
CHAPTER 3

Main Results

In this chapter, we apply the SIS particle filter method and the maximum likelihood

estimation method to estimate volatility process and model parameters in 3/2 model.

3.1 Estimation of Volatility Process

In this section, we derive how to use SIS particle filter method to estimate volatility

process of 3/2 model. Section 3.1.1 provides the set up and the algorithm. The simulation

study is in section 3.1.2.

3.1.1 Derivation of Particle Filter Algorithm

First, we recall the 3/2 stochastic volatility model can be described in the stochastic

differential form as

dSt = µStdt+
√
vtStdBt, (3.1.1)

dvt = κvt(θ − vt)dt+ ξv
3
2
t dWt, (3.1.2)

where {Bt}t≥0 and {Wt}t≥0 represent two standard Wiener processes, correlated with the

correlation coefficient ρ.

Now, we define the log-price process

yt := log
St
S0
.

And, we transform the system of SDEs in (3.1.1)-(3.1.2) to the following system:

Lemma 3.1.1. The stochastic differential form of 3/2 volatility model in (3.1.1)-(3.1.2)

can be written as

dyt = (µ− 1

2
vt)dt+

√
vtdBt, (3.1.3)

dvt =
(
κvt(θ − vt)− ξρ(µ− 1

2
vt)vt

)
dt+ ξρvtdyt + ξ

√
1− ρ2v

3
2
t dZt, (3.1.4)

where {Bt}t≥0 and {Zt}t≥0 are independent standard Wiener processes.
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Proof. To get (3.1.3), we use Ito’s formula in Theorem 2.2.5 with (3.1.1) .

Since F (t, St) = yt, f(t, St) = µSt and g(t, St) =
√
vtSt, we obtain that

dyt =
(∂yt
∂t

+ µSt
∂yt
∂St

+
1

2
vtS

2
t

∂2yt
∂S2

t

)
dt+

√
vtSt

∂yt
∂St

dBt

=
(
0 + µSt

1

St
− 1

2
vtS

2
t

1

S2
t

)
dt+

√
vtSt

1

St
dBt

= (µ− 1

2
vt)dt+

√
vtdBt.

For (3.1.4), we know that Bt and Wt are two standard Wiener processes with the correla-

tion coefficient ρ.

By setting Zt = (Wt − ρBt)/
√

1− ρ2, we get Zt is independent of Bt (see Appendix A).

Moreover, by (3.1.3), we can write

dWt =
√

1− ρ2dZt + ρdBt

=
√

1− ρ2dZt +
ρ

√
vt

(
dyt − (µ− 1

2
vt)dt

)
. (3.1.5)

Therefore, by (3.1.2) and (3.1.5), we have

dvt = κvt(θ − vt)dt+ ξv
3
2
t

(√
1− ρ2dZt +

ρ
√
vt

(
dyt − (µ− 1

2
vt)dt

))
= κvt(θ − vt)dt+ ξ

√
1− ρ2v

3
2
t dZt + ξρvt

(
dyt − (µ− 1

2
vt)dt

)
=

(
κvt(θ − vt)− ξρ(µ− 1

2
vt)vt

)
dt+ ξρvtdyt + ξ

√
1− ρ2v

3
2
t dZt.

Note that, the purpose of transformation is to get the process {yt}t≥0 as a measure-

ment of the volatility process {vt}t≥0. Next, we will apply the Euler-Maruyama method

to (3.1.3)-(3.1.4). This leads to the following discretized system:

Lemma 3.1.2. The Euler-Maruyama form of (3.1.3)-(3.1.4) are

ỹtn = ỹtn−1 + (µ− 1

2
ṽtn)∆tn +

√
ṽtn−1∆Btn , (3.1.6)

ṽtn = ṽtn−1 +
(
κṽtn−1(θ − ṽtn−1)− ξρ(µ− 1

2
ṽtn−1)ṽtn−1

)
∆tn (3.1.7)

+ ξρṽtn−1(ỹtn − ỹtn−1) + ξ
√

1− ρ2ṽ
3
2
tn−1

∆Ztn ,

where ∆tn = tn − tn−1, ∆Btn = Btn −Btn−1 and ∆Ztn = Ztn − Ztn−1.

