CHAPTER 4

Main Results

In this chapter, we investigate the stability of the equilibrium points of the models
(3.0.7) and (3.0.8), which we called them the Model 1 and Model 2, respectively. The local
and global stability of all equilibrium points are analyzed using the linearization method

and the Lyapunov’s direct method.

4.1 Model 1

The equilibrium points of the Model 1 are obtained by solving the system of equa-

tions J
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We derive four equilibrium points as follows:
1. The origin E10(0,0), which represents extinction of both species.

e
2. F11(K1A1,0), where A =1 — T—l, which represents extinction of the second species
1
(z2). The existence condition of Ey;1 is 0 < e1 < 77.

3. F12(0, KyA), where Ay =1 — 9, which represents extinction of the first species (x1).
T2

The existence condition of Fig is 0 < ey < 9.

A1 Ky + b2 A2 K,

1 —biobor
the coexistence equilibrium point.
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, which is called
1 — b12boy

*
and x5

4. Ey3(x7,z5), where 27 =

As for the equilibrium points F1g, F11 and E1o, they are called the non-coexistence
equilibrium points. The existence condition of E13 is presented in the following proposi-

tion.
Proposition 4.1.1. If
b12b21 < 1, 0<e < T, and 0 < ey < 1o (4.1.2)

or

b1obo1 <1, 0<ep <11, and 0 < ey < 1o, (413)
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Then there exists a unique coexisting equilibrium Ey3(x7, z5) of the fractional order system

(3.0.7).

Proof. The proof for this proposition is the same as that for Proposition 2 of reference [78],
which is the proof that there exists a unique coexisting equilibrium point for the integer

order system (3.0.1). O

4.1.1 Local stability of non-coexistence equilibrium points

In this subsection, we examine the local stability of the first three-quilibrium points

of the system (3.0.7). The Jacobian matrix of the system is

2riz1 | ribiame ribiaz1
r —e1r — K + %3 7@
J(w1,@2) = robb L om mban | (4.1.4)
K» o Ky Ky

Theorem 4.1.2. If 11 < e; and r9 < ea, then the equilibrium point E19(0,0) of the
fractional order system (3.0.7) is locally asymptotically stable.

Proof. From (4.1.4), the Jacobian matrix J(E1) is given by:

rn —e1 0
J(E19) = : (4.1.5)
0 T9 — €9
Thus, the eigenvalues of J(FEqg) are Ay = r1 — e1 and Ay = ry — eo. By the assumptions
of this theorem, it is easily seen that A\; < 0 and Ay < 0. Thus |arg\i| = |arg A\a| =
7. Therefore, according to Theorem 2.3.10, the equilibrium point F1((0,0) is locally
asymptotically stable. ]

es K
Theorem 4.1.3. Ife; <1y andre < L, then the second species extinction equi-
Ko + by Ky

librium point E11(K1A1,0) of the fractional order system (3.0.7) is locally asymptotically
stable.

Proof. By using (4.1.4), the Jacobian matrix J(E1;) can be obtained as follows:

er—1ni ribi2A;

J(E11) = roby1 K1 A7 | - (4.1.6)
0 ro —egt+ ————
Ko

Solving the characteristic equation: det(AI — J(E11)) =0 for A to find the eigenvalues of
J(Ell)I

robo1 K1 A4

A=(er=r))(A—(r2 —e2 + e

)= 0.
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the assumption, it is clear that \3 < 0 and Ay < 0. According to Theorem 2.3.10,

So, the eigenvalues of J(E11) are \3 = e; —r1 and Ay = r9 — eg + By

the equilibrium point Ej1(K7A4,0) is locally asymptotically stable. This completes the

proof. O
61K1

K1+ b12K>
librium point E12(0, Ko As) of the fractional order system (3.0.7) is locally asymptotically

Theorem 4.1.4. Ifry < and ey < 19, then the first species extinction equi-

stable.

