied to the migrated CDP gathers to improve the 

seismic quality, such as automated hi-resolution velocity picking, Radon demultiple, trim 

statics, and Q-compensation. Additional seismic pre-conditioning applied to angle stacks 

consisted of residual Q-compensation (Q-Wave) and time misalignment corrections 

(Chansane et al., 2016). Q-wave amplitude correction was used to compensate amplitude 

distortion caused by shallow gas by balancing background amplitude laterally (Chansane 

et al., 2016) as shown in Figure 1.5. A time-misalignment correction was applied to 

further flatten events in the angle-gather domain with mild time shifts, using angle stack 

2 as a reference (see Figure 1.6) (Kliangglom et al., 2016).  

 

Figure 1.3. The left picture shows a regional time map across the Arthit Field, covered by 

4000 km2 of 3D seismic data. The blue boundary indicates the area included in seismic 

preconditioning and deterministic inversion in 2016 (150 km2). The right picture shows 

a detailed map of areas input to a deterministic inversion study in 2016 (blue), the 

geostatistical inversion study area considered in this thesis (red), and locations of key 

input wells (A to E) in the area.  
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Figure 1.5. a) Before Q-Wave amplitude correction. b) After Q-Wave amplitude 

correction. The application of Q-Wave reduced the effect of unwanted lateral amplitude 

variations caused by near-surface amplitude anomalies in this area (Chansane et al., 

2016). 

 

Figure 1.6. A time misalignment correction was applied to the near, mid and far angle 

stacks, using the near-mid angle stack as a reference, resulting in improved angle-gather 

flatness (Kliangglom et al., 2016). 
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1.1.2 Deterministic Pre-Stack Inversion 

A deterministic seismic inversion project was carried out within Arthit Field, using 

150 km2 of pre-stack 3D seismic data and five input wells (Figure 1.3). The primary 

targets were gas sandstone reservoirs from Formation 2E to Formation 1. Simultaneous 

seismic inversion was carried out to generate elastic property volumes for P-impedance 

(AI), Vp/Vs and density. The results showed very good correlation with well log data for 

AI (81%-85% R2) and moderate correlation for Vp/Vs (44%-49% R2); while the density 

showed poor correlation due to the relatively short maximum angle available in the 

seismic data (Kliangglom et al., 2016).  

Following inversion, lithofacies were classified using a Bayesian classification, 

which was limited to lithology identification of sand and shale in the area. Accurate 

classification of pore-fluid variations could not be detected, and this was also in 

agreement with an initial rock physics study carried out prior to the seismic inversion. 

The sand probability cube highlighted most of the thicker sand reservoir units (greater 

than 7-10 m), considering both individual sands and stacked sands (Kliangglom et al., 

2016). 

Four additional wells (“blind wells”) were added to validate the results obtained 

from the deterministic elastic-impedance inversion. Analysis of the validation wells 

showed that lithology and sand probability volumes provided good quality predictions 

down to about 2200-2300 ms (TWT), while the predictions were moderate to poor quality 

towards the deeper target (below 2300 ms TWT). Several factors could contribute to the 

decreasing lithology predictability with depth, such as reduced seismic resolution, short 

streamer length not providing sufficient AVA information, and Vp/Vs values converging 

(Kliangglomet al., 2016). 

1.1.3 Well data 

To be consistent with the input dataset used in the 2016 deterministic seismic 

inversion study, a similar set of input wells was used in this study, consisting of Wells A, 

B, C, and D. An additional well (Well E) was used during the deterministic inversion 

study, but is not considered in this study as it is located outside the study area for 

geostatistical inversion. All input wells included the following information: 
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 Location and deviation survey. 

 Sonic, shear-sonic*, density, gamma-ray logs, and borehole calliper. 

 Petrophysical logs (Sw, Phie, and Vsh). 

 Lithology logs. 

 Geological picks/tops. 

 Checkshot-data/VSP and T/D relationship based on final well-tie. 

*: Shear-sonic was measured in wells B and C, but predicted in A and D. 