Moreover, an alternative form of the discretized volatility process in (3.1.7) is

ṽtn =
ṽtn−1 + κṽtn−1(θ − ṽtn−1)∆tn + ξṽ

3
2
tn−1

∆Wtn + 1
2ξρṽ

2
tn−1

∆tn

1 + 1
2ξρṽtn−1∆tn

, (3.1.8)

where ∆tn = tn − tn−1 and ∆Wtn =Wtn −Wtn−1.
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Proof. For (3.1.6) and (3.1.7), we use directly Euler-Maruyama method in Proposition 2.2.6.

Then, for (3.1.8), from (3.1.6) and (3.1.7), we can see that

ṽtn +
1

2
ξρṽtn ṽtn−1∆tn = ṽtn−1 +

(
κṽtn−1(θ − ṽtn−1)− ξρ(µ− 1

2
ṽtn−1)ṽtn−1

)
∆tn

+ ξ
√
1− ρ2ṽ

3
2
tn−1

∆Ztn + ξρṽtn−1

(
(µ− 1

2
ṽtn)∆tn +

√
ṽtn−1∆Btn

)
+

1

2
ξρṽtn ṽtn−1∆tn

= ṽtn−1 + κṽtn−1(θ − ṽtn−1)∆tn + ξ
√

1− ρ2ṽ
3
2
tn−1

∆Ztn + ξρṽ
3
2
tn−1

∆Btn

+
1

2
ξρṽ2tn−1

∆tn

= ṽtn−1 + κṽtn−1(θ − ṽtn−1)∆tn + ξṽ
3
2
tn−1

∆Wtn +
1

2
ξρṽ2tn−1

∆tn.

Since

ṽtn +
1

2
ξρṽtn ṽtn−1∆tn = ṽtn

(
1 +

1

2
ξρṽtn−1∆tn

)
,

the proof is now completed.

Now, we are ready to derive the SIS particle filter algorithm. Note that the update

step is done via (3.1.7). For the analysis step, we consider the updated importance weight

in order to estimate the discritized volatility process ṽtn , for time tn, based on our obser-

vation data {ỹtk}t0≤tk≤tn . As explained in section 2.3.1, our chosen updated importance

weight w
(i)
tn at time tn is obtain as:

w
(i)
tn ∝ w

(i)
tn−1

p(ỹtn | ṽ(i)tn )p(ṽ
(i)
tn | ṽ(i)tn−1

)

p(ṽ
(i)
tn | ṽ(i)tn−1

, ỹtn)
. (3.1.9)

Now, we derive all required probability density functions in (3.1.9).

Proposition 3.1.3. Let ϕ(x, µ, σ2) := 1√
2πσ2

e−(x−µ)2/2σ2
be the probaility density function

of N (µ, σ2) random variables. Then, from (3.1.9) and for i = 1, 2, ..., N ,

(a) For the likelihood function,

p(ỹtn | ṽ(i)tn ) = ϕ(ỹtn ,m1, σ
2
1),

where,

m1 = ỹtn−1 + (µ− 1

2
ṽ
(i)
tn )∆tn, and σ21 = ṽ

(i)
tn−1

∆tn.

(b) For the transition probability density function,

p(ṽ
(i)
tn | ṽ(i)tn−1

) = ϕ(ṽ
(i)
tn ,m2, σ

2
2),
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where

m2 =
ṽ
(i)
tn−1

+ κṽ
(i)
tn−1

(θ − ṽ
(i)
tn−1

)∆tn + 1
2ξρ(ṽ

(i)
tn−1

)2∆tn

1 + 1
2ξρṽ

(i)
tn−1

∆tn
,

and

σ22 =
ξ2(ṽ

(i)
tn−1

)3∆tn

(1 + 1
2ξρṽ

(i)
tn−1

∆tn)2
.