Proof. By using (4.1.4), the Jacobian matrix J(F12) can be obtained as follows:

r1b12 K2 Ao
rL—er + T 0
J(E12) = 1 A (417)

roba1 Az e — 12

Solving the characteristic equation: det(AI — J(E12)) =0 for A to find the eigenvalues of
J(EH):

r1b19 K9 A
()\ — (7‘1 —=Cilht %))()\ — (62 — T’Q)) = 0.
1
bia Ko A
Hence, the eigenvalues of J(FE12) are \s =11 —e1 + 7’11;(# and \g = es — ro. By the
1

assumption, we have A5 < 0 and A\g < 0. From Theorem 2.3.10, the equilibrium point

E15(0, K2 A9) is locally asymptotically stable. O

4.1.2 Global stability of positive coexistence equilibrium

In this subsection, we investigate the sufficient conditions for the global uniform
asymptotic stability of the positive coexisting equilibrium for the corresponding fractional
order system (3.0.7) using the Lyapunov function.

Theorem 4.1.5. If one of the following conditions holds:
(Z) 512521 < 1, 0<e < T, and 0 < ey < T2,

(1) biabar < 1, 0 <e; <71y, and 0 < ey <rg.
Then, the unique interior positive equilibrium Ey3(z7,x3) of the fractional order system

(3.0.7) is globally uniformly asymptotically stable on R%.

Proof. We define by V; : {(a:l,arg) € Ri cxq1 >0, 29 > 0} — R, such that

T1 ) _ % T [) %
Vl(xl,a:g):cl/ f 9$1d0~|—02/ o Q%de), (4.1.8)
o
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r1b12 K
where ¢; > 0 and ¢y = %01. The above equation (4.1.8) can be written in the form
robo1 K1

Vi(zy,x2) = c1x] <i—1—ln> + comh (x_l_l > (4.1.9)
2

1 L1 2

The function Vi(z1,x2) is defined, continuous on domain Ri and Vi(x1,x2) > 0 for all
(z1,22) € R2\ (27, 23), while Vi(21,22) = 0 if 21 = 2} and 29 = 23. Hence, by Definition
2.3.11, we get that Vi(x1,x9) is a Lyapunov function. Also, Vi(z1,2z2) tends to +oo if
either x; or z2 tends to 0 or to +o0o. These properties mean that Vi(x1,x2) is radially
unbounded. According to Theorem 2.3.12, we can pick Wi(z) = Wa(x) = Vi(z), thus
the condition (2.3.4) holds. By applying the linearity property of the Caputo fractional

derivative and using Theorem 2.3.13, we obtain

tCODto‘Vl(xl,xg) = tCODtO‘ <cl <x1 —z] —z]ln 2)) + tODa ( <£U2 — x5 —x51n i;))
= (ng‘ (xl —z] —2]In ;)) + ¢ <tc(;Df‘ <a:2 — x5 — m%lnié))
<c <1 — ﬁ) ng‘xl + ¢ (1 502) tCODt T9
= <1 — E) <r1x1 <A1 - ;) + T}?iQZL‘le)

+ ¢ (1 — Z) <7’2562 <A2 e Z) + 7321961@)

er cor 4
=21 — (21 — 27) (A1 K1 — 21 + biaz2) + ﬂ(:@ —25)(A2Ky — x3 + ba1x1).
K, K»

Using Proposition 4.1.1, the positive equilibrium point Ei3(x7, %) of the system (3.0.7)

satisfies the equalities

A1K1 = af{ = bu%é and A2K2 = a:§ — bglxi.

Consequently,
C'Dav 171 * * *
to DiVi(x1,22) < ?1(951 — 1) (] — bi2xs — 1 + b1272)
C2T2
* ?2(532 — x5) (x5 — bo1x] — w2 + ba111)
cr £
=~ (o1 — #])(~ (a1 — o) + bia(ez — 75))
1
CaT2 .
+ e (z2 — 23)(— (22 — 23) + bar(z1 — 27))
cr
= 7}1{1( (w1 —27)" + bia(x1 — 27)(v2 — 23))
1
CaT9
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Since ¢y = c1, we have

b2

CDpVien ) < G (o oD - {20 -
+2b12(z1 — 27) (22 — xz))
- -an ((m ) — 2 — bra(s — ) + By (s — 25)?
~Bhyloa =25 + (a2 — a3
c1r1

