CONTENTS

ACKNOWLEDGEMENT	iii
ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	viii
CONTENTS	xi
LIST OF TABLES	xvii
LIST OF FIGURES	XX
ABBREVIATIONS AND SYMBOLS	xxvii
STATEMENTS OF ORIGINALITY IN THAI	XXX
STATEMENTS OF ORIGINALITY IN ENGLISH	xxxi
CHAPTER 1	1
Introduction	
1.1 Statement and significant of the study	1
1.2 Objectives	5
CHAPTER 2	6
Literature review	
2.1 Lignocellulosic materials	6
2.1.1 Celluloses	8
2.1.2 Hemicelluloses	10
2.1.3 Lignins	15
2.2 Pretreatment technology for lignocellulosic materials	16
2.3 The enzymatic hydrolysis of lignocellulosic materials	24
2.3.1 Cellulases	24

Page

2.3.1.1 Endo-glucanases	24
2.3.1.2 Exo-glucanases	24
2.3.1.3 β -glucosidases	25
2.3.2 Hemicellulases	26
2.3.2.1 Endo-xylanases	26
2.3.2.2 β-xylosidases	31
2.3.2.3 Hemicellulose debranching enzymes	31
2.4 Xylooligosaccharides (XOs)	32
2.4.1 Prebiotics properties and health benefits of xylooligosaccharides	35
2.5 Bioethanol	37
2.5.1 Bioethanol fermentation through the Embden-Meyerhof-Parnas	37
(EMP) pathway	
2.5.1.1 The entry of glucose into cell and the fructose 1,6-	37
bisphosphate formation	
2.5.1.2 The cleavage of six carbon sugar	39
2.5.1.3 The recovery of tree-carbon fragment	40
2.5.1.4 The phosphorylation and oxidation of glyceraldehyde 3-	40
phosphate	
2.5.1.5 The generation of ATP from 1,3-bisphosphoglycerate	41
2.5.1.6 The generation of ATP and the formation of pyruvate	42
2.5.1.7 The ethanol fermentation	42
2.5.2 The second generation bioethanol production	48
CHAPTER 3	52
Production of Xylooligosaccharides from Corncob Using a Crude	
Thermostable Endo-Xylanase from Streptomyces thermovulgaris	
TISTR1948 and Prebiotic Properties	

3.1 Introduction

3.2 1	Materials and Methods	54
	3.2.1 Microorganisms	54
	3.2.2 Raw materials	54
	3.2.3 Chemicals	54
	3.2.4 Corncob composition and morphology analysis	55
	3.2.5 Enzyme assays	55
	3.2.6 Analysis of xylooligosaccharides, other sugars and lactic acid	55
	3.2.7 Alkali pretreatment of corncob	56
	3.2.8 Thermostable endo-xylanase production	56
	3.2.9 Productions of xylooligosaccharides	56
	3.2.10 Optimization of xylooligosaccharide production using	57
	response surface methodology	
	3.2.11 Preparation of corncob-xylooligosaccharides powder	58
	3.2.12 In vitro fermentation of corncob-xylooligosaccharides	58
3.3 1	Results and Discussion	59
	3.3.1 Alkali pretreatment of corncob	59
	3.3.2 Productions of xylooligosaccharides	59
	3.3.3 Analysis of corncob composition	62
	3.3.4 The optimal conditions for xylooligosaccharide production	62
	3.3.5 Time course of xylooligosaccharide production from CCD	68
	validation model and the served	
	3.3.6 Scanning electron microscope analysis of corncob samples	70
	3.3.7 In vitro fermentation of corncob-xylooligosaccharides	71
3.4 (Conclusion	73

CHAPTER 4	74
Purification and Characterization of Thermostable Endo-Xylanase	
from Streptomyces thermovulgaris TISTR1948 and Its Application on	
Xylooligosaccharide Production	
4.1 Introduction	74
4.2 Materials and Methods	75
4.2.1 Microorganisms	75
4.2.2 Raw materials	76
4.2.3 Chemicals	76
4.2.4 Corncob morphology analysis	76
4.2.5 Analysis of xylooligosaccharides, other sugars and lactic acid	76
4.2.6 Alkali pretreatment of corncob	77
4.2.7 Xylanase production	77
4.2.8 Enzyme assay and kinetic parameters of purified xylanase	77
4.2.9 Purification of xylanase	78
4.2.10 SDS-PAGE	78
4.2.11 Xylanase characterization	78
4.2.11.1 Effect of pH on xylanase activity and stability	78
4.2.11.2 Effect of temperature on xylanase activity and stability	79
4.2.11.3 Effect of metal ions and chemical reagents on xylanase	79
activity for the second s	
4.2.11.4 Substrate specificity	79
4.2.12 Enzymatic hydrolysis of KOH-treated corncob and prebiotic	79
activity testing of the produced xylooligosaccharides	
4.3 Results and Discussion	80
4.3.1 Xylanase purification	80
4.3.2 Xylanase characterization	82

