CHAPTER 2

Preliminaries

In this chapter, we give here the definitions, main theory, and some necessary nota-

tions that will be used throughout this thesis.

2.1 Special Functions of the Fractional Calculus

In this section, we introduce some basic theory of the special functions which are
used in the fractional calculus. Some informations on the most important functions as
the gamma function and the Mittag-Leffler function are provided. These functions play a

crucial role in the theory of fractional differential equations.

Definition 2.1.1. (Gamma Function [1]) Let z € C. The gamma function I'(z) is
defined by the integral

o0

[(z2) = / e~ 't*7ldt, Re(z) > 0. (2.1.1)

0

This function is generalization of a factorial in the following form:
I(z+1) = 2T'(2), (2.1.2)
which can be easily proved by integrating by parts
o0
Nz+1)= / e Mtrdt = [— e_ttz}
0

Obviously, I'(1) = 1, and using (2.1.2) we obtained

t=00

[e.e]
+ z/ e ' ldt = 2T (2).
t=0 0

'n+1)=n-T(n)=n-(n—1) =n!, wheren € N.

Definition 2.1.2. (Mittag-Leffler Function [1]) The Mittag-Leffler function is gener-
alization of the exponential function. The one-parameter Mittag-Lefller function is defined
as

Zk

Euo(z) = RS ) C. 2.1.
(2) kzof(akJrl) a>0, z¢€ (2.1.3)
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The two-parameter of the Mittag-Leffler function is defined as

ang(Z) = kZ:O m, OK,B > 0, z e C. (214)

2.2 Definition of the Caputo Fractional Derivative

In this section, we present the derivative of the Caputo definitions and give some

necessary properties that are used in our study.

Definition 2.2.1. (Caputo Fractional Derivative [1]) For a function f € C™ given on

the interval [to, 00]. Suppose that a > 0 and ¢ > ¢y where «, tp,t € R, and n € N. Then

P
L )/ fT)() dr ,n—-1<a<n,

,

F(n —a (t 'y a+l—n
t
GDRf(t) = ’ (2.2.1)
dTL
Wf(t) , =T,

is called the Caputo fractional derivative of order «.

Remark 2.2.2. ([1]) For o« — n the Caputo derivative becomes a conventional n-th

derivative of the function f(t).

Some properties of the Caputo differential operator which are most frequently used
in applications are presented as the following.
(i) Linearity property ([19]) Let f(t), g(t) : [a,b] — R be such that { D f(t) and
& D g(t) exist and let Ay, Ao € R. Then, { Df*(A f(t) + Aag(t)) exists, and

IDEAFE) + Xag(t) =M1 SDEF(E) + Ao & Dig(t).

(ii) Caputo derivative of a constant ([1]) The Caputo derivative for a constant function
f(t) = c is zero, that is,

Cna,
toDic=0.

2.3 Stability Theorems of Fractional Differential Equations

In the beginning of this section, we discuss some considerable definitions and theories

that we use for studying stability of fractional order systems.

Definition 2.3.1. (Piecewise Continuous [61]) Let f : [a,b] — R be such that it is
continuous in [a,b] except for a finite number of points, at each of which f has jump

discontinuity. Then f is said to be piecewise continuous in [a, b].



Definition 2.3.2. (Locally Lipschitz Continuous [62]) The function f(¢,z) : RxR"™ —
R™ is said to be locally Lipschitz continuous in x if for some h > 0 there exists L > 0 such

that
[f(t,z1) — f(t,22)|| < Lflz1 — 22 (2.3.1)

for all 21, x9 € B, = {x € R" | ||z|| < h}, t > to. The constant L is called the Lipschitz
constant. A definition for globally Lipschitz continuous functions follows by requiring the

equation (2.3.1) to hold for =1, =3 € R™.

Theorem 2.3.3. ([63]) Let Q@ C R™. If a function f(t,z) : R x R™ — R"™ be continuously

differentiable on [tg,T] x  and assume that the derivative of f satisfies

of
[5e

on [to, T] x Q. The f is locally Lipschitz continuous on Q with constant L.

<L (2.3.2)

Theorem 2.3.4. (Locally Bounded [64]) If M is a metric space and f: X — M is a

continuous function, then f is locally bounded.

Definition 2.3.5. ([65]) A scalar continuous function W (z) is said to be locally positive
definite if W(0) = 0 and in a ball B, = {z € R" |||z| < r}

z#0=W(z)>0.

If W(0) = 0 and the above property holds for the whole state space, then W (z) is said to

be globally positive definite.

Next, we move to the part of stability theory, which is used for analysis in our main

study. Let’s consider the following fractional order system
LDfa(t) = f(t ), (2.3.3)

with initial condition z(tp), where o € (0, 1), f : [tg,00) x © — R" is piecewise continuous
in ¢ and locally Lipschitz in x on [tp, 00) x Q, and © C R” is a domain that contains the

origin z = 0.

Definition 2.3.6. ([49]) The constant z* is an equilibrium point of Caputo fractional

order system (2.3.3), if and only if f(¢,2*) = 0.

Remark 2.3.7. ([49]) Any equilibrium point x* can be shifted to the origin of R™; i.e.
x* = 0 via a change of variables. Suppose the equilibrium point for (2.3.3) is x* # 0 and

consider the change of variable y = x — x*. The ath order derivative of y is given by

Dy = (D (x — a*) = { Djfx — { Dfa* = f(t,2) = f(t,y +2") = g(t,y).



