
CHAPTER 2

Preliminaries

In this chapter, we provided some necessary notations, definitions, and the main

theory that was used throughout this thesis.

2.1 Basic Probability Theory

A process that has random outcomes is called a random experiment. The set of all

possible outcomes of a random experiment is called the sample space and is denoted Ω. A

combination of outcomes, a subset of Ω, is called an event. The set of events is denoted

F . It is assumed that the set F is a σ-algebra.

Definition 2.1.1. ( [3]) Let Ω be a set, then F is a σ-algebra of subsets of Ω if F has the

following properties:

1. Ω ∈ F ,

2. A ∈ F implies that Ac ∈ F ,

3. If Ai ∈ F for i ∈ N, then
∞∪
i=1

Ai ∈ F .

The experiment selects an outcome in Ω according to a probability measure P , which

is a set function that maps F into R.

Definition 2.1.2. ( [3]) Let Ω be a sample space and F be a σ-algebra of subsets of Ω.

A set function P : F → R is a probability measure if the following conditions hold

1. P (A) ≥ 0 for every A ∈ F ,

2. P (Ω) = 1,

3. If {Ai}∞i=1 is a sequence of mutually exclusive events in F , then P (
∞∪
i=1

Ai) =
∑∞

i=1 P (Ai).

A triplet (Ω,F , P ) consisting of the sample space Ω, the σ-algebra of subsets of Ω,

and a probability measure P defined on F is called a probability space.

Definition 2.1.3. ( [3]) Let (Ω,F , P ) be a probability space, A random variable X is a

real-valued function that assigns the value X(ω) ∈ R to each outcome ω ∈ Ω. That is,

X : Ω → R.
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Definition 2.1.4. ( [3]) Let X : Ω → R be a random variable. The distribution function

of X is the function FX : R → [0, 1] defined by

FX(x) = P ({ω ∈ Ω : X(ω) ≤ x}).

Definition 2.1.5. ( [3]) Let X : Ω → R be a random variable and FX its distribution

function. If there exists a nonnegative integrable function fX : R → R such that

FX(x) =

∫ x

−∞
fX(s)ds,

then fX is called the probability density function of X.

Definition 2.1.6. ( [3]) The mean value of a random variable X is defined as:

E(X) =

∫ ∞

−∞
xfX(x)dx.

Definition 2.1.7. ( [3]) The variance of a random variable X is defined as:

var(X) = E((X − E(X))2).

Moreover, the covariance between two random variables X and Y is defined as:

cov(X,Y ) = E((X − E(X))(Y − E(Y ))).

Proposition 2.1.8. ( [12]) Let X, Y , Z be random variables and a, b, c, d ∈ R. Then

1. E(aX + bY ) = aE(X) + bE(Y ),

2. var(aX + b) = a2var(X),

3. cov(aX + b, cY + d) = accov(X,Y ),

4. cov(X + Y, Z) = cov(X,Z) + cov(Y, Z).

Definition 2.1.9. ( [11]) If the random variable X has the probability density function

fX(x) =
1√
2πσ2

exp(
−(x− µ)2

2σ2
), x ∈ R,

we say that X has a normal distribution with mean µ and variance σ2 and it is denoted

that X ∼ N (µ, σ2).

Definition 2.1.10. ( [11]) If the k-dimensional random vector X, vector of the random

variables X1, X2, ..., Xk, has the probability density function

fX(x) =
1√

(2π)k|Σ|
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
, x ∈ Rk,

we say that X has a multivariate normal distribution with k-dimensional mean vector µ

and k × k covariance matrix Σ and it is denoted that X ∼ N (µ,Σ).
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Proposition 2.1.11. ( [12]) Let X be a normal random variable with mean µ and variance

σ2. Then the random variable Y defined by Y = aX + b, for a, b ∈ R with a ̸= 0, has a

normal distribution with mean aµ+ b and variance a2σ2.

Definition 2.1.12. ( [11]) For any events A,B ∈ F such that P (B) ̸= 0, the conditional

probability of A given B is defined by

P (A | B) =
P (A ∩B)

P (B)
.

Theorem 2.1.13. ( [11]) (Bayes’ theorem) For any events A,B ∈ F and P (B) ̸= 0,

P (A | B) =
P (B | A)P (A)

P (B)
.

2.2 Stochastic Process and Stochastic Differential Equations

The following definitions are extensions for sequence of random variables, the idea

being that of a family of random variables depending on time.

Definition 2.2.1. ( [21]) A collection of random variables which indexed by time t,

denoted by {Xt}t≥0 is called a stochastic process.

Definition 2.2.2. ( [21]) We say that a stochastic process {Xt}t≥0 has independent in-

crements if the increments

Xt1 −Xt0 , Xt2 −Xt1 , ..., Xtn−1 −Xtn−2 , Xtn −Xtn−1

are independent random variables for any t0 < t1 < · · · < tn.

