
CHAPTER 4

Main Results

In this chapter, we investigate the stability of the equilibrium points of the models

(3.0.7) and (3.0.8), which we called them the Model 1 and Model 2, respectively. The local

and global stability of all equilibrium points are analyzed using the linearization method

and the Lyapunov’s direct method.

4.1 Model 1

The equilibrium points of the Model 1 are obtained by solving the system of equa-

tions 

C
t0D

α
t x1 = r1x1

(
1− e1

r1

)
− r1x

2
1

K1
+

r1b12x1x2
K1

= 0,

C
t0D

α
t x2 = r2x2

(
1− e2

r2

)
− r2x

2
2

K2
+

r2b21x1x2
K2

= 0.

(4.1.1)

We derive four equilibrium points as follows:

1. The origin E10(0, 0), which represents extinction of both species.

2. E11(K1A1, 0), where A1 = 1 − e1
r1

, which represents extinction of the second species

(x2). The existence condition of E11 is 0 < e1 < r1.

3. E12(0,K2A2), where A2 = 1− e2
r2

, which represents extinction of the first species (x1).

The existence condition of E12 is 0 < e2 < r2.

4. E13(x
∗
1, x

∗
2), where x∗1 =

A1K1 + b12A2K2

1− b12b21
, and x∗2 =

A2K2 + b21A1K1

1− b12b21
, which is called

the coexistence equilibrium point.

As for the equilibrium points E10, E11 and E12, they are called the non-coexistence

equilibrium points. The existence condition of E13 is presented in the following proposi-

tion.

Proposition 4.1.1. If

b12b21 < 1, 0 < e1 ≤ r1, and 0 < e2 < r2 (4.1.2)

or

b12b21 < 1, 0 < e1 < r1, and 0 < e2 ≤ r2. (4.1.3)
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Then there exists a unique coexisting equilibrium E13(x
∗
1, x

∗
2) of the fractional order system

(3.0.7).

Proof. The proof for this proposition is the same as that for Proposition 2 of reference [78],

which is the proof that there exists a unique coexisting equilibrium point for the integer

order system (3.0.1).

4.1.1 Local stability of non-coexistence equilibrium points

In this subsection, we examine the local stability of the first three-quilibrium points

of the system (3.0.7). The Jacobian matrix of the system is

J(x1, x2) =

r1 − e1 −
2r1x1
K1

+
r1b12x2
K1

r1b12x1
K1

r2b21x2
K2

r2 − e2 −
2r2x2
K2

+
r2b21x1
K2

 . (4.1.4)

Theorem 4.1.2. If r1 < e1 and r2 < e2, then the equilibrium point E10(0, 0) of the

fractional order system (3.0.7) is locally asymptotically stable.

Proof. From (4.1.4), the Jacobian matrix J(E10) is given by:

J(E10) =

r1 − e1 0

0 r2 − e2

 . (4.1.5)

Thus, the eigenvalues of J(E10) are λ1 = r1 − e1 and λ2 = r2 − e2. By the assumptions

of this theorem, it is easily seen that λ1 < 0 and λ2 < 0. Thus |arg λ1| = |arg λ2| =

π. Therefore, according to Theorem 2.3.10, the equilibrium point E10(0, 0) is locally

asymptotically stable.

Theorem 4.1.3. If e1 < r1 and r2 <
e2K2

K2 + b21K1
, then the second species extinction equi-

librium point E11(K1A1, 0) of the fractional order system (3.0.7) is locally asymptotically

stable.

Proof. By using (4.1.4), the Jacobian matrix J(E11) can be obtained as follows:

J(E11) =

e1 − r1 r1b12A1

0 r2 − e2 +
r2b21K1A1

K2

 . (4.1.6)

Solving the characteristic equation: det(λI − J(E11)) = 0 for λ to find the eigenvalues of

J(E11):

(λ− (e1 − r1))(λ− (r2 − e2 +
r2b21K1A1

K2
)) = 0.
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So, the eigenvalues of J(E11) are λ3 = e1 − r1 and λ4 = r2 − e2 +
r2b21K1A1

K2
. By

the assumption, it is clear that λ3 < 0 and λ4 < 0. According to Theorem 2.3.10,

the equilibrium point E11(K1A1, 0) is locally asymptotically stable. This completes the

proof.