Since f(t,x*) =0 and f(t,z) = g(t,y), where y = x — x*. Replacing x by x* then we have

g(t,0) = 0 and in new variable y, the system has equilibrium at the origin.

Remark 2.3.8. ([1]) For the system (2.3.3), if f(t,x) is the locally bounded and is locally
Lipschitz with respect to x, then implies the existence and uniqueness of the solution to

the Caputo fractional order system (2.3.3) on [tp, 00) x .

Definition 2.3.9. ([66]) For the system described by (2.3.3).

(i) * = 0 is said to be stable if for any ¢y € R and any € > 0, there exists a 6 = §(tg,e) > 0
such that ||z (to)|| < d implies ||z(t)|| < € for all ¢ > .

(ii) * = 0 is said to be asymptotically stable if it is stable and for any ¢ty € R and any
e > 0, there exists a d, = d4(to, ) > 0 such that ||z(to)|| < d, implies tlggo |lz(t)]] = 0.
(iii) * = 0 is said to be uniformly stable if it is stable and 6 = d(¢) > 0 can be chosen
independently of tg.

(iv) * = 0 is uniformly asymptotically stable if it is uniformly stable and there exists a
dq > 0, independent of ty, such that, if ||z(¢o)|| < d then tll)rglo |lz(t)]] = 0.

(v) * = 0 is globally (uniformly) asymptotically stable if it is (uniformly) asymptotically

stable and 0, can be an arbitrary large, finite number.

Theorem 2.3.10. (/37]) The equilibrium points x* of system (2.3.3) are locally asymp-

totically stable if all eigenvalues \;, © = 1,...,n of the Jacobian matrix J = % evaluated

at the equilibrium points satisfy: |arg(A;)| > .

Definition 2.3.11. (Lyapunov Function [67]) Let 2* =0 € D C R" be an equilibrium

point. Let V : D — R be a continuously differentiable function such that
V(0)=0 and V(z) >0, Vze D\{0},
V<0, VxeD.
Then V is called a Lyapunov function.
Theorem 2.3.12. (Uniform Asymptotic Stability Theorem [5]]) Let x* =0 be an
equilibrium point of the system (2.3.3) and Q C R™ be a domain containing z* = 0. Let
V(t,x) : [tg,00) X Q& — R be a continuously differentiable function such that
Wi(x) < V(t,x) < Wa(x), (2.3.4)
and  § DV (t,z) < —Ws(x), (2.3.5)

with Yt > 0, Vo € Q, and 0 < a < 1, where Wy(zx), Wa(z) and W3(x) are continuous

positive definite functions on Q. Then x* = 0 is uniformly asymptotically stable.



The above theorem applies to the local analysis of stability. In order to assert the
global uniform asymptotic stability of a system, one might naturally expect that the ball
B, in the above local theorem has to be expanded to be the whole state space. This is
indeed necessary, but it is not enough. An additional condition on the function V' has to
be satisfied: V(x) must be radially unbounded, by which we mean that V(z) — oo as
|z|| — oo (in other words, as x tends to infinity in any directions) [65, 68].

We present some informations which are essentially used in analysis of the stability

via the Lyapunov’s direct method as the following.

Theorem 2.3.13. ([57]) Let x(t) € Ry be a continuous and derivable function. Then,

for any time instant t > tg

o Df (w(t) —2*—2*In T) < <1 - ﬁt)) O pea(t), (2.3.6)

where z* € Ry and Vo € (0,1).

Lemma 2.3.14. ([69]) Suppose that f(t) € Clto, T], the solution to the Caputo differential
equation

tCoD?J:(t) = Az (t) + f(t), (2.3.7)

x(to) = xt,,

with 0 < a <1 and X € R has the form

2(t) = 2(to) Ea Mt — t0)*) + / (t = 10)° Baa(Mt — 7)) f(7)dr.

Lemma 2.3.15. ([70]) Let x(t) be a continuous function on [tg, +00) and satisfying

¢ Dga(t) < Aa(t),

(2.3.8)
z(to) = Lo s
where 0 < a < 1, A € R and ty is the initial time. Then
z(t) < gy Ea(A(t — t0)%).
Lemma 2.3.16. Let x(t) be a continuous function on [ty, +00) and satisfying
CDax(t) > Ax(t),
i D (t) = Ax(t) 23.9)

x(to) = Ty,

where 0 < a < 1, A € R and ty is the initial time. Then

x(t) > ey Ea (At — t9)Y).



Proof. There exists a nonnegative continuous function m(t) satisfying

ngx(t) = Az(t) + m(t), (2.3.10)
I(to) = Ttqy-

According to Lemma 2.3.14, the solution of the system (2.3.10) can be written as

z(t) =zt Ea (Mt — t0)®) + /t(t —t0)* L Eq 0\t — T))m(r)dr, t>ty.  (2.3.11)

to
Since Eq o(z) > 0for 0 < o < 1 and x € R [71], m(t) is a nonnegative continuous function,

it follows from (2.3.11) that
2(t) > 21, Ba (Mt — t0)®), t > to.

This complete the proof. O