(c) For the optimal importance function,

p(ṽ
(i)
tn | ṽ(i)tn−1

, ỹtn) = ϕ(ṽ
(i)
tn ,m3, σ

2
3),

where

m3 = ṽ
(i)
tn−1

+
(
κṽ

(i)
tn−1

(θ − ṽ
(i)
tn−1

)− ξρ(µ− 1

2
ṽ
(i)
tn−1

)ṽ
(i)
tn−1

)
∆tn + ξρṽ

(i)
tn−1

(ỹtn − ỹtn−1),

and

σ23 = ξ2(1− ρ2)(ṽ
(i)
tn−1

)3∆tn.

Proof. We apply the properties of standard Wiener process and the properties of normal

random variables to (3.1.6), (3.1.8) and (3.1.7), we obtain that ỹtn and ṽtn are also normal

random variables for each time tn with mean and variance as follow:

(a) By properties of conditional expect value and conditional variance, we get

m1 = E(ỹtn |ṽtn , ỹtn−1 , ṽtn−1)

= E(ỹtn−1 + (µ− 1

2
ṽtn)∆tn +

√
ṽtn−1∆Btn |ṽtn , ỹtn−1 , ṽtn−1)

= ỹtn−1 + (µ− 1

2
ṽtn)∆tn +

√
ṽtn−1 E(∆Btn)

= ỹtn−1 + (µ− 1

2
ṽtn)∆tn,

and

σ21 = var(ỹtn |ṽtn , ỹtn−1 , ṽtn−1)

= var(ỹtn−1 + (µ− 1

2
ṽtn)∆tn +

√
ṽtn−1∆Btn |ṽtn , ỹtn−1 , ṽtn−1)

= var(
√
ṽtn−1∆Btn |ṽtn , ỹtn−1 , ṽtn−1)

= ṽtn−1var(∆Btn)

= ṽtn−1∆tn.

For each i = 1, 2, ..., N , the proof is complete.
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(b) The idea of the proof for (b) is the same as the proof in (a) as:

m2 = E(ṽtn |ṽtn−1)

= E
(
ṽtn−1 + κṽtn−1(θ − ṽtn−1)∆tn + ξṽ

3
2
tn−1

∆Wtn + 1
2ξρṽ

2
tn−1

∆tn

1 + 1
2ξρṽtn−1∆tn

∣∣∣∣ṽtn−1

)
=
ṽtn−1 + κṽtn−1(θ − ṽtn−1)∆tn + 1

2ξρṽ
2
tn−1

∆tn

1 + 1
2ξρṽtn−1∆tn

,

and

σ22 = var(ṽtn |ṽtn−1)

= var

(
ṽtn−1 + κṽtn−1(θ − ṽtn−1)∆tn + ξṽ

3
2
tn−1

∆Wtn + 1
2ξρṽ

2
tn−1

∆tn

1 + 1
2ξρṽtn−1∆tn

∣∣∣∣ṽtn−1

)
=

ξ2ṽ3tn−1
∆tn

(1 + 1
2ξρṽtn−1∆tn)

2
.

For each i = 1, 2, ..., N , the proof is complete.

(c) Similarly with (a) and (b), we can see that

m3 = E(ṽtn |ỹtn , ỹtn−1 , ṽtn−1)

= E
(
ṽtn−1 +

(
κṽtn−1(θ − ṽtn−1)− ξρ(µ− 1

2
ṽtn−1)ṽtn−1

)
∆tn

+ ξρṽtn−1(ỹtn − ỹtn−1) + ξ
√
1− ρ2ṽ

3
2
tn−1

∆Ztn

∣∣ỹtn , ỹtn−1 , ṽtn−1

)
= ṽtn−1 +

(
κṽtn−1(θ − ṽtn−1)− ξρ(µ− 1

2
ṽtn−1)ṽtn−1

)
∆tn

+ ξρṽtn−1(ỹtn − ỹtn−1),

and

σ23 = var(ṽtn |ỹtn , ỹtn−1 , ṽtn−1)

= var

(
ṽtn−1 +

(
κṽtn−1(θ − ṽtn−1)− ξρ(µ− 1

2
ṽtn−1)ṽtn−1

)
∆tn

+ ξρṽtn−1(ỹtn − ỹtn−1) + ξ
√
1− ρ2ṽ

3
2
tn−1

∆Ztn

∣∣ỹtn , ỹtn−1 , ṽtn−1

)
= ξ2(1− ρ2)ṽ3tn−1

∆tn.