Theorem 4.1.4. If r1 <
e1K1

K1 + b12K2
and e2 < r2, then the first species extinction equi-

librium point E12(0,K2A2) of the fractional order system (3.0.7) is locally asymptotically

stable.

Proof. By using (4.1.4), the Jacobian matrix J(E12) can be obtained as follows:

J(E12) =

r1 − e1 +
r1b12K2A2

K1
0

r2b21A2 e2 − r2

 . (4.1.7)

Solving the characteristic equation: det(λI − J(E12)) = 0 for λ to find the eigenvalues of

J(E11):

(λ− (r1 − e1 +
r1b12K2A2

K1
))(λ− (e2 − r2)) = 0.

Hence, the eigenvalues of J(E12) are λ5 = r1 − e1 +
r1b12K2A2

K1
and λ6 = e2 − r2. By the

assumption, we have λ5 < 0 and λ6 < 0. From Theorem 2.3.10, the equilibrium point

E12(0,K2A2) is locally asymptotically stable.

4.1.2 Global stability of positive coexistence equilibrium

In this subsection, we investigate the sufficient conditions for the global uniform

asymptotic stability of the positive coexisting equilibrium for the corresponding fractional

order system (3.0.7) using the Lyapunov function.

Theorem 4.1.5. If one of the following conditions holds:

(i) b12b21 < 1, 0 < e1 ≤ r1, and 0 < e2 < r2,

(ii) b12b21 < 1, 0 < e1 < r1, and 0 < e2 ≤ r2.

Then, the unique interior positive equilibrium E13(x
∗
1, x

∗
2) of the fractional order system

(3.0.7) is globally uniformly asymptotically stable on R2
+.

Proof. We define by V1 :
{
(x1, x2) ∈ R2

+ : x1 > 0, x2 > 0
}
→ R, such that

V1(x1, x2) = c1

∫ x1

x∗
1

θ − x∗1
θ

dθ + c2

∫ x2

x∗
2

θ − x∗2
θ

dθ, (4.1.8)
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where c1 > 0 and c2 =
r1b12K2

r2b21K1
c1. The above equation (4.1.8) can be written in the form

V1(x1, x2) = c1x
∗
1

(
x1
x∗1

− 1− ln
x1
x∗1

)
+ c2x

∗
2

(
x2
x∗2

− 1− ln
x2
x∗2

)
. (4.1.9)

The function V1(x1, x2) is defined, continuous on domain R2
+ and V1(x1, x2) > 0 for all

(x1, x2) ∈ R2
+\(x∗1, x∗2), while V1(x1, x2) = 0 if x1 = x∗1 and x2 = x∗2. Hence, by Definition

2.3.11, we get that V1(x1, x2) is a Lyapunov function. Also, V1(x1, x2) tends to +∞ if

either x1 or x2 tends to 0 or to +∞. These properties mean that V1(x1, x2) is radially

unbounded. According to Theorem 2.3.12, we can pick W1(x) = W2(x) = V1(x), thus

the condition (2.3.4) holds. By applying the linearity property of the Caputo fractional