Definition 2.2.3. ( [21]) A stochastic process {Bt}t≥0 is called a Wiener process with

start in x ∈ R if the following holds:

• B0 = x,

• for all 0 ≤ s ≤ t, we have Bt −Bs ∼ N (0, t− s),

• the process has independent increments.

We say that {Bt}t≥0 is a standard Wiener process if x = 0.

Definition 2.2.4. ( [3]) The Itô stochastic differential equation of a stochastic process Xt

on the interval [0, T ] has the form

dXt = f(t,Xt)dt+ g(t,Xt)dBt, (2.2.1)
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for 0 ≤ t ≤ T , where {Bt}t≥0 is a standard Wiener process and f, g satisfy the following

conditions:

• E|f(t)|2 ≤ k1 and E|g(t)|2 ≤ k2 for any t ∈ [0, T ] and k1, k2 ∈ R+,

• E|f(t2)− f(t1)|2 ≤ k3|t2− t1| and E|g(t2)− g(t1)|2 ≤ k4|t2− t1| for any t1, t2 ∈ [0, T ]

and k3, k4 ∈ R+,

• f and g are measurable on [0, T ]× Ω.

Theorem 2.2.5. ( [3]) (Itô’s formula) Let Xt be a stochastic process that satisfies

(2.2.1) and assume that F := F (t,Xt) is a twice continuously differentiable function. Let

f̃(t,Xt) =
∂F

∂t
+ f(t,Xt)

∂F

∂Xt
+

1

2
g2(t,Xt)

∂2F

∂X2
t

,

and

g̃(t,Xt) = g(t,Xt)
∂F

∂Xt
.

Then F satisfies the stochastic differential equation,

dF = f̃(t,Xt)dt+ g̃(t,Xt)dBt.

In Chapter 3, as we simulated the stochastic processes in order to obtain results

by the particle filter method, here we provided some background on the Euler-Maruyama

method.

Next, we define X̃t as numerical approximation of Xt.

Proposition 2.2.6. ( [3]) Let Xt be a stochastic process that satisfies (2.2.1). Then, the

Euler-Maruyama approximation of Xt on the interval [0, T ] has the form

X̃tn = X̃tn−1 + f(tn−1, X̃tn−1)∆tn + g(tn−1, X̃tn−1)∆Btn , X̃t0 = x0,

for n = 1, 2, ..., N , where ∆Btn = Btn −Btn−1 ∼ N (0,∆tn), ∆tn = T/N and tn = n∆tn.

Example 2.2.7. Assume that Xt satisfies the stochastic differential equation

dXt = aXtdt+ bXtdBt, (2.2.2)

for 0 ≤ t ≤ T . Let F (t,Xt) = logXt. By using Itô’s formula with (2.2.2), we obtain that

F satisfies the stochastic differential equation

dF =
(∂F
∂t

+ aXt
∂F

∂Xt
+

1

2
b2X2

t

∂2F

∂X2
t

)
dt+ bXt

∂F

∂Xt
dBt
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=
(
0 + aXt

1

Xt
− 1

2
b2X2

t

1

X2
t

)
dt+ bXt

1

Xt
dBt

= (a− 1

2
b2)dt+ bdBt.

By using the Euler-Maruyama method with (2.2.2), the discritized equation is given as

X̃tn = X̃tn−1 + aX̃tn−1∆tn + bX̃tn−1∆Btn ,

where ∆tn = tn − tn−1 and ∆Btn = Btn −Btn−1 .

2.3 Parameter Estimation Methods

In this section, we consider a methodology for obtaining estimators that is applicable

to many types of problems: particle filter and maximum likelihood estimation method.

2.3.1 Particle Filter Method

In this section, we start with introducing the state estimation problem. The filtering

problem is investigated. We consider the SIS particle filter method to solve this problem.

The algorithm is construced.

State Estimation Problem

In order to define the state estimation problem, we consider the model containing

two sequences of random vectors [23]:

1. The hidden state sequence, {xk}k∈N, is given by

xk = fk(xk−1,pk−1), (2.3.1)

where fk is a possibly nonlinear and time-dependent function of the state xk−1 and

{pk}k∈N is an independent and identically distributed state noise.

The sequence {xk}k∈N is assumed to be a Markov process, that is

p(xk|xk−1,xk−2, ...,x1,x0) = p(xk|xk−1). (2.3.2)

2. The observation state sequence, {zk}k∈N, is given by

zk = hk(xk,qk), (2.3.3)

where hk is a possibly nonlinear and time-dependent function of the state xk and

{qk}k∈N is an independent and identically distributed observation noise.
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The sequence {zk}k∈N is assumed to be a Markov process with respect to the history

of xk, that is

p(zk|xk,xk−1, ...,x1,x0) = p(zk|xk). (2.3.4)

The state estimation problem aims at obtaining information about xk based on the

hidden model (2.3.1) and z1:k := {z1, ..., zk} given by the observation model (2.3.3). The

hidden-observation model can be illustrated by Figure 2.1.