For each i = 1, 2, ..., N , the proof is complete.

Combining all of these results, the SIS particle filter algorithm is now ready.
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The SIS Particle Filter Algorithm for Volatility Process

Step 1: For time step t0 = 0 and for i = 1, 2, ..., N , draw the samples ṽ
(i)
0 from a prior

distribution p(ṽ0) and set w
(i)
0 = 1

N .

Step 2: For time steps tn = 1, 2, 3, ...,M ,

Step 2.1: For i = 1, 2, ..., N , draw the samples ṽ
(i)
tn from (3.1.7).

Step 2.2: For i = 1, 2, ..., N , calculate the important weights w
(i)
tn according to

(3.1.9) and normalize.

Step 2.3: Compute Ñeff according to (2.3.8). If Ñeff < NT , generate the new

particle set by systematic resampling.

Step 2.4: Calculate the posterior distribution p(ṽtn |ỹ1:tn) according to (2.3.5).

3.1.2 Simulation Studies of Volatility Estimation

In the simulation studies, we first create one realization of St and vt based on the 3/2

stochastic volatility model for 0 ≤ t ≤ 5, the time difference ∆tn = 0.00025 with parameter

values µ = 0.1, κ = 3.0, θ = 0.1, ξ = 0.4, ρ = −0.2 and initial values v0 ∼ N (0.25, 0.022),

S0 = 10. Then, we use this simulation result as the true volatilities of the model based on

St for the comparison. The stock price and volatility process are shown in Figure 3.1.
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Figure 3.1: Stock price process and volatility process

To apply the SIS particle filter algorithm, we set the number of particles, N , as 1000

and the effective sample size threshold NT = 2N/3. We consider four cases of simulations

as followed:
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Case 1 Exact parameters case: The values of parameters are assumed to be known. That

is, we set

µ = 0.1, κ = 3.0, θ = 0.1, ξ = 0.4 and ρ = −0.2.

Case 2 Good-range set of parameters case: The values of parameters are assumed to

unknown and the true values are contained inside the guessed ranges as follows:

µ ∼ U(0.05, 0.15), κ ∼ U(1, 5), θ ∼ U(0.05, 0.15), ξ ∼ U(0.1, 0.7) and ρ ∼ U(−0.5, 0.1).

Case 3 Bad-range set of parameters case: The values of parameters are assumed to

unknown but the true values are not contained inside the guessed ranges as follows:

µ ∼ U(0.6, 0.9), κ ∼ U(10, 15), θ ∼ U(0.45, 0.8), ξ ∼ U(1, 3) and ρ ∼ U(0.1, 0.8).

Case 4 Wide-range set of parameters case: The values of parameters are assumed to

unknown, the true values are contained inside the guessed ranges, but the ranges

are much wider than in Case 2 as follows:

µ ∼ U(0.01, 2), κ ∼ U(0.1, 10), θ ∼ U(0.01, 0.5), ξ ∼ U(0.02, 2) and ρ ∼ U(−0.8, 0.6).

Note that U(a, b) denotes the uniform distribution where a, b are lower and upper bounds

respectively.

In Case 2, 3 and 4, the hidden processes will be a state vector

ztn = (ṽtn , µtn , κtn , θtn , ξtn , ρtn).

Also during the update step, the value of vtn will be updated from (3.1.7). Note that the

rest of parameters is time independent, the values are not update and we encounter the

degeneration problem, described in [1]. In this reseach to avoid this deficiency, we assume

that the parameter processes are the simple linear process with Gaussian noise, that is

µtn = µtn−1+η
1
tn , κtn = κtn−1+η

2
tn , θtn = θtn−1+η

3
tn , ξtn = ξtn−1+η

4
tn and ρtn = ρtn−1+η

5
tn ,

where η1tn , η
2
tn , η

3
tn , η

4
tn , η

5
tn ∼ N (0, 0.012).