derivative and using Theorem 2.3.13, we obtain

C
t0D

α
t V1(x1, x2) =

C
t0D

α
t

(
c1

(
x1 − x∗1 − x∗1 ln

x1
x∗1

))
+ C

t0D
α
t

(
c2

(
x2 − x∗2 − x∗2 ln

x2
x∗2

))
= c1

(
C
t0D

α
t

(
x1 − x∗1 − x∗1 ln

x1
x∗1

))
+ c2

(
C
t0D

α
t

(
x2 − x∗2 − x∗2 ln

x2
x∗2

))
≤ c1

(
1− x∗1

x1

)
C
t0D

α
t x1 + c2

(
1− x∗2

x2

)
C
t0D

α
t x2

= c1

(
1− x∗1

x1

)(
r1x1

(
A1 −

x1
K1

)
+

r1b12
K1

x1x2

)
+ c2

(
1− x∗2

x2

)(
r2x2

(
A2 −

x2
K2

)
+

r2b21
K2

x1x2

)
=

c1r1
K1

(x1 − x∗1)(A1K1 − x1 + b12x2) +
c2r2
K2

(x2 − x∗2)(A2K2 − x2 + b21x1).

Using Proposition 4.1.1, the positive equilibrium point E13(x
∗
1, x

∗
2) of the system (3.0.7)

satisfies the equalities

A1K1 = x∗1 − b12x
∗
2 and A2K2 = x∗2 − b21x

∗
1.

Consequently,

C
t0D

α
t V1(x1, x2) ≤

c1r1
K1

(x1 − x∗1)(x
∗
1 − b12x

∗
2 − x1 + b12x2)

+
c2r2
K2

(x2 − x∗2)(x
∗
2 − b21x

∗
1 − x2 + b21x1)

=
c1r1
K1

(x1 − x∗1)(−(x1 − x∗1) + b12(x2 − x∗2))

+
c2r2
K2

(x2 − x∗2)(−(x2 − x∗2) + b21(x1 − x∗1))

=
c1r1
K1

(−(x1 − x∗1)
2 + b12(x1 − x∗1)(x2 − x∗2))

+
c2r2
K2

(−(x2 − x∗2)
2 + b21(x1 − x∗1)(x2 − x∗2)).
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Since c2 =
r1b12K2

r2b21K1
c1, we have

C
t0D

α
t V1(x1, x2) ≤

c1r1
K1

(
−(x1 − x∗1)

2 − b12
b21

(x2 − x∗2)
2

+2b12(x1 − x∗1)(x2 − x∗2)

)
= −c1r1

K1

(
(x1 − x∗1)

2 − 2(x1 − x∗1)b12(x2 − x∗2) + b212(x2 − x∗2)
2

−b212(x2 − x∗2)
2 +

b12
b21

(x2 − x∗2)
2

)
= −c1r1

K1

(
((x1 − x∗1)− b12(x2 − x∗2))

2 +
b12
b21

(1− b12b21)(x2 − x∗2)
2

)
.

Suppose that

W3(x) =
c1r1
K1

(
((x1 − x∗1)− b12(x2 − x∗2))

2 +
b12
b21

(1− b12b21)(x2 − x∗2)
2

)
.

It can be verified that W3(x) is defined, continuous on domain R2
+ and W3(x) > 0 for all

x = (x1, x2) ∈ R2
+\(x∗1, x∗2), while W3(x) = 0 if x1 = x∗1 and x2 = x∗2. So, W3(x) is a

positive definite function. Thus, we obtain C
t0D

α
t V1(t, x) ≤ −W3(x). By Theorem 2.3.12

and V1 is radially unbounded, then the positive equilibrium point E13(x
∗
1, x

∗
2) of the system

(3.0.7) is globally uniformly asymptotically stable on R2
+.

Remark 4.1.6. The Lyapunov function which is defined in Theorem 4.1.5 is the family of

Volterra-type Lyapunov function that using in the integer-order differential Lotka-Volterra

equations [78–81].

4.2 Model 2

The equilibrium points of the Model 2 are obtained by solving the system of equa-

tions 

C
t0D

α
t x1 = r1x1

(
1− e1

r1

)
− r1x

2
1

K1 + b12x2
= 0,

C
t0D

α
t x2 = r2x2

(
1− e2

r2

)
− r2x

2
2

K2 + b21x1
= 0.

