CHAPTER 3

Model Description

In this chapter, we present alternative representations of the two-species facultative
mutualism models with harvesting in the form of the Caputo fractional derivatives.

The system of ordinary differential equations for the two-species facultative mutual-
ism model introduced by Robert May [47]. In this thesis, we are interested in two special
cases of two-species facultative mutualism models, which are presented as the following.

A first model of facultative mutualism [72-75] with adding a harvesting effort spe-
cific to the population is described by a system of ordinary differential equations (1.0.3),

which can be written in this form

)

%1 _ e (1 N fl) _hied | Tibano
dt 1 K K,
(3.0.1)

dl’g e gg ?QCU% ?2[)21:171:62
——=rr|l-=)—-—==+ = :
dt 2 K5 Ko

The following system is another basic model [72, 74, 76] subject to proportional
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By the systems (3.0.1) and (3.0.2), we replace the integer order derivatives with
fractional order Caputo derivatives. Then, we obtain the following generalized Caputo

fractional models
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and
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Both of the systems (3.0.3) and (3.0.4) have some flaws as regards to the time
dimension because the left-hand side has the dimension (time)™®, while the right-hand
side has the dimension (time)~!. The correct form of the systems (3.0.3) and (3.0.4) can
be obtained as follows [77]:
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For convenience, we define the parameters, r; =%, ¢; = €5, K; = K;, bia = b2 and

bo1 = 321 where ¢ = 1,2. Then, we obtain the following modified systems
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with initial conditions z1(ty) = x10 and z2(ty) = x99, where all the model parameters are

assumed to be positive.
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3.1 Existence and Uniqueness

The possible region of the models (3.0.7) and (3.0.8) is defined as the non-negative
quadrant

Ri:{x:($1’l’2)6R2:1}120; 1’220}

From the systems (3.0.7) and (3.0.8), it is clear that f;, g;, % and g—gi fori=1,2
are continuous in Ra_. By following the Theorems 2.3.3 and 2.3.4, it can be deduced
that f = (f1, f2) and g = (g1, 92) satisfies the local Lipschitz condition with respect to
x = (x1(t),x2(t)) in Ri and locally bounded, respectively. Therefore, by Remark 2.3.8,
the systems (3.0.7) and (3.0.8) have a unique solution in R? .

3.2 Non-Negative Solution

Theorem 3.2.1. If z1(tg) > 0 and x2(tg) > 0, then there is a unique solution z(t) to the

Caputo fractional order model (3.0.7) on t > to and the solution remains in R%—'

Proof. In section 3.1, a uniqueness solution of z(t) to the system (3.0.7) is obtained. Thus,
it only needs to be proved that the solution z(t) = (21(t), z2(t)) remains in R?.

Let x(tg) = (x1(to), x2(to)) in R? be the initial solution of the system (3.0.7). By
contradiction, suppose that there exists a solution z(t) that lies outside of ]Ri. The
consequence is that x(t) crosses the 1 axis or x9 axis. Now we have to consider two cases.

Case 1: If the solution z(t) passes through the x5 axis, then there exists t* such that
t* > tg and z1(t*) = 0, and there exists t; sufficiently close to ¢* such that ¢; > t* and
z1(t) < 0 for all ¢t € (t*,t1]. From the system (3.0.7), we have
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The above expression may be written as
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Using Lemma 2.3.15, the solution xa(t) is
(L‘Q(t) < Z‘Q(to)Ea(Tg(t — to)a), te [t*,tl]. (323)
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Define M = xa(to)Eq(r2(t — t9)®), that is, M > 0 [71]. From the equation (3.2.1), we

obtain
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Since t; can be chosen to be arbitrarily close to t*, then x1(t) < —z3(¢) for all t € [t*, ¢1].

So, the following is obtained:
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Using the result in Lemma 2.3.16 in the above inequality (3.2.5), then the solution is

r1b
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) M + N)(t — to)a), T [t*,tl]. (3.2.6)

Thus, x1(t) > 0 for any t > ty, which contradicts the assumption.

Case 2: It is considered that the solution x(t) passed through the z; axis. Because
the second equation of the system (3.0.7) has the same form as the first equation; the
proof for Case 2 is similar to the proof in the previous case.

Therefore, it can be concluded that the solution z(¢) of the system (3.0.7) lies within
R?. O

Theorem 3.2.2. If x1(ty) > 0 and z2(tg) > 0, then there is a unique solution x(t) to the

Caputo fractional order model (3.0.8) on t >ty and the solution remains in R2.

Proof. From the section 3.1, we already get a uniqueness solution of z(t) to the system
(3.0.8). So, it suffices to prove that the solution z(t) = (z1(t), z2(t)) remains in R?.

Let x(to) = (z1(to), z2(to)) in R? be the initial solution of the system (3.0.8). Proof-
ing by contradiction, suppose that there exists a solution z(t) that lies outside of Ri. So,
there are two possibilities, that is, z(¢) crosses the z; axis or z3 axis. We shall then con-
sider two cases.

Case 1: If the solution z(t) passes through the x93 axis, then there exists ¢* such that
t* > to and z1(t*) = 0, and there exists ¢; sufficiently close to t* such that ¢; > ¢* and
z1(t) < 0 for all ¢t € (t*,t1]. From the system (3.0.8), we have

tc;D,?‘xl =ria <1 — 61> — i, for all t € [t*, 1]
1 K1 + bioxa
and it follows that

,
ng‘xl > (ry —ey)x; — Nz?,  where N = ?11 (3.2.7)
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Since t1 can be chosen to be arbitrarily close to t*, then x1(t) < —z3(¢) for all t € [t*, ¢1].

The following is obtained:
tCODtO‘:Ul > (r1 —e1 + N)xy. (3.2.8)
Using the Lemma 2.3.16, the solution is
z1(t) > z1(to) Ea((r1 —e1 + N)(t —t0)®), te[t* ti]. (3.2.9)

Thus, z1(t) > 0 for any t > to, which contradicts the assumption.

Case 2: It is considered that the solution x(t) passed through the x; axis. It is
easy to see that the second equation of the system (3.0.8) has the same form as the first
equation then the proof for Case 2 is similar to the proof in the previous case.

Hence, the solution z(t) of the system (3.0.8) lies within R?. O
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