In each case, we plot the simulated values from the SIS particle filter method against

the true value, as well as the square error, |ṽtn − v̂tn |2. The simulation results of Case 1 to

4 are shown in Figure 3.2, Figure 3.3-3.4, Figure 3.5-3.6 and Figure 3.7-3.8 respectively.
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Figure 3.2: Exact parameters case: volatilities and square errors by SIS particle filter
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Figure 3.3: Good-range set of parameters case: volatilities and square errors by SIS particle
filter
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Figure 3.4: Good-range set of parameters case: parameters estimation by SIS particle
filter
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Figure 3.5: Bad-range set of parameters case: volatilities and square errors by SIS particle
filter
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Figure 3.6: Bad-range set of parameters case: parameters estimation by SIS particle filter
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Figure 3.7: Wide-range set of parameters case: volatilities and square errors by SIS particle
filter

Simulation Studies Analysis

From the simulation results, we can see that the volatility estimation in Case 1 and

2 are very close to the true volatilities. However, the estimation is not so precise in Case 3

and 4. This suggests that the choice of parameters are also important for the estimation of

volatility process. Also, note that the parameter values do not tend to the true values in all

cases. Hence, it is suggested to use other estimation technique for parameters estimation,

the maximum likelihood estimation (MLE), is proposed in the next section.
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Figure 3.8: Wide-range set of parameters case: parameters estimation by SIS particle
filter

3.2 Estimation of Model Parameters

In this section, we use the log-price process and estimated volatility process, which

obtained from the previous section, to estimate the model parameters in 3/2 model by

using the maximum likelihood estimation method. The log-likelihood function for solving

this problem is derived.

First, we claim that the volatility process and the log-price process are observed.

Remark 3.2.1. By setting xtn =
[
ỹtn ṽtn

]T
, where ỹtn and ṽtn are defined in Lemma 3.1.2.

We have xtn |xtn−1 is a normal random vector. To show that xtn |xtn−1 is a normal random

vector, we need to show that k1ỹtn + k2ṽtn has a normal distribution for k1, k2 ∈ R. From

(3.1.6)-(3.1.7) and condition on ỹtn−1 , ṽtn−1, we can write k1ỹtn + k2ṽtn in the form of

h1 + h2∆Btn + h3∆Ztn , where h1, h2 and h3 are some constants. Since ∆Btn and ∆Ztn

are independent normal random variables, the proof is now completed.

Now, we will derive the probability density function of xtn |xtn−1 and the log-likelihood

function L(α|xt1 , ...,xtN ), where α := (µ, κ, θ, ξ, ρ) is a vector of parameter.

Proposition 3.2.2. Let ỹtn and ṽtn satisfy the discritized system (3.1.6)-(3.1.7). Then,

(a) E(ỹtn |ṽtn , ỹtn−1 , ṽtn−1) = ỹtn−1 + (µ− 1
2 ṽtn)∆tn,

(b) E(ṽtn |ỹtn , ỹtn−1 , ṽtn−1) = ṽtn−1 +
(
κṽtn−1(θ − ṽtn−1)− ξρ(µ− 1

2 ṽtn−1)ṽtn−1

)
∆tn

+ ξρṽtn−1(ỹtn − ỹtn−1),
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(c) var(ỹtn |ṽtn , ỹtn−1 , ṽtn−1) = ṽtn−1∆tn,

(d) var(ṽtn |ỹtn , ỹtn−1 , ṽtn−1) = ξ2(1− ρ2)ṽ3tn−1
∆tn,

(e) cov(ỹtn , ṽtn |ỹtn−1 , ṽtn−1),= ξρṽ2tn−1
∆tn,

where ∆tn = tn − tn−1.

Proof. For (a)-(d), the proofs are obtained in Proposition 3.1.3.

To get (e), we rewrite (3.1.7) as:

ṽtn = atn + btn(ỹtn − ỹtn−1) + ctn∆Ztn ,

where atn = ṽtn−1 +
(
κṽtn−1(θ − ṽtn−1) − ξρ(µ − 1

2 ṽtn−1)ṽtn−1

)
∆tn, btn = ξρṽtn−1 and

ctn = ξ
√
1− ρ2ṽ

3
2
tn−1

.

