

APPENDIX A

Cardiac mitochondrial function

1. Solutions

a. Mitochondrial isol	ation buf	fer (MI
Sucrose	300	mM
EGTA	0.2	mM
TES	5	mM
рН 7.2	Juni	
b. Respiration buffer KCl	for mitoo 150	chondria mM
HEPES	5	mM
K ₂ HPO ₄ .3H ₂ O	2	mM
C5H8NNaO4.xH2O	5	mM
CH ₃ COCOONa	45 1	mM
рН 7.2		112

c. Respiration buffer for mitochondrial swelling or ROS production (RH)

KClovright ^C b	100	mM	Mai	U	nive	rsit	V
Sucrose	50	mM	0.6	ρ	r v	P	d
HEFES	10	mМ	0.0	~	1. 1		
KH ₂ PO ₄	5	mM					
pH 7.4							

2. Cardiac mitochondria isolation

Ventricular tissue in 8 ml cold isolated buffer in homogenate tube

↓ Centrifuge it at 800 g at 4°C for 5 min Ţ Keep the supernatant and separated tube for RH or RB solution RH tube RB tube Centrifuge it at 8,800 g at 4°C for 5 min Keep pellet and added 2ml isolated buffer L Centrifuge it at 8,800 g at 4°C for 5 min Keep pellet and added 1 ml of each RES buffer 50 µl of each tube added 1 ml BCA reagent Incubated at 60°C for 30 min in water bath Measured 562 nm by spectrophotometer by Chiang Mai University Calculated protein concentration and added each RES buffer for final concentration 0.4 mg/ml

3.	Cardiac	mitochondrial	ROS	production
----	---------	---------------	-----	------------

Well plate	Blank	М
Sample	-	150 µl
RES buffer (RH)	150 μl	-
DI	30 µl	30 µl
DCFH-DA dye	20 µl	20 µl

Incubated at room temperature for 20 min

4

Measured at 485/ 530 nm by microplate reader

4. Cardiac mitochondrial membrane potential

76.18*		
Well plate	Blank	М
Sample	MAC	150 μΙ
RES buffer (RB)	150 µl	\$\$`// -
DI	30 µl	30 µl
JC-1 dye	20 µl	20 µl

Cover and Incubated at 37°C for 20 min ↓

Measured at 485/530 and 485/590 nm by microplate reader

5. Cardiac mitochondrial swelling

Well plate	Blank	М
Sample	-	150 µl
RES buffer (RH)	150 µl	-
DI	50 µl	50 µl

Measured at 540 nm by microplate reader

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

APPENDIX B

Western blot technique

- 1. Solutions 1.1 Extraction buffer (stock solution) 1.1.1 Tris (1M; pH 6.8) Tris 15.76 g <100 ml ddH₂O Add ddH₂O until reach 100 ml and adjust pH to 6.8. 1.1.2 NaF (1M) 41.98 NaF g ddH₂O 100 ml 1.1.3 Na₃VO₄ (100 mM) 1.8391 g Na₃VO₄ <100 ml ddH₂O Add H₂O until reach 100 ml and adjust pH to 9.0. 1.2 Extraction buffer (working solution; prepare from stock solution) Tris (20 mM) 200 μl NaF (5mM) 50 μl Na₃VO₄ (100 mM) 1 ml ddH₂O 17.5 ml
 - Protease inhibitor tables 1 tab/10ml

1.3 2X SDS Sample buffer

Glycerol	2	ml
SDS	6	g
Tris	1.4	g

Make up to 100 ml with ddH₂O.

Before use, add 100 μ l of mercaptoethanol (10%), 900 μ l of 2X sample buffer and 5 μ l of bromophenol blue (8% in Ethnol).