Figure 2.1: A graphical model of hidden-observation model

Different problems can be considered with this model, namely [18]:

1. The prediction problem, concerned with the determination of p(xk|z1:k−1).

2. The filtering problem, concerned with the determination of p(xk|z1:k).

3. The fixed-lag smoothing problem, concerned with the determination of p(xk|z1:k+p),

where p is the fixed-lag.

In this work, we focused on solving the filtering problem using the filtering method.

The aim of this method is to estimate p(xk|z1:k), the posterior distribution based on

observation of {z1, ..., zk}. By assuming that the initial distribution p(x0|z0) = p(x0) is

available and from Bayes’ theorem, we have

p(xk|z1:k) = p(xk|zk|z1:k−1)

=
p(zk|xk|z1:k−1)p(xk|z1:k−1)

p(zk|z1:k−1)

=
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)

=
p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)dxk

∝ p(zk|xk)p(xk|z1:k−1)

∝ p(zk|xk)

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1.
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Note that, the posterior distribution is described by three terms, the transition density of

hidden state p(xk|xk−1) is defined by the equation (2.3.2), the likelihood density p(zk|xk)

defined by the observation model (2.3.4), and suppose that the required posterior distri-

bution p(xk−1|z1:k−1) at time k − 1 is avaliable.

The most widely known filtering method called the Kalman filter, can be applied

to solve a linear model with Gaussian noise. If the linearity or the Gaussian condition

is not valid, the extended Kalman filter (EKF) and the unscented Kalman filter (UKF)

can be used. Similarly, Monte Carlo method have been developed in order to represent

the posterior distribution in terms of random samples and associated weights, denoted as

particle filter, do not to require the hypothesis of the Kalman filter. Hence, the particle

filter technique offer an alternative method to solve general filtering problem.

In this work, we treat {zk}k∈N as the stock price process and {xk}k∈N as the volatility

process. For solving filtering problem, we use the particle filter method.

Particle Filter Method

The particle filter method [4] is a Monte Carlo technique for the solution of the state

estimation problem. The particle filter is also known as the bootstrap filter, condensation

algorithm, interacting particle approximations and survival of the fittest. The key idea of

particle filter is to represent the required posterior distribution by a set of random samples

with associated weights and to compute estimates based on these samples and weights.

As the number of sample becomes large, the result become an equivalent representation

to the usual functional description of the posterior distribution.

Let {x(i)
k , w

(i)
k }Ni=1 denote N particles that characterizes the posterior distribution

where {x(i)
k }Ni=1 is a set of support points with associated weights {w(i)

k }Ni=1. The weights

are normalized such that
∑

iw
(i)
k = 1.

Then, the posterior distribution can be approximated as [4]:

p(xk|z1:k) ≈
N∑
i=1

w
(i)
k δ(xk − x

(i)
k ), (2.3.5)

where δ is a dirac-delta function.

There are various kinds of particle filters, such as sequential importance sampling

(SIS) filter, sampling importance resampling (SIR) filter, auxiliary sampling importance

resampling (ASIR) filter and regularized particle filter (RPF). In this work, we focus on

the SIS particle filter method.

The idea to generate SIS particle filter simulation are as followed: Firstly, the initials
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{x(i)
0 }Ni=1 need to be drawn from a prior distribution p(x0) and the initial weight of each

particle is set to equal 1/N . After the initial draw is completed, there will be two main

calculation steps for each time step, update and analysis. For time step k, the update step

is for update the values of {x(i)
k }Ni=1 from {x(i)

k−1}
N
i=1 based on importance density function,

denoted by π(·). Note that the importance density function, which normally be different

from (2.3.1), is chosen such that it is easier to simulate xk compare to (2.3.1). After the

update step is completed, the values of {w(i)
k }Ni=1 will be updated in the analysis step. The

weight are updated using the principle of importance weight sampling [9]. There are many

choices of updated importance weight sampling. In this research, we choose

w
(i)
k ∝ w

(i)
k−1

p(zk|x
(i)
k )p(x

(i)
k |x(i)

k−1)

π(x
(i)
k |x(i)

k−1, zk)
, (2.3.6)

and we select the optimal importance density function as defined in [9],

π(x
(i)
k |x(i)

k−1, zk) = p(x
(i)
k |x(i)

k−1, zk). (2.3.7)

Degeneracy Problem and Resampling

A common problem with the SIS particle filter is the degeneracy phenomenon. After

some iteration, only few particles would have non-zero importance weights [9]. A suitable

measure of degeneracy of the algorithm is the effective sample size, Neff introduced in [20],

which is defined by

Neff =
N

1 + var(w
(i)
k )

,

where w
(i)
k is the normalized weight obtained using (2.3.6). Note that the effective sample

size can not be evaluated exactly, but we can use an approximate, Ñeff , which is calculated

by

Ñeff =
1∑N

i=1(w
(i)
k )2

. (2.3.8)

When Ñeff is below a predefined threshold NT (say N
3 ,N2 or 2N

3 [1]), this suggest a

degeneracy problem. To solve this issue, an intuitive solution is to multiply the particles

with high normalized importance weights and discard the particles with low normalized

importance weights, which is done in the resampling step.

