
CHAPTER 2

Preliminaries

In this chapter, we give here the definitions, main theory, and some necessary nota-

tions that will be used throughout this thesis.

2.1 Special Functions of the Fractional Calculus

In this section, we introduce some basic theory of the special functions which are

used in the fractional calculus. Some informations on the most important functions as

the gamma function and the Mittag-Leffler function are provided. These functions play a

crucial role in the theory of fractional differential equations.

Definition 2.1.1. (Gamma Function [1]) Let z ∈ C. The gamma function Γ(z) is

defined by the integral

Γ(z) =

∫ ∞

0
e−ttz−1dt, Re(z) > 0. (2.1.1)

This function is generalization of a factorial in the following form:

Γ(z + 1) = zΓ(z), (2.1.2)

which can be easily proved by integrating by parts

Γ(z + 1) =

∫ ∞

0
e−ttzdt =

[
− e−ttz

]t=∞

t=0

+ z

∫ ∞

0
e−ttz−1dt = zΓ(z).

Obviously, Γ(1) = 1, and using (2.1.2) we obtained

Γ(2) = 1 · Γ(1) = 1 = 1!

Γ(3) = 2 · Γ(2) = 2 · 1! = 2!

...
...

...

Γ(n+ 1) = n · Γ(n) = n · (n− 1)! = n!, where n ∈ N.

Definition 2.1.2. (Mittag-Leffler Function [1]) The Mittag-Leffler function is gener-

alization of the exponential function. The one-parameter Mittag-Leffler function is defined

as

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C. (2.1.3)

4



The two-parameter of the Mittag-Leffler function is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α, β > 0, z ∈ C. (2.1.4)

2.2 Definition of the Caputo Fractional Derivative

In this section, we present the derivative of the Caputo definitions and give some

necessary properties that are used in our study.

Definition 2.2.1. (Caputo Fractional Derivative [1]) For a function f ∈ Cn given on

the interval [t0,∞]. Suppose that α > 0 and t > t0 where α, t0, t ∈ R, and n ∈ N. Then

C
t0D

α
t f(t) =



1

Γ(n− α)

t∫
t0

f (n)(τ)

(t− τ)α+1−ndτ , n− 1 < α < n,

dn

dtn
f(t) , α = n,

(2.2.1)

is called the Caputo fractional derivative of order α.

Remark 2.2.2. ([1]) For α → n the Caputo derivative becomes a conventional n-th

derivative of the function f(t).

Some properties of the Caputo differential operator which are most frequently used

in applications are presented as the following.

(i) Linearity property ([19]) Let f(t), g(t) : [a, b] → R be such that C
t0D

α
t f(t) and

C
t0D

α
t g(t) exist and let λ1, λ2 ∈ R. Then, C

t0D
α
t (λ1f(t) + λ2g(t)) exists, and

C
t0D

α
t (λ1f(t) + λ2g(t)) = λ1

C
t0D

α
t f(t) + λ2

C
t0D

α
t g(t).

(ii) Caputo derivative of a constant ([1]) The Caputo derivative for a constant function

f(t) = c is zero, that is,

C
t0D

α
t c = 0.

2.3 Stability Theorems of Fractional Differential Equations

In the beginning of this section, we discuss some considerable definitions and theories

that we use for studying stability of fractional order systems.

Definition 2.3.1. (Piecewise Continuous [61]) Let f : [a, b] → R be such that it is

continuous in [a, b] except for a finite number of points, at each of which f has jump

discontinuity. Then f is said to be piecewise continuous in [a, b].

5



Definition 2.3.2. (Locally Lipschitz Continuous [62]) The function f(t, x) : R×Rn →

Rn is said to be locally Lipschitz continuous in x if for some h > 0 there exists L > 0 such

that

∥f(t, x1)− f(t, x2)∥ ≤ L∥x1 − x2∥ (2.3.1)

for all x1, x2 ∈ Bh = {x ∈ Rn | ∥x∥ < h}, t ≥ t0. The constant L is called the Lipschitz

constant. A definition for globally Lipschitz continuous functions follows by requiring the

equation (2.3.1) to hold for x1, x2 ∈ Rn.