1.4 SDS-PAGE gel solutions

ยนด 1.4.1 Polyacrylamide gel solution

505-1	AUI	2 ger solutions	124	5	
1.4.1	Pol	yacrylamide gel soluti	on	2	5.
	1)	Resolving gel (1.5 M	I Tris; ().4% SE	DS; pH to 8.8 with HCl)
	12	SDS	2.0	g	13
	NQ.	Tris	90.9	g	
	SR	ddH ₂ O	300	ml	582
	-203	Add ddH2O until 500) ml an	d adjust	pH to 8.8
	2)	Stacking gel (0.5 M	Tris; 0.4	4% SDS	S; pH to 6.8 with HCl)
	15	SDS	2.0	G	15
	1	Tris	30.25	g	All
		ddH ₂ O	300	ml	\$2///
		Add ddH ₂ O until rea	ch 500	ml and	adjust pH to 6.8
	3)	10% Ammonium pers	sulfate		
ลิสร์		Ammonium persulfa	te	1 (1)	เรียกใหม่
6101		ddH ₂ O		10	ml
Cop	yrı	Polyacrylamide gels	were n	nade de	pending on the concentration
AI		according to table.	- I'	es	erved

Reagent	10%	15%	4% Stacking gel
MW of trget protein	>80	<30	-
ddH ₂ O (ml)	5	3	3.5
30% Acrylamide (ml)	4	6	1
1.5 M tris-HCl (pH 8.8) (ml)	3	3	-
0.5 M tris-HCl (pH 6.8) (ml)	-	-	1.5
10% Ammonium persulfate (μ l)	60	50	50
TEMED (µl)	15	15	5
0.0	ปมอห่	9 91	

1.5 Ponceau S Staining solution (0.1% (w/v) Ponceau S in 5% (v/v) acetic acid) This is a reversible staining method to locate protein bands on Western blots.

	Ponceau S	×,	g	
	Glacial acetic acid (100%)	50	ml	542
	Add ddH2O until reach 1000 ml	í. X		TOP
1.6	Running buffer (10X)	1 k	1.1	200
	Tris	30.3	g A	. //
	Glycine	144.2	g	
	SDS 41 U	10	g	
	Add ddH2O until reach 1000 ml			
	To make 1X Running buffer; ad	d 100 m	l of 10X Ru	nning buffer and 900 ml
	of ddH ₂ O.		0010	oomu
17	Transfer buffer (10X)	iang	Mai U	niversity
1.7	Tris	30.3	ese g	rved
	Glycine	144.2	g	
	Add ddH ₂ O until reach 1000 ml			
	To make 1X Transfer Buffer; ad	ld 100 m	nl of 10X Tra	unsfer Buffer to 200 ml
	of methanol and 700 ml of ddH ₂	$_{2}O$		

1.8 TBS buffer (10X)

Tris24.2gNaCl80g

To make 1X TBST; add 100 ml of 10X TBS to 900 ml of ddH2O and 1 ml of Tween-20.

1.9 Blocking buffer

1X TBST100mlSkimmed Milk powder5g1.10 Antibody dilution buffer100ml1X TBST100mlSkimmed Milk powder1g

2. Sample preparation

Frozen heart samples were homogenized with extraction buffer (Add 1 ml of extraction buffer/ 100 mg sample)

Centrifuged at 13,000 rpm for 10 minutes at 4°C

L

Collect supernatant and add 2X SDS Sample buffer (1:1)

Boil 95°C, 10 min

3. SDS-Acrylamide gel preparation

Clean loading gel glass with 70% Ethanol

Load the 10% or 15% separating gel, fill the space above the gel with isopropanol, and leave it for 30 min

 \downarrow After gel is set, discard isopropanol, wash with ddH₂O

Add 4% stacking gel, place comb, and leave it for 15 min

L

After gel is set, move gels into electrophoresis chamber, and add 1X running

buffer

4. Immunolotting

Add 10μ l of Protein ladder and 20μ l of protein sample/well

Ţ

Run gel at constant voltage of 90 Volts for initial 10 min and increase the voltage to 120 Volts for approximately 2 h until the protein touch the end of the gel

Transfer gel to mitocellulose membrane at 100 Volts, 1 h (sponge-blotting paper-gel-membrane-blotting paper-sponge)

Check transfer by straining membrane with Ponceau S for 5 min, wash with ddH2O follow by 1X TBST until red band disappear

Ţ

Block membrane with 5% milk in 1X TBST for 1 hour on an orbital shaker

Discard the blocking solution, add primary antibody 1:1000 with 1% milk in 1X

TBST, and incubate overnight at 4°C

Wash membrane with 1X TBST 5 min, 4 times

Add anti-rabit IgG conjugate HRP in TBST for 1 hour on an orbital shaker

Wash membrane with 1X TBST 5 min, 6 times

5. ECL exposure

Immerse the membrane in ECL reagent mixed with 1:1 for 1 min at room

temperature ↓

Adjust exposure time according to the signal strength and specificity

.