(4.2.1)

We obtain four equilibrium points as follows:

1. The origin E20(0, 0), which represents extinction of both species.

2. E21(K1A1, 0), where A1 = 1 − e1
r1

, which represents extinction of the second species

(x2). The existence condition of E21 is 0 < e1 < r1.

3. E22(0,K2A2), where A2 = 1− e2
r2

, which represents extinction of the first species (x1).
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The existence condition of E22 is 0 < e2 < r2.

4. E23(x
∗
1, x

∗
2), where x∗1 =

A1 (K1 + b12A2K2)

1−A1A2b12b21
, x∗2 =

A2 (K2 + b21A1K1)

1−A1A2b12b21
, which is called

the coexistence equilibrium point.

As for the equilibrium points E20, E21 and E22, they are called the non-coexistence

equilibrium points. The existence condition of E23 is obtained in the next proposition.

Proposition 4.2.1. If

A1A2b12b21 < 1, 0 < e1 < r1, and 0 < e2 < r2. (4.2.2)

Then there exists a unique coexisting equilibrium E23(x
∗
1, x

∗
2) of the fractional order system

(3.0.8).

Proof. The proof for this proposition is the same as that for Proposition 1 of reference [78],

which is the proof that there exists a unique coexisting equilibrium point for the integer

order system (3.0.2).

4.2.1 Local stability of non-coexistence equilibrium points

The local stability of the first three equilibrium points of the system (3.0.8) are

analyzed. The Jacobian matrix of the system is

J(x1, x2) =

r1 − e1 −
2r1x1

K1 + b12x2

b12r1x
2
1

(K1 + b12x2)
2

b21r2x
2
2

(K2 + b21x1)
2 r2 − e2 −

2r2x2
K2 + b21x1

 . (4.2.3)

Theorem 4.2.2. If r1 < e1 and r2 < e2, then the equilibrium point E20(0, 0) of the

fractional order system (3.0.8) is locally asymptotically stable.

Proof. From (4.2.3), the Jacobian matrix J(E20) is given as follows:

J(E20) =

r1 − e1 0

0 r2 − e2

 . (4.2.4)

Therefore, the eigenvalues of J(E20) are λ1 = r1−e1 and λ2 = r2−e2. By the assumptions

of this theorem, λ1 < 0 and λ2 < 0. Thus |arg λ1| = |arg λ2| = π. Therefore, according to

Theorem 2.3.10, the equilibrium point E20(0, 0) is locally asymptotically stable.

Theorem 4.2.3. If e1 < r1 and r2 < e2, then the second species extinction equilibrium

point E21(K1A1, 0) of the fractional order system (3.0.8) is locally asymptotically stable.
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Proof. By using (4.2.3), the Jacobian matrix J(E21) can be obtained as follows:

J(E21) =

e1 − r1 b12r1A
2
1

0 r2 − e2

 . (4.2.5)

Solving the characteristic equation: det(λI − J(E21)) = 0 for λ to find the eigenvalues of

J(E21):

(λ− (e1 − r1))(λ− (r2 − e2)) = 0.

Thus, the eigenvalues of J(E21) are λ3 = e1 − r1 and λ4 = r2 − e2. By the assumption,

it is clear that λ3 < 0 and λ4 < 0. According to Theorem 2.3.10, the equilibrium point

E21(K1A1, 0) is locally asymptotically stable. This completes the proof.

Theorem 4.2.4. If r1 < e1 and e2 < r2, then the first species extinction equilibrium point

E22(0,K2A2) of the fractional order system (3.0.8) is locally asymptotically stable.

Proof. By using (4.2.3), the Jacobian matrix J(E22) can be obtained as follows:

J(E22) =

 r1 − e1 0

b21r2A
2
2 e2 − r2

 . (4.2.6)

Solving the characteristic equation: det(λI − J(E22)) = 0 for λ to find the eigenvalues of

J(E22):

(λ− (r1 − e1))(λ− (e2 − r2)) = 0.