Theorem 2.3.3. ([63]) Let Ω ⊂ Rn. If a function f(t, x) : R×Rn → Rn be continuously

differentiable on [t0, T ]× Ω and assume that the derivative of f satisfies∥∥∥∥∂f∂x (t, x)
∥∥∥∥ ≤ L (2.3.2)

on [t0, T ]× Ω. The f is locally Lipschitz continuous on Ω with constant L.

Theorem 2.3.4. (Locally Bounded [64]) If M is a metric space and f : X → M is a

continuous function, then f is locally bounded.

Definition 2.3.5. ([65]) A scalar continuous function W (x) is said to be locally positive

definite if W (0) = 0 and in a ball Br = {x ∈ Rn |∥x∥ < r}

x ̸= 0 ⇒ W (x) > 0.

If W (0) = 0 and the above property holds for the whole state space, then W (x) is said to

be globally positive definite.

Next, we move to the part of stability theory, which is used for analysis in our main

study. Let’s consider the following fractional order system

C
t0D

α
t x(t) = f(t, x), (2.3.3)

with initial condition x(t0), where α ∈ (0, 1), f : [t0,∞)×Ω → Rn is piecewise continuous

in t and locally Lipschitz in x on [t0,∞) × Ω, and Ω ⊂ Rn is a domain that contains the

origin x = 0.

Definition 2.3.6. ([49]) The constant x∗ is an equilibrium point of Caputo fractional

order system (2.3.3), if and only if f(t, x∗) = 0.

Remark 2.3.7. ([49]) Any equilibrium point x∗ can be shifted to the origin of Rn; i.e.

x∗ = 0 via a change of variables. Suppose the equilibrium point for (2.3.3) is x∗ ̸= 0 and

consider the change of variable y = x− x∗. The αth order derivative of y is given by

C
t0D

α
t y = C

t0D
α
t (x− x∗) = C

t0D
α
t x− C

t0D
α
t x

∗ = f(t, x) = f(t, y + x∗) = g(t, y).
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Since f(t, x∗) = 0 and f(t, x) = g(t, y), where y = x−x∗. Replacing x by x∗ then we have

g(t, 0) = 0 and in new variable y, the system has equilibrium at the origin.

Remark 2.3.8. ([1]) For the system (2.3.3), if f(t, x) is the locally bounded and is locally

Lipschitz with respect to x, then implies the existence and uniqueness of the solution to

the Caputo fractional order system (2.3.3) on [t0,∞)× Ω.

Definition 2.3.9. ([66]) For the system described by (2.3.3).

(i) x∗ = 0 is said to be stable if for any t0 ∈ R and any ε > 0, there exists a δ = δ(t0, ε) > 0

such that ∥x(t0)∥ < δ implies ∥x(t)∥ < ε for all t ≥ t0.

(ii) x∗ = 0 is said to be asymptotically stable if it is stable and for any t0 ∈ R and any

ε > 0, there exists a δa = δa(t0, ε) > 0 such that ∥x(t0)∥ < δa implies lim
t→∞

∥x(t)∥ = 0.

(iii) x∗ = 0 is said to be uniformly stable if it is stable and δ = δ(ε) > 0 can be chosen

independently of t0.

(iv) x∗ = 0 is uniformly asymptotically stable if it is uniformly stable and there exists a

δa > 0, independent of t0, such that, if ∥x(t0)∥ < δa then lim
t→∞

∥x(t)∥ = 0.

(v) x∗ = 0 is globally (uniformly) asymptotically stable if it is (uniformly) asymptotically

stable and δa can be an arbitrary large, finite number.

Theorem 2.3.10. ([37]) The equilibrium points x∗ of system (2.3.3) are locally asymp-

totically stable if all eigenvalues λi, i = 1, ..., n of the Jacobian matrix J = ∂f
∂x evaluated

at the equilibrium points satisfy: |arg(λi)| > απ
2 .

