APPENDIX A

Stochastic Process

A.1 Independent of two standard Wiener processes

Let B_t and W_t be two standard Wiener processes with the correlation coefficient ρ . By setting $Z_t = (W_t - \rho B_t)/\sqrt{1 - \rho^2}$, we get Z_t is independent of B_t . Consider

$$\operatorname{cov}(B_t, W_t) = \operatorname{cov}(B_t, \rho B_t + \sqrt{1 - \rho^2 Z_t})$$
$$= \operatorname{cov}(B_t, \rho B_t) + \operatorname{cov}(B_t, \sqrt{1 - \rho^2} Z_t)$$
$$= \rho \operatorname{cov}(B_t, B_t) + \sqrt{1 - \rho^2} \operatorname{cov}(B_t, Z_t)$$
$$= \rho \operatorname{var}(B_t) + \sqrt{1 - \rho^2} \operatorname{cov}(B_t, Z_t)$$
$$= \rho t + \sqrt{1 - \rho^2} \operatorname{cov}(B_t, Z_t),$$

Then, we obtain that

$$\operatorname{corr}(B_t, W_t) = \frac{\operatorname{cov}(B_t, W_t)}{\sqrt{\operatorname{var}(B_t)}\sqrt{\operatorname{var}(W_t)}}$$
$$= \frac{\rho t + \sqrt{1 - \rho^2} \operatorname{cov}(B_t, Z_t)}{t}$$

Hence, we get

$$\operatorname{cov}(B_t, Z_t) = \frac{t \cdot \operatorname{corr}(B_t, W_t) - \rho t}{\sqrt{1 - \rho^2}}$$

Since $\operatorname{corr}(B_t, W_t) = \rho$, we have $\operatorname{cov}(B_t, Z_t) = 0$. Therefore, the proof is now completed.

CURRICULUM VITAE

Author's Name	Mr. Phisiphong Sonprathet
Date of Birth	April 30, 1993
Place of Birth	Chiang Mai Province, Thailand
Education	In 2015: Bachelor of Science in Mathematics (First class honour), Chiang Mai University, Chiang Mai, Thailand

Scholarship Science Achievement Scholarship of Thailand (SAST)

ลิฮสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved