
CHAPTER 1

Introduction

In mathematical finance, the Black-Scholes model [7] is a classical model for describ-

ing derivatives of the stock price with geometric Brownian motion behaviour. In other

words, the stock price process {St}t≥0 satisfies the stochastic differential equation

dSt = µStdt+ σStdBt, (1.0.1)

where {Bt}t≥0 is a standard Wiener process. The constant parameters µ and σ denote the

drift and volatility of the process, respectively. The analytic solution of (1.0.1) is given by

St = S0 exp((µ− σ2/2)t+ σBt).

Such model plays key roles in both research and practice.

The model assumes that the underlying volatility is a constant over the life of the

derivative, and unaffected by the changes in the price level of the underlying security.

However, the model cannot explain long-observed features of the implied volatility surface

such as volatility smile, which indicates that implied volatility does tend to vary with re-

spect to other factors such as strike price and expiry time. Stochastic volatility models are

possible approaches to resolve the constant volatility problem by assuming that volatility

of the underlying price is another stochastic process rather than a constant.

Let {vt}t≥0 be the volatility process. One of the first stochastic volatility models

was introduced by Hull and White in 1987 [16]. The general form of this model is:

dSt = µStdt+
√
vtStdBt,

dvt = ψvtdt+ ξvtdWt,

where ψ and ξ are mean and variance of the volatility process, respectively. Also, {Bt}t≥0

and {Wt}t≥0 represent two standard Wiener processes, possibly correlated with a correla-

tion coefficient ρ. For this model, the correlation coefficient ρ is assumed to be zero.
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In 1991, M. Stein and C. Stein [24] introduced a model with the volatility process

being modeled as an Ornstein-Uhlenbeck process. The general form of this model is as

follows:

dSt = µStdt+ vtStdBt,

dvt = κ(θ − vt)dt+ ξdWt,

where θ is the mean long-term volatility, κ is the speed of mean-reversion and the corre-

lation coefficient ρ is assumed as zero.

In 1993, Heston [14] introduced a model setting by the Cox-Ingersoll-Ross(CIR)

process to define the volatility process. The general form of this model is:

dSt = µStdt+
√
vtStdBt,

dvt = κ(θ − vt)dt+ ξ
√
vtdWt.

This Heston model is commomly used as a stochastic volatility model.

In 1997, Heston [13] introduced a new model, the so-called 3/2 model. The general

form of this model is:

dSt = µStdt+
√
vtStdBt,

dvt = κvt(θ − vt)dt+ ξv
3
2
t dWt.

Note that the volatility process of the 3/2 model is a mean-reversion process to the equi-

librium point θ, and the speed of mean-reversion is κvt. This means that the reversion also

depends on the variance value itself. With reference to the real data, it means that the

model can incorporate and explain fast volatility increases and decreases. Consequently,

the model exhibits better agreement with empirical studies as compared to the original

Heston model, [6, 17]. Additionally, applications of the 3/2 model for derivative pricing

can be found in [8, 10].

Generally, obtaining an estimation of volatility from data can be difficult and un-

clear. This is due to the fact that the volatility process is a hidden process which can not

be directly observed from the real data. This causes a filtering problem, so that it can only

be approximated via the information of the underlying stock process. Some techniques

such as maximum likelihood and particle filters were introduced to solve this problem,

especially in the Heston model.

In 2007, Aı̈t-Sahalia and Kimmel [2] developed and implemented a method for max-

imum likelihood estimation in a closed form of stochastic volatility models, in particular
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CEV, Heston and GARCH models. They compared a full likelihood to an approximate

likelihood procedure and the results in a small loss of accuracy related to the standard

errors from a sampling noise.

In 2009, Atiya and Wall [5] proposed an analytic approximation for the likelihood

function for volatility of the Heston model. Moreover, extension to the problem with fixed

parameter estimation was also presented.

In 2009, Aihara, Bagchi and Saha [1] derived the optimal importance function and

constructed the particle filter algorithm for the Heston model. Parameters contained in the

model were also estimated by constructing the augmented states. The proposed method

was appiled to the real data of the AEX index.

Motivated by those preceding studies combining with the idea given by Aihara et

al. [1], we aimed to estimate the volatility process of the 3/2 volatility model by using

the particle filter method. Moreover, we then used this estimated volatility process to

estimate the model parameters by using the maximum likelihood estimation method.

The rest of this thesis is organized as follows : Chapter 2 is devoted to some useful

definitions, notations and properties that were used throughout this thesis; Chapter 3 is

for estimation of the volatility process and model parameters; finally, the conclusions of

this thesis is given in Chapter 4.
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