Definition 2.3.11. (Lyapunov Function [67]) Let x∗ = 0 ∈ D ⊂ Rn be an equilibrium

point. Let V : D → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0, ∀x ∈ D\{0},

V̇ < 0, ∀x ∈ D.

Then V is called a Lyapunov function.

Theorem 2.3.12. (Uniform Asymptotic Stability Theorem [54]) Let x∗ = 0 be an

equilibrium point of the system (2.3.3) and Ω ⊂ Rn be a domain containing x∗ = 0. Let

V (t, x) : [t0,∞)× Ω → R be a continuously differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x), (2.3.4)

and C
t0D

α
t V (t, x) ≤ −W3(x), (2.3.5)

with ∀t ≥ 0, ∀x ∈ Ω, and 0 < α < 1, where W1(x), W2(x) and W3(x) are continuous

positive definite functions on Ω. Then x∗ = 0 is uniformly asymptotically stable.
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The above theorem applies to the local analysis of stability. In order to assert the

global uniform asymptotic stability of a system, one might naturally expect that the ball

Br in the above local theorem has to be expanded to be the whole state space. This is

indeed necessary, but it is not enough. An additional condition on the function V has to

be satisfied: V (x) must be radially unbounded, by which we mean that V (x) → ∞ as

∥x∥ → ∞ (in other words, as x tends to infinity in any directions) [65,68].

We present some informations which are essentially used in analysis of the stability

via the Lyapunov’s direct method as the following.

Theorem 2.3.13. ([57]) Let x(t) ∈ R+ be a continuous and derivable function. Then,

for any time instant t ≥ t0

C
t0D

α
t

(
x(t)− x∗ − x∗ ln

x(t)

x∗

)
≤

(
1− x∗

x(t)

)
C
t0D

α
t x(t), (2.3.6)

where x∗ ∈ R+ and ∀α ∈ (0, 1).

Lemma 2.3.14. ([69]) Suppose that f(t) ∈ C[t0, T ], the solution to the Caputo differential

equation 
C
t0D

α
t x(t) = λx(t) + f(t),

x(t0) = xt0 ,
(2.3.7)

with 0 < α < 1 and λ ∈ R has the form

x(t) = x(t0)Eα(λ(t− t0)
α) +

∫ t

t0

(t− t0)
α−1Eα,α(λ(t− τ)α)f(τ)dτ.

Lemma 2.3.15. ([70]) Let x(t) be a continuous function on [t0,+∞) and satisfying
C
t0D

α
t x(t) ≤ λx(t),

x(t0) = xt0 ,
(2.3.8)

where 0 < α < 1, λ ∈ R and t0 is the initial time. Then

x(t) ≤ xt0Eα(λ(t− t0)
α).

Lemma 2.3.16. Let x(t) be a continuous function on [t0,+∞) and satisfying
C
t0D

α
t x(t) ≥ λx(t),

x(t0) = xt0 ,
(2.3.9)

where 0 < α < 1, λ ∈ R and t0 is the initial time. Then

x(t) ≥ xt0Eα(λ(t− t0)
α).
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Proof. There exists a nonnegative continuous function m(t) satisfying
C
t0D

α
t x(t) = λx(t) +m(t),

x(t0) = xt0 .
(2.3.10)

According to Lemma 2.3.14, the solution of the system (2.3.10) can be written as

x(t) = xt0Eα(λ(t− t0)
α) +

∫ t

t0

(t− t0)
α−1Eα,α(λ(t− τ)α)m(τ)dτ, t ≥ t0. (2.3.11)

Since Eα,α(x) > 0 for 0 < α < 1 and x ∈ R [71], m(t) is a nonnegative continuous function,

it follows from (2.3.11) that

x(t) ≥ xt0Eα(λ(t− t0)
α), t ≥ t0.

This complete the proof.
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