The basic idea of resampling is to eliminate particles that have small weights and

to concentrate on particles with large weights. The resampling step involves generating a

new set of {x(i)∗
k }Ni=1 and a new uniform weight w

(i)∗
k = 1

N for each i = 1, . . . , N .
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There are many types of resampling [15], such as multinomial resampling, stratified

resampling, systematic resampling and residual resampling. In this research, we use the

systematic resampling [19].

Algorithm

In general, the algorithm for the SIS particle filter is as followed:

Step 1: For time step k = 0 and for i = 1, 2, ..., N , draw the samples x
(i)
0 from the prior

distribution p(x0) and set w
(i)
0 = 1

N .

Step 2: For time step k = 1, 2, 3, ...,M .

Step 2.1: For i = 1, 2, ..., N , draw the samples x
(i)
k from the important density

function π(xk|x
(i)
k−1, zk).

Step 2.2: For i = 1, 2, ..., N , calculate the important weights w
(i)
k according to

(2.3.6) and normalize.

Step 2.3: Compute Ñeff according to (2.3.8). If Ñeff < NT , generate the new

particle set by systematic resampling.

Step 2.4: Calculate the posterior distribution p(xk|z1:k) according to (2.3.5).

2.3.2 Maximum Likelihood Estimation Method

In this section, we present the maximum likelihood estimation method, which is a

statistical method that finds the most likely value for the parameter based on the observed

data.

Definition 2.3.1. ( [22]) Suppose that we observeX1, X2, ..., Xn, a set of random variables

from a distribution that depends on the vector of parameter α with probability density

function f(xi|α). Then, the joint probability density function of the observed sample

given by

f(x1, ..., xn|α).

Moreover, The log-likelihood function considers the density function f(x1, ..., xn|α) as a

function of α where observe sample is taken to be fixed. That is,

L(α|x1, ..., xn) = ln f(x1, ..., xn|α).
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Theorem 2.3.2. ( [22]) The maximum likelihood estimators of α are taken to be the

points that maximize the function L(α|x1, ..., xn) with respect to α. That is, α̂ is the

maximum likelihood estimator of α if

L(α̂|x1, ..., xn) = sup
α∈A

L(α|x1, ..., xn),

where A is the set of all vector parameters. Assume that L(α|x1, ..., xn) is a twice differen-

tiable function, candidates for the maximum likelihood estimator of α have the properties

∂

∂α
L(α|x1, ..., xn)|α=α̂ = 0,

and
∂2

∂α2
L(α|x1, ..., xn)|α=α̂ < 0.

Example 2.3.3. Suppose that X1, X2, ..., Xn is a set of independent and identically dis-

tributed random variables from N (µ, σ2) distribution. We will denote the corresponding

observed sample as x1, x2, ..., xn. The likelihood function in this case is given by

L(µ, σ2|x1, ..., xn) = f(x1, ..., xn|µ, σ2)

=
n∏

i=1

f(xi|µ, σ2)

=
n∏

i=1

1√
2πσ2

exp(
−(xi − µ)2

2σ2
)

= (
1√
2πσ2

)n exp
(
−

n∑
i=1

(xi − µ)2

2σ2
)

= (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)
.

Therefore, the log-likelihood function is given by

lnL(µ, σ2|x1, ..., xn) = −n
2
ln(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2.

The first partial derivatives are

∂

∂µ
lnL(µ, σ2|x1, ..., xn) =

1

σ2

n∑
i=1

(xi − µ),

and

∂

∂σ2
lnL(µ, σ2|x1, ..., xn) = − n

2σ2
+

1

2(σ2)2

n∑
i=1

(xi − µ)2

= − n

2(σ2)2

(
σ2 − 1

n

n∑
i=1

(xi − µ)2
)
.
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Setting these partial derivatives equal to zero and solving for µ and σ give

µ̂ =
1

n

n∑
i=1

xi = x̄n, and σ̂2 =
1

n

n∑
i=1

(xi − x̄n)
2.

Obviously, the second partial derivative with respect to µ and σ are negative, we obtain

that µ̂ and σ̂2 are the maximum likelihood estimators.
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