Protein was exposed by ChemiDocTM Touch Imaging System

APPENDIX C

Determination of cardiac MDA level

Reagents		
Phosphate buffer	. 9	ามยนุต์
NaH ₂ PO ₄ 2H ₂ 0	712	mg
H ₂ PO ₄	68	
ddH ₂ O	1000	m g 3
Phosphoric acid	~	A A A A A A A A A A A A A A A A A A A
H ₃ PO ₄	30	ml
ddH ₂ O	970	ml
10% TCA in 50 ppm BHT		AKL S
TCA	100	g
BHT	50	mg
ddH2O	1000	m UNIVER
50 ppm BHT in methanol		
BHTAJANS	50	า _{mg} ิทยาลัยเชียงไหม
Methanol	1000	ymChiang Mai University
0.6% TBA in ddH ₂ O	i g l	nts reserved
TBA	6	g
ddH ₂ O	1000	ml
MDA standard		
MDA stock solution	100	ml
ddH ₂ O	9900	ml

Mobile phase for MDA determination

CURRICULUM VITAE

Author's Name	Mr. Watthana Nuntaphum				
Date of birth	February 15, 1993				
Place of Birth	Chiang	g Mai Province, Thailand			
Education	2014	B.Sc. (Physical Therapy)			
	1/2	Chiang Mai University, Chiang Mai, Thailand			
	2010	High school degree from Yupparaj Wittayalai School			
	§./	Chiang Mai, Thailand			
Professional license	2015	Present Physical Therapy (PT), Thailand			
Honors and awards:	号				
December 2016	Oral P	resentation Award, the Physiological society of Thailand			
	confere	ence 2016 (PSTC2016), Empress Hotel Chiang Mai,			
	Thaila	nd			
Peer reviewed abstra	act	MALIDUNERSL			

Peer reviewed abstract

Shinlapawittayatorn K, Nuntaphum W, Tanajak P, Thummasorn S, Khamseekaew J, Wongjaikam S, Chattipakorn S and Chattipakorn N., Vagus Nerve Stimulation Requires both Ipsilateral and Contralateral Efferent Vagal Activity to Fully Provide its Cardioprotection Against I/R Injury. J Am Coll Cardiol 2017;69(11):50 Suppl. (Impact rights reserved Factor = 17.759)

MAI

Peer-review Articles

Nuntaphum W, Pongkan W, Wolovengjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, Chattipakorn S, Intachai N, Chattipakorn N and Shinlapawittayatorn K. Vagus Nerve Stimulation Protects the Heart Against Ischemia /Reperfusion Injury Predominantly Through its Efferent Vagal Fibers. Basic Res Cardiol. 2018 May 9;113(4):22. (Impact Factor = 5.306)

Conference abstract

Nuntaphum W, Tanajak P, Thummasorn S, Khamseekaew J, Wongjaikam S, Chattipakorn C, Chattipakorn N and Shinlapawittayatorn K., Vagus Nerve Stimulation Protects the Heart Against Ischemia /Reperfusion Injury Predominantly Through its Efferent Vagal Fibers. *International Graduate Research Conference (iGRC)* 2016

Scientific abstract participation at international meeting

February 2017The International Graduate Research Conference (iGRC 2016),
Empress Hotel Chiang Mai, Thailand

Scientific abstract participation at national meeting

December 2016	The Physiological society of Thailand conference 2016
	(PSTC2016), Empress Hotel Chiang Mai, Thailand

May 2017 Research Day, Department of Physiology, Faculty of Medicine, Chiang Mai University Chiang Mai, Thailand

สิทธิ์มหาวิทยาลัยเชียงใหม่ opyright[©] by Chiang Mai University \ I I rights reserved