Hence, we obtain that

cov(ỹtn , ṽtn |ỹtn−1 , ṽtn−1) = cov(ỹtn , atn + btn(ỹtn − ỹtn−1) + ctn∆Ztn |ỹtn−1 , ṽtn−1)

= cov(ỹtn , btn ỹtn + ctn∆Ztn |ỹtn−1 , ṽtn−1)

= cov(ỹtn , btn ỹtn |ỹtn−1 , ṽtn−1) + cov(ỹtn , ctn∆Ztn |ỹtn−1 , ṽtn−1).

Consider

cov(ỹtn , btn ỹtn |ỹtn−1 , ṽtn−1) = btncov(ỹtn , ỹtn |ỹtn−1 , ṽtn−1)

= btnvar(ỹtn |ỹtn−1 , ṽtn−1)

= ξρṽ2tn−1
∆tn, (3.2.1)

and

cov(ỹtn , ctn∆Ztn |ỹtn−1 , ṽtn−1) = cov(ỹtn−1 + (µ− 1

2
ṽtn−1)∆tn +

√
ṽtn−1∆Btn , ctn∆Ztn |ỹtn−1 , ṽtn−1)

= cov(
√
ṽtn−1∆Btn , ctn∆Ztn |ỹtn−1 , ṽtn−1)

=
√
ṽtn−1ctncov(∆Btn ,∆Ztn)

= 0. (3.2.2)

Then, from (3.2.1) and (3.2.2), we have

cov(ỹtn , ṽtn |ỹtn−1 , ṽtn−1) = ξρṽ2tn−1
∆tn.
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Remark 3.2.3. The normal random vector xtn |xtn−1 has the probability density function

p(xtn |xtn−1) =
1√

4π2|Σtn |
exp

(
− 1

2
(xtn − µtn)

TΣ−1
tn (xtn − µtn)

)
,

where µtn, Σtn are the mean vector and covariance matrix of xtn, which all elements are

defined in Proposition 3.2.2.

Theorem 3.2.4. Let (xt1 , ...,xtN ) be a vector of N -observed data and α be a vector of

parameter. The log-likelihood function of 3/2 stochastic volatility model is

L(α|xt1 , ...,xtN ) = −
N∑

n=1

(
ln(

√
4π2|Σtn |) +

1

2
(xtn − µtn)

TΣ−1
tn (xtn − µtn)

)
, (3.2.3)

where xtn, µtn and Σtn are defined in Remark 3.2.3.

Proof. By Remark 3.2.3 and by conditional probability and Markov property, we have

L(α|xt1 , ...,xtN ) = ln p(xt1 , ...,xtN |α)

= ln

N∏
n=1

p(xtn |xt1 , ...,xtn−1 ,α)

= ln
N∏

n=1

p(xtn |xtn−1 ,α)

=
N∑

n=1

ln p(xtn |xtn−1 ,α)

=
N∑

n=1

(
ln
( 1√

4π2|Σtn |
exp

(
− 1

2
(xtn − µtn)

TΣ−1
tn (xtn − µtn)

)))

=
N∑

n=1

(
ln(

1√
4π2|Σtn |

)− 1

2
(xtn − µtn)

TΣ−1
tn (xtn − µtn)

)

= −
N∑

n=1

(
ln(

√
4π2|Σtn |) +

1

2
(xtn − µtn)

TΣ−1
tn (xtn − µtn)

)
.

Therefore, this proof is complete.
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Simulation Studies of Parameter Estimation

In this simulation study, we select the observed data, volatility process and log-price

process, from Case 2 in previous section. The data is shown in Figure 3.3.

Now, we input these data in (3.2.3) to get the log-likelihood function for our model

as in Theorem 3.2.4. Finally, we find the maximum likelihood estimators by using the

command ”fminsearch” in MATLAB program..