4.3.2.1 Kinetic parameters	82
4.3.2.2 Effect of pH and temperature on xylanase activity and	83
stability	
4.3.2.3 Effects of metal ions and chemical reagents on xylanase	85
activity	
4.3.3 Xylooligosaccharide production by crude, partially purified and	86
purified xylanase_1948	
4.3.4 Prebiotic effect of xylooligosaccharides on fermentation by	91
Lactobacillus	
4.4 Conclusion	94
CHAPTER 5	95
An Integrated Process for Xylooligosaccharide and Bioethanol	
Production from Corncob	
5.1 Introduction	95
5.2 Materials and Methods	96
5.2.1 Chemicals and materials	96
5.2.2 Analysis of xylooligosaccharides, fermentable sugar and ethanol	96
5.2.3 Enzyme assays	97
5.2.4 Characterization of cellulose-rich corncob and mass balance of	98
the process	
5.2.5 Microorganisms and culture conditions	98
5.2.6 Integrated process for xylooligosaccharide and bioethanol	99
production	
5.2.6.1 First step of xylooligosaccharide production in a 5-L	99
stirred tank bioreactor	
5.2.6.2 Second step of bioethanol production	100
5.2.6.3 Calculation and statistical analysis	102

5.3 Results and Discussion	104
5.3.1 Optimal condition for KOH pretreatment of corncob	104
5.3.2 Production of xylooligosaccharides in a 5-L stirred tank	106
bioreactor	
5.3.3 The optimal condition for fermentable sugar production	107
5.3.4 Separate hydrolysis and fermentation (SHF) process of	120
bioethanol production	
5.3.5 Simultaneous saccharification and fermentation (SSF) process	123
of bioethanol production	
5.3.5.1 Laboratory scale in 100-mL bottles	123
5.3.5.2 Ethanol production in a 5-L bioreactor	126
5.3.6 Mass balance of the integrated process for	131
xylooligosaccharides and bioethanol production	
5.4 Conclusion	133
CHAPTER 6	134
Conclusion and Suggestion	
REFERENCES	137
APPENDICES	161
APPENDIX A	162
APPENDIX B TIGhts reserved	186
APPENDIX C	189
CURRICULUM VITAE	190

LIST OF TABLES

Table		Page
2.1	Approximate contents of celluloses, hemicelluloses and lignins in various agricultural residue	7
2.2	Types of hemicelluloses, their occurrences in nature and chemical components	12
2.3	Process conditions, effects on biomass, advantages and disadvantages of different pretreatment methods	18
2.4	The list of xylanases from Streptomyces spp. and their characteristics	29
2.5	A comparison of xylooligosaccharide yields with different production methods	33
2.6	The ability of xylooligosaccharides from different origins to promote the growth of probiotic lactobacilli and bifidobacteria	35
2.7	Potential health benefits of xylooligosaccharides	36
2.8	Theoretical yields of ethanol production from different type of sugars	45
2.9	Ethanolic microorganisms and their characteristics	46
2.10	Bioethanol production from various lignocellulosic materials	50
3.1	Experimental codes, ranges and levels of independent variables in the response surface methodology (RSM)	58
3.2	The composition of raw corncob, KOH-treated and hydrolyzed KOH-treated corncob	62
3.3	Experimental and theoretically predicted values for xylooligosaccharide production from KOH-treated corncob	64
3.4	Analysis of variance (ANOVA) of the quadratic model for response variable	65
4.1	Summary of the protocol used to purify xylanase from <i>Streptomyces thermovulgaris</i> TISTR1948	80

LIST OF TABLES (CONTINUED)

Table

4.2	Effect of metal ions and chemical reagents on xylanase activity	86
4.3	The composition of xylooligosaccharides and monosaccharides	91
	generated by crude, partially purified and purified xylanase_1948 at	
	12 h of reaction time	
5.1	Experimental codes, ranges and levels of independent variables in the	101
	response surface methodology experiment	
5.2	The effect of KOH concentration on the recovery yield and	105
	xylooligosaccharide production from corncob by an in-house	
	thermostable endo-xylanase from Streptomyces thermovulgaris	
	TISTR1948	
5.3	Experimental design and response for optimization of glucose,	115
	xylose, arabinose and total sugar production from cellulose-rich	
	corncob (CRC)	
5.4	Analysis of variance (ANOVA) for response surface quadratic	118
	model of glucose, xylose, arabinose and total sugar production	
5.5	Ethanol production via separate hydrolysis and fermentation (SHF),	129
	simultaneous saccharification and fermentation (SSF) and fed-batch	
	simultaneous saccharification and fermentation (fed-batch SSF) by	
	Candida glabrata KY618709 compare with commercial yeast	
	Saccharomyces cerevisiae	
A-1	Reaction mixture of xylanase activity assay	164
A-2	Reaction mixture of endoglucanase activity assay	166
A-3	Reaction mixture of total cellulase activity assay	167

LIST OF TABLES (CONTINUED)

Table

A-4	The kinetic data obtained from the reaction catalyzed by purified	171
	xylanase from Streptomyces thermovulgaris TISTR1948 using	
	beech wood xylan as the substrate.	
A-5	Calculation of residual sum of squares (RSS) and regression sum of	172
	squares (RegSS) for the plot to regress the data from Table A-4	
A-6	Calculation of residual sum of squares (RSS), regression sum of	173
	squares (RegSS), mean squares (MS) and the corresponding	
	correlation coefficient (R^2) results after fitting the plot to the	
	experimental data from Table A-5	
A-7	The $K_{\rm m}$ and $V_{\rm max}$ results after using goal seek function in Microsoft	175
	Excