
CHAPTER 3

Model Description

In this chapter, we present alternative representations of the two-species facultative

mutualism models with harvesting in the form of the Caputo fractional derivatives.

The system of ordinary differential equations for the two-species facultative mutual-

ism model introduced by Robert May [47]. In this thesis, we are interested in two special

cases of two-species facultative mutualism models, which are presented as the following.

A first model of facultative mutualism [72–75] with adding a harvesting effort spe-

cific to the population is described by a system of ordinary differential equations (1.0.3),

which can be written in this form
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(3.0.1)

The following system is another basic model [72, 74, 76] subject to proportional

harvesting [48] 
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By the systems (3.0.1) and (3.0.2), we replace the integer order derivatives with

fractional order Caputo derivatives. Then, we obtain the following generalized Caputo

fractional models 
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(3.0.3)
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and


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Both of the systems (3.0.3) and (3.0.4) have some flaws as regards to the time

dimension because the left-hand side has the dimension (time)−α, while the right-hand

side has the dimension (time)−1. The correct form of the systems (3.0.3) and (3.0.4) can

be obtained as follows [77]:
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1− êα2

r̂α2

)
− r̂α2 x

2
2

K̂2

+
r̂α2 b̂21x1x2

K̂2

,

(3.0.5)

and


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For convenience, we define the parameters, ri = r̂αi , ei = êαi , Ki = K̂i, b12 = b̂12 and

b21 = b̂21 where i = 1, 2. Then, we obtain the following modified systems
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
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with initial conditions x1(t0) = x10 and x2(t0) = x20, where all the model parameters are

assumed to be positive.
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3.1 Existence and Uniqueness

The possible region of the models (3.0.7) and (3.0.8) is defined as the non-negative

quadrant

R2
+ =

{
x = (x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0

}
.

From the systems (3.0.7) and (3.0.8), it is clear that fi, gi,
∂fi
∂xi

and ∂gi
∂xi

for i = 1, 2

are continuous in R2
+. By following the Theorems 2.3.3 and 2.3.4, it can be deduced

that f = (f1, f2) and g = (g1, g2) satisfies the local Lipschitz condition with respect to

x = (x1(t), x2(t)) in R2
+ and locally bounded, respectively. Therefore, by Remark 2.3.8,

the systems (3.0.7) and (3.0.8) have a unique solution in R2
+.

3.2 Non-Negative Solution

Theorem 3.2.1. If x1(t0) ≥ 0 and x2(t0) ≥ 0, then there is a unique solution x(t) to the

Caputo fractional order model (3.0.7) on t ≥ t0 and the solution remains in R2
+.

Proof. In section 3.1, a uniqueness solution of x(t) to the system (3.0.7) is obtained. Thus,

it only needs to be proved that the solution x(t) = (x1(t), x2(t)) remains in R2
+.

Let x(t0) = (x1(t0), x2(t0)) in R2
+ be the initial solution of the system (3.0.7). By

contradiction, suppose that there exists a solution x(t) that lies outside of R2
+. The

consequence is that x(t) crosses the x1 axis or x2 axis. Now we have to consider two cases.

Case 1: If the solution x(t) passes through the x2 axis, then there exists t∗ such that

t∗ ≥ t0 and x1(t
∗) = 0, and there exists t1 sufficiently close to t∗ such that t1 > t∗ and

x1(t) < 0 for all t ∈ (t∗, t1]. From the system (3.0.7), we have
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The above expression may be written as

C
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Consider
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≤ r2x2. (3.2.2)

Using Lemma 2.3.15, the solution x2(t) is

x2(t) ≤ x2(t0)Eα(r2(t− t0)
α), t ∈ [t∗, t1]. (3.2.3)
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Define M = x2(t0)Eα(r2(t − t0)
α), that is, M ≥ 0 [71]. From the equation (3.2.1), we

obtain

C
t0D

α
t x1 ≥ (r1 − e1 +

r1b12
K1

M)x1 −Nx21. (3.2.4)

Since t1 can be chosen to be arbitrarily close to t∗, then x1(t) ≤ −x21(t) for all t ∈ [t∗, t1].

So, the following is obtained:

C
t0D

α
t x1 ≥ (r1 − e1 +

r1b12
K1

M +N)x1. (3.2.5)

Using the result in Lemma 2.3.16 in the above inequality (3.2.5), then the solution is

x1(t) ≥ x1(t0)Eα((r1 − e1 +
r1b12
K1

M +N)(t− t0)
α), t ∈ [t∗, t1]. (3.2.6)

Thus, x1(t) ≥ 0 for any t ≥ t0, which contradicts the assumption.

Case 2: It is considered that the solution x(t) passed through the x1 axis. Because

the second equation of the system (3.0.7) has the same form as the first equation; the

proof for Case 2 is similar to the proof in the previous case.

Therefore, it can be concluded that the solution x(t) of the system (3.0.7) lies within

R2
+.

Theorem 3.2.2. If x1(t0) ≥ 0 and x2(t0) ≥ 0, then there is a unique solution x(t) to the

Caputo fractional order model (3.0.8) on t ≥ t0 and the solution remains in R2
+.

Proof. From the section 3.1, we already get a uniqueness solution of x(t) to the system

(3.0.8). So, it suffices to prove that the solution x(t) = (x1(t), x2(t)) remains in R2
+.

Let x(t0) = (x1(t0), x2(t0)) in R2
+ be the initial solution of the system (3.0.8). Proof-

ing by contradiction, suppose that there exists a solution x(t) that lies outside of R2
+. So,

there are two possibilities, that is, x(t) crosses the x1 axis or x2 axis. We shall then con-

sider two cases.

Case 1: If the solution x(t) passes through the x2 axis, then there exists t∗ such that

t∗ ≥ t0 and x1(t
∗) = 0, and there exists t1 sufficiently close to t∗ such that t1 > t∗ and

x1(t) < 0 for all t ∈ (t∗, t1]. From the system (3.0.8), we have
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and it follows that

C
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α
t x1 ≥ (r1 − e1)x1 −Nx21, where N =

r1
K1

. (3.2.7)
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Since t1 can be chosen to be arbitrarily close to t∗, then x1(t) ≤ −x21(t) for all t ∈ [t∗, t1].

The following is obtained:

C
t0D

α
t x1 ≥ (r1 − e1 +N)x1. (3.2.8)

Using the Lemma 2.3.16, the solution is

x1(t) ≥ x1(t0)Eα((r1 − e1 +N)(t− t0)
α), t ∈ [t∗, t1]. (3.2.9)

Thus, x1(t) ≥ 0 for any t ≥ t0, which contradicts the assumption.

Case 2: It is considered that the solution x(t) passed through the x1 axis. It is

easy to see that the second equation of the system (3.0.8) has the same form as the first

equation then the proof for Case 2 is similar to the proof in the previous case.

Hence, the solution x(t) of the system (3.0.8) lies within R2
+.
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