We consider two simulation studies as follows:

Simulation study 1: We assume that µ and θ are known, µ = θ = 0.1, and we need to

estimate the rest of parameters. In order to compare the estimation results, we estimate

the values of parameters based on the number of observed data as follows:

Case 1: 5,000 observed data (∆tn = 0.001),

Case 2: 10,000 observed data (∆tn = 0.0005),

Case 3: 20,000 observed data (∆tn = 0.00025).

Table 3.1: Estimated values of κ, ξ and ρ with estimated data

Parameter True value 5,000 obs. data 10,000 obs. data 20,000 obs. data
Est. val. Abs. err. Est. val. Abs. err. Est. val. Abs. err.

κ 3.0 5.4024 2.4024 5.4003 2.4003 5.3218 2.3218
ξ 0.4 1.7710 0.7710 0.8802 0.4802 0.6895 0.2895
ρ -0.2 -0.6572 0.4572 -0.6149 0.4149 -0.5494 0.3494

Simulation study 2: All parameters are assumed to unknown. In order to compare the

estimation results, we estimate the values of parameters based on the number of observed

data as follows:

Case 1: 5,000 observed data (∆tn = 0.001),

Case 2: 10,000 observed data (∆tn = 0.0005),

Case 3: 20,000 observed data (∆tn = 0.00025).

In each case, we compute the estimated values from maximum likelihood estimation

method against the true values, as well as the absolute errors, |αtn − α̂tn |. The results of

Simulation study 1 and Simulation study 2 are shown in Table 3.1 and 3.2 respectively.

Both simulation studies show that the estimation obtained from the maximum likelihood

method, based on the log-likelihood function in (3.2.3), works fairly well.
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Table 3.2: Estimated values of µ,κ, θ, ξ and ρ with estimated data

Parameter True value 5,000 obs. data 10,000 obs. data 20,000 obs. data
Est. val. Abs. err. Est. val. Abs. err. Est. val. Abs. err.

µ 0.1 0.2956 0.1956 0.1083 0.0083 0.2901 0.1901
κ 3.0 5.4121 2.4121 4.2959 1.2959 5.4272 2.4272
θ 0.1 0.1002 0.0002 0.0953 0.0047 0.1001 0.0001
ξ 0.4 0.5638 0.1638 0.7660 0.3660 0.4477 0.0477
ρ -0.2 -0.4541 0.2541 -0.5827 0.3827 -0.1694 0.0306

In Simulation study 1, the errors decrease as the number of observed data increase.

However, it seems that the absolute errors do not depend on the number of observed data

in Simulation study 2. This may due to the number of parameters that are estimated in

Simulation study 1 is less than that in Simulation study 2.

For the comparison to real data, we use the maximum likelihood estimation method

with the data as in Figure 3.1. The results are shown in the following tables.

Table 3.3: Estimated values of κ, ξ and ρ with real data

Parameter True value 5,000 obs. data 10,000 obs. data 20,000 obs. data
Est. val. Abs. err. Est. val. Abs. err. Est. val. Abs. err.

κ 3.0 2.8562 0.1438 3.1045 0.1045 3.0566 0.0566
ξ 0.4 0.4679 0.0679 0.4612 0.0612 0.4222 0.0222
ρ -0.2 -0.3063 0.1063 -0.2202 0.0202 -0.2089 0.0089

Table 3.4: Estimated values of µ,κ, θ, ξ and ρ with real data

Parameter True value 5,000 obs. data 10,000 obs. data 20,000 obs. data
Est. val. Abs. err. Est. val. Abs. err. Est. val. Abs. err.

µ 0.1 0.1692 0.0692 0.0816 0.0184 0.0932 0.0068
κ 3.0 3.2857 0.2857 3.0709 0.0709 2.9179 0.0821
θ 0.1 0.0909 0.0091 0.1190 0.0190 0.1012 0.0012
ξ 0.4 0.4762 0.0762 0.4422 0.0422 0.4267 0.0267
ρ -0.2 -0.3733 0.1733 -0.1767 0.0233 -0.2716 0.0716

We can see that the estimated value of model parameters with true volatility and

estimated volatility from SIS particle filter method have nearly the same value, it can be

guarantee that the particle filter method is a quite good method for volatility estimation

in our model.
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