Therefore, the eigenvalues of J(E22) are λ5 = r1 − e1 and λ6 = e2 − r2. By the above

assumption, we obtain λ5 < 0 and λ6 < 0. From Theorem 2.3.10, we can conclude that

the equilibrium point E22(0,K2A2) is locally asymptotically stable.

4.2.2 Global stability of positive coexistence equilibrium

The sufficient conditions for the global uniform asymptotic stability of the positive

coexisting equilibrium for the corresponding fractional order system using the Lyapunov

function are investigated.

Theorem 4.2.5. If A1b12 < 2, A2b21 < 2, x1 <

(
2−A2b21
A2b21

)
x2, x2 <

(
2−A1b12
A1b12

)
x1,

A1A2b12b21 < 1, 0 < e1 < r1, and 0 < e2 < r2. Then the unique interior positive equilib-

rium E23(x
∗
1, x

∗
2) of the fractional order system (3.0.8) is globally uniformly asymptotically

stable on R2
+.
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Proof. We define by V2 :
{
(x1, x2) ∈ R2

+ : x1 > 0, x2 > 0
}
→ R, such that

V2(x1, x2) = c3

x1∫
x∗
1

θ − x∗1
K2 + b21θ

dθ + c4

x2∫
x∗
2

θ − x∗2
K1 + b12θ

dθ, (4.2.7)

where c3 > 0 and c4 =
r1b12A1

r2b21A2
c3. So that (4.2.7) can be written in the following form

V2(x1, x2) =
c3
b21

(
x1 − x∗1 −

(
K2 + b21x

∗
1

b21

)
ln

(
K2 + b21x1
K2 + b21x∗1

))
+

c4
b12

(
x2 − x∗2 −

(
K1 + b12x

∗
2

b12

)
ln

(
K1 + b12x2
K1 + b12x∗2

))
. (4.2.8)

The function V2(x1, x2) is defined, continuous on domain R2
+ and V2(x1, x2) > 0 for all

(x1, x2) ∈ R2
+\(x∗1, x∗2), while V2(x1, x2) = 0 if x1 = x∗1 and x2 = x∗2. Thus, we can see that

V2(x1, x2) is a Lyapunov function according to Definition 2.3.11. Also, V2(x1, x2) tends

to +∞ if either x1 or x2 tends to 0 or to +∞. These properties mean that V2(x1, x2) is

radially unbounded. According to Theorem 2.3.12, we can pick W1(x) = W2(x) = V2(x),

so the condition (2.3.4) holds. By applying the linearity property of the Caputo fractional

derivative and using Theorem 2.3.13, we obtain

C
t0D

α
t V2(x1, x2) =

C
t0D

α
t

(
c3
b21

(
x1 − x∗1 −

(
K2 + b21x

∗
1

b21

)
ln

(
K2 + b21x1
K2 + b21x∗1

)))
+ C

t0D
α
t

(
c4
b12

(
x2 − x∗2 −

(
K1 + b12x

∗
2

b12

)
ln

(
K1 + b12x2
K1 + b12x∗2

)))
≤ c3

b21

(
C
t0D

α
t x1 −

(
K2 + b21x

∗
1

K2 + b21x1

)
C
t0D

α
t x1

)
+

c4
b12

(
C
t0D

α
t x2 −

(
K1 + b12x

∗
2

K1 + b12x2

)
C
t0D

α
t x2

)
=

c3
b21

(
1− K2 + b21x

∗
1

K2 + b21x1

)
C
t0D

α
t x1 +

c4
b12

(
1− K1 + b12x

∗
2

K1 + b12x2

)
C
t0D

α
t x2

=
c3

K2 + b21x1
(x1 − x∗1)

C
t0D

α
t x1 +

c4
K1 + b12x2

(x2 − x∗2)
C
t0D

α
t x2

=
c3

K2 + b21x1
(x1 − x∗1)