=~ (o1~ o) ~ s — 25 + {2200 = brabn) 2 — 037 ).
21

Suppose that

b
Wa(o) = A (o1 = 25) = raloa = 95))+ 220~ babon) oz — 2

It can be verified that W5(z) is defined, continuous on domain R? and Ws(z) > 0 for all
r = (z1,22) € R2\(zf,z}), while Ws(z) = 0 if 21 = 2] and 2o = x5. So, Ws(z) is a
positive definite function. Thus, we obtain ng‘VI(t,x) < —Ws(z). By Theorem 2.3.12
and Vj is radially unbounded, then the positive equilibrium point Ej3(x}, z3) of the system

(3.0.7) is globally uniformly asymptotically stable on R?. O

Remark 4.1.6. The Lyapunov function which is defined in Theorem 4.1.5 is the family of

Volterra-type Lyapunov function that using in the integer-order differential Lotka-Volterra

equations [18-81].

4.2 Model 2

The equilibrium points of the Model 2 are obtained by solving the system of equa-

tions 1 A
CpDox =rz <1 — 61) LA )BTRS 0
toe 1 T T r1 K1 + bioxo
(4.2.1)
2
C A €9 7'2:(}2 .
PR T <1 ] > T Kot bum

We obtain four equilibrium points as follows:
1. The origin E9y(0,0), which represents extinction of both species.

e
2. F5(K1A1,0), where A} =1 — —1, which represents extinction of the second species

r1
(z2). The existence condition of Eo; is 0 < e1 < 77.
e
3. E(0, KyA), where Ay =1 — —2, which represents extinction of the first species (7).
r2
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The existence condition of g is 0 < e < 9.
Ay (K1 + b12A2K))

1 — A1 Asbiaboy
the coexistence equilibrium point.

ot As (Ko + ba1 A1 K7)
e 1 — A1 Asbi2bay

, which is called

4. Eo3(x7,x%), where xf =

As for the equilibrium points Foq, Fo1 and Fao, they are called the non-coexistence

equilibrium points. The existence condition of Es3 is obtained in the next proposition.

Proposition 4.2.1. If
A1 Asbiabo; < 1, 0<e; <ry, and 0 < eg < ro. (4.2.2)

Then there ezists a unique coezisting equilibrium Ea3(z7, %) of the fractional order system

(3.0.8).

Proof. The proof for this proposition is the same as that for Proposition 1 of reference [78§],
which is the proof that there exists a unique coexisting equilibrium point for the integer

order system (3.0.2). O

4.2.1 Local stability of non-coexistence equilibrium points

The local stability of the first three equilibrium points of the system (3.0.8) are

analyzed. The Jacobian matrix of the system is

27’1$1 blgrlx%
J(ZL‘ 3 ) o e K1+ bioxo (K1+b12$2)2 (423)
Frx — 5217“2.1‘% 27’2.’E2 -

T2 — €2

(Ko + byy1)? Ko + by1y

Theorem 4.2.2. If r; < e; and r9 < eg, then the equilibrium point Foy(0,0) of the
fractional order system (3.0.8) is locally asymptotically stable.

Proof. From (4.2.3), the Jacobian matrix J(Fy) is given as follows:

r —ep 0
J(Ey) = ) (4.2.4)
0 7o = €2
Therefore, the eigenvalues of J(FE2g) are A\; = 11 —ep and Ay = r9 —eg. By the assumptions

of this theorem, A\; < 0 and A2 < 0. Thus |arg \1| = |arg A\2| = m. Therefore, according to
Theorem 2.3.10, the equilibrium point F9y(0,0) is locally asymptotically stable. O

Theorem 4.2.3. If ey < r1 and ro < es, then the second species extinction equilibrium

point a1 (K1A1,0) of the fractional order system (3.0.8) is locally asymptotically stable.
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Proof. By using (4.2.3), the Jacobian matrix J(FE2;) can be obtained as follows:

er — 11 bioriA?
J(Ey)=| " 0 ) (4.2.5)
0 T9 — €9
Solving the characteristic equation: det(A\ — J(E21)) = 0 for A to find the eigenvalues of

J(Egl)i
(A—=(e1 —r1))(A = (r2 —e2)) = 0.