 

Figure 1.7. Time structural map overlaid with all input wells considered in this study. 
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1.2 Literature Review 

Torres-Verdin et al. (1999) applied geostatistical inversion to estimate density 

distribution away from wells by simultaneously honoring both seismic and wellbore data. 

The implementation was based on a random-walk stochastic simulation of acoustic 

impedances with an acceptance/rejection gate based on the actual seismic data. A 

stochastic co-simulation was implemented to yield independent realizations of both 

lithology and density. Tens of realizations were computed to describe the distribution of 

both lithology and density. The geostatistical inversion result provided four times the 

vertical resolution obtained with seismic data alone, and helped assess individual sand 

units away from wells. The use of this technology significantly improved reservoir 

evaluation for field development planning and optimized placement of infill wells in San 

Jorge Basin, Argentina. 

Contreras et al. (2005b) described the application of an AVA stochastic-inversion 

algorithm to quantitatively integrate pre-stack seismic data and well logs. The stochastic 

inversion algorithm was used to characterize Miocene deep-water sand deposits located 

in the central Gulf of Mexico. Fluid/lithology sensitivity analysis indicated that the 

shale/sand interface (top of the hydrocarbon-bearing sand) was represented by Class III 

AVA responses. Moreover, the Biot-Gassmann fluid substitution demonstrated that P-

wave velocity and density were very sensitive to pore-fluid variations. Subsequently, 

AVA stochastic inversion provided high-resolution (1 ms) 3D distribution of lithotypes 

(sand/shale), P-velocity, S-velocity and density. The AVA stochastic-inversion algorithm 

combined the advantages of AVA analysis with those of geostatistical inversion.  This 

inversion algorithm was based on the Markov Chain Monte Carlo (MCMC) method and 

was combined with a Gaussian random field conceptual model. Finally, 3D spatial 

distributions of petrophysical properties (porosity, permeability, and water saturation) 

were constructed by co-simulating the AVA stochastic inversion using multivariate 

statistics. The pre-stack stochastic inversion provided improved vertical resolution and 

more realistic results than those achieved by the deterministic inversion. Moreover, the 

combination of AVA sensitivity analysis techniques and pre-stack stochastic inversion 

can significantly help reduce risks related to field development. 
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McCrank et al. (2009) applied geostatistical inversion to identify thinly-bedded 

Ardley coal in west-central Alberta. The gross thickness of coal in the area of interest 

varied from 3-10 m, thinner than seismic resolution. The inverted acoustic impedance 

from a previous deterministic inversion overestimated the coal thickness and did not 

detect thinner coal beds. Geostatistical inversion was therefore carried out to improve the 

inversion resolution and assess model uncertainty. The inversion combined the 

information of seismic data, well data and geostatistics. The inversion provided high-

resolution acoustic impedance volumes that were used for facies estimation. As a result, 

geostatiscal inversion provided more accurate coal thickness estimates and captured the 

range of uncertainty of coal thickness variations away from well control points in the area. 

Contreras et al. (2014) described the joint stochastic inversion of well logs and 3D 

pre-stack seismic data using a Bayesian search criterion implemented with fast Markov-

Chain Monte Carlo (MCMC). The inversion algorithm was successfully applied to a 

deep-water reservoir at Marco Polo Field, located in Green Canyon Block 608, Gulf of 

Mexico. The reservoir consisted of sandy turbidite packages inter-bedded with muddy 

debris flows. Pre-stack stochastic inversion was applied to generate elastic properties (Vp, 

Vs, density) and lithotypes. This was followed by petrophysical co-simulation based on 

the elastic inversion results and well log data. Finally, multiple co-simulation realizations 

provided a statistical tool to assess the non-uniqueness and uncertainty of the results.  

1.3 Objectives of the current study 

1.3.1 To produce multiple highly-detailed elastic property and litho-facies models 

that are consistent with well log data and AVA responses from pre-stack seismic data. 

1.3.2 To combine available subsurface information to obtain the uncertainty range 

of reservoir distribution and elastic properties in the study area. 

1.3.3 To compare the results obtained with geostatistical inversion to standard 

inversion techniques (deterministic inversion).  