(
r1x1

(
1− e1

r1

)
− r1x

2
1

K1 + b12x2

)
+

c4
K1 + b12x2

(x2 − x∗2)

(
r2x2

(
1− e2

r2

)
− r2x

2
2

K2 + b21x1

)
=

c3r1x1
(K1 + b12x2) (K2 + b21x1)

(x1 − x∗1) (A1K1 +A1b12x2 − x1)

+
c4r2x2

(K1 + b12x2) (K2 + b21x1)
(x2 − x∗2) (A2K2 +A2b21x1 − x2) .

Using Proposition 4.2.1, the positive equilibrium point (x∗1, x
∗
2) of the system (3.0.8) sat-

isfies the equalities

A1K1 = x∗1 −A1b12x
∗
2 and A2K2 = x∗2 −A2b21x

∗
1.
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It is seen that

C
t0D

α
t V2(x1, x2) ≤

c3r1x1
(K1 + b12x2) (K2 + b21x1)

(x1 − x∗1) (− (x1 − x∗1) +A1b12 (x2 − x∗2))

+
c4r2x2

(K1 + b12x2) (K2 + b21x1)
(x2 − x∗2) (− (x2 − x∗2) +A2b21 (x1 − x∗1)) .

Since c4 =
r1b12A1

r2b21A2
c3, we have

C
t0D

α
t V2(x1, x2) ≤

c3r1
(K1 + b12x2) (K2 + b21x1)

(
−x1(x1 − x∗1)

2 − x2
A1b12
A2b21

(x2 − x∗2)
2

+A1b12 (x1 + x2) (x1 − x∗1) (x2 − x∗2)

)
≤ c3r1

(K1 + b12x2) (K2 + b21x1)

(
−x1(x1 − x∗1)

2 − x2
A1b12
A2b21

(x2 − x∗2)
2

+
1

2
A1b12 (x1 + x2) (x1 − x∗1)

2+
1

2
A1b12 (x1 + x2) (x2 − x∗2)

2

)
=

−c3r1
(K1 + b12x2) (K2 + b21x1)

((
x1 −

1

2
A1b12 (x1 + x2)

)
(x1 − x∗1)

2

+

(
x2

A1b12
A2b21

− 1

2
A1b12 (x1 + x2)

)
(x2 − x∗2)

2

)
.

Suppose that

W3(x) =
c3r1

(K1 + b12x2) (K2 + b21x1)

((
x1 −

1

2
A1b12 (x1 + x2)

)
(x1 − x∗1)

2

+

(
x2

A1b12
A2b21

− 1

2
A1b12 (x1 + x2)

)
(x2 − x∗2)

2

)
.

It can be verified that W3(x) is defined, continuous on domain R2
+ and W3(x) > 0 for all

x = (x1, x2) ∈ R2
+\(x∗1, x∗2), while W2(x) = 0 if x1 = x∗1 and x2 = x∗2. So, W3(x) is a

positive definite function. Thus, C
t0D

α
t V2(t, x) ≤ −W3(x). By Theorem 2.3.12 and V2 is

radially unbounded, we can conclude that the equilibrium point E23(x
∗
1, x

∗
2) of the system

(3.0.8) is globally uniformly asymptotically stable on R2
+.

Remark 4.2.6. The Lyapunov function in Theorem 4.2.5 is modified from the function

of integer-order differential systems presented in [82] and different from the functions

presented in [57–60].

Remark 4.2.7. Theorems 4.1.5 and 4.2.5 can be applied to study a facultative mutualism

of two species. In particular, the interaction between two species is assumed to be described

by the models (3.0.7) and (3.0.8) where the parameters satisfy the conditions in the theo-

rem. Subsequently, any solutions starting at a positive initial point eventually tend to the

positive coexistence equilibrium of the model. This means biologically that the two species

always coexist in the same habitat.
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