Thus, the eigenvalues of J(Fs;) are A3 = e; — r1 and Ay = ro — e2. By the assumption,
it is clear that A3 < 0 and Ay < 0. According to Theorem 2.3.10, the equilibrium point
E91(K1A41,0) is locally asymptotically stable. This completes the proof. Ol

Theorem 4.2.4. Ifr; < e; and ea < 1y, then the first species extinction equilibrium point

E99(0, K2 Ag) of the fractional order system (3.0.8) is locally asymptotically stable.
Proof. By using (4.2.3), the Jacobian matrix J(FE22) can be obtained as follows:

T1:x—r€1 0
J(Ea2) = . (4.2.6)
5211“2/1% €9 —T9
Solving the characteristic equation: det(A — J(E22)) = 0 for A to find the eigenvalues of

J(EQQ)I
(A= (r1 —e1))(A = (e2 = 72)) = 0.

Therefore, the eigenvalues of J(Ea2) are A5 = r1 — e; and A\¢ = ez — ro. By the above
assumption, we obtain A5 < 0 and A\g < 0. From Theorem 2.3.10, we can conclude that

the equilibrium point Fa3(0, K2A3) is locally asymptotically stable. O

4.2.2 Global stability of positive coexistence equilibrium

The sufficient conditions for the global uniform asymptotic stability of the positive
coexisting equilibrium for the corresponding fractional order system using the Lyapunov

function are investigated.

2 — Asb 2—Apd
Theorem 4.2.5. If A1b12 < 2, Agbgl < 2, 1 < <221>x2, Tro < <112>JI1,
Asbay Arbio
A1Asbigbor < 1, 0 < ep <711, and 0 < eg < 1r9. Then the unique interior positive equilib-
rium Ea3(x7, x3) of the fractional order system (3.0.8) is globally uniformly asymptotically

stable on R%r.
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Proof. We define by Va : {(x1,22) € RZ : 21 > 0, 2o > 0} — R, such that
+

T2
— ] 0 — x5
(x1,22) = ¢ ——df+c /d@, 4.2.7
102) 3/ Ko + b0 Y] K +b0 (42.7)
23
b2y . : .
where c3 > 0 and ¢4 = 3. So that (4.2.7) can be written in the following form
robo1 Ao
3 . Ky + b1} Ky + bo1zq
1% = B (g, — gl 22000200 ), (227 92101
2(@1,@2) 521 <$1 i < b2t ) = (Kz + bo1x]
. K1+b12$§> <K1+b12$2>)
+ — 29 — x5 — In . 4.2.8
bi2 ( NG ( b2 K1+ biaz} ( )

The function Va(z1,22) is defined, continuous on domain Ri and Va(x1,22) > 0 for all
(r1,x2) € Ri\(m’{, x%), while Va(z1,22) = 0 if 21 = 2] and 22 = x%. Thus, we can see that
Vao(x1,z2) is a Lyapunov function according to Definition 2.3.11. Also, Va(z1,z2) tends
to +oo if either 1 or z3 tends to 0 or to +00. These properties mean that Va(z1,x2) is
radially unbounded. According to Theorem 2.3.12, we can pick Wi(z) = Wa(z) = Va(x),
so the condition (2.3.4) holds. By applying the linearity property of the Caputo fractional

derivative and using Theorem 2.3.13, we obtain

cil 3 b Ky + boy ¥ Ko + bo111
DV (1, Opo (2 (o) —af - In
tot 2(213]_ .’132) t <b21 <.’17]_ Iy < b2]_ > <K2 + bgll'){
K+ b12x§ Ky + b1axo
+ Da T zh— | ———= | In| —————=
fo <512 ( YN ( b12 K1 + bioxs
c Ko + by x}
4 <%D?m1 - (KZ + bixi) ngm)
A (Cpag, (2L ) op
s bi2 (to t %2 <K1 + bamg ) 0T 5

K borx} K bioxh
— (1 o2t AT 21”31) ¢ Dexy + (1 _ Bt onT, 12%) ¢ Dy
bo1 Ko + ba171 b12 K1+ biazo

Ko+ boy1y

c3 ( “ ( <1 el> T2 )
=——  (x;—zN) |z e 18 EsAE
Ko + bojay ! b r1 K + biaxo

2
C4 " €9 (X5

+———(x2—a35) [r222 |1 - —= )| = ———=—

K1+b12$2( ’ 2)<2 2( T2> K2+bz1l“1>

C3T1T ]
T E+ blﬂz)l(fé + ba171) (21— 21) (A K1 + Arbiozs — 1)

CAT2T2
(Kl + biaxg) (K2 + ba121

(1 —27) tCODfazl + (o — x35) thaa)g

ey
Ky + bigxo

) (SEQ — .’E;) (A2K2 + Asboix1 — 172) .

Using Proposition 4.2.1, the positive equilibrium point (27, z3) of the system (3.0.8) sat-

isfies the equalities
AlKl = $T — AlblgIz and A2K2 = ,I; — A2b21$>{.
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It is seen that

C na C31171 « " *
D2V < — ) (= (21 — A1b -
to DiVa(z1,m2) < (K1 & brawa) (Ko + bz (v1 — 27) (= (21 — 27) + A1b12 (22 — 73))
C4T9T " " *
- 2 (w2 — 23) (— (z2 — 23) + Agbay (z1 — 7).

(K1 + biaza) (Ko + borx1)

r1b12 A4
robo1 A

Since ¢4 = c3, we have

2 A1b1o 2
—z1(z1 — 27)" - me(@ )

c3ry
(K1 + biaza) (Ko + barx1)

thaV2(9€1,9€2) <

+Awu@a+x»@n—x9@a—x9)

A1bi2

C37'1 *\2 *\2
—T1\r1 — T — T2 Tr9 — T
(~oatar = o) = 22 3200 - )

Ky + biaxa) (K2 + ba121)

%

1 1
+§A1512 (1 + x2) (21 — zT)2+§A1b12 (1 + x2) (22 — $§)2>

—C3T1

! 2
y — —A1b o
(K1 + bioxs) (Ko + boy1) ((951 11012 (1 + x2)> (x1 — 1)

Arbip 1 .
+ (ﬂ:’g Aabor — 5141()12 (ZEl + .Tg)) (ng — 172)2) .

Suppose that

C371 1 !
(K1 + biawa) (K2 + bo121) ((xl P §A1b12 (@ + $2)) - xl)Q

A1b12 1 F
——A — s .
+ <$2A2b21 5 1b12 (1 + m2)> (g — x3) >

Wg(.%‘) =

It can be verified that W3(x) is defined, continuous on domain R? and Ws(z) > 0 for all
z = (z1,22) € R2\(z},23), while Wa(z) = 0 if z1 = 2} and 2o = 23. So, Wa(z) is a
positive definite function. Thus, § DeVa(t,2) < —Ws(z). By Theorem 2.3.12 and V3 is

radially unbounded, we can conclude that the equilibrium point Faz(x7, z5) of the system

(3.0.8) is globally uniformly asymptotically stable on R?. O

Remark 4.2.6. The Lyapunov function in Theorem 4.2.5 is modified from the function
of integer-order differential systems presented in [82] and different from the functions

presented in [57-60).

Remark 4.2.7. Theorems 4.1.5 and 4.2.5 can be applied to study a facultative mutualism
of two species. In particular, the interaction between two species is assumed to be described
by the models (3.0.7) and (3.0.8) where the parameters satisfy the conditions in the theo-
rem. Subsequently, any solutions starting at a positive initial point eventually tend to the
positive coexistence equilibrium of the model. This means biologically that the two species

always coexist in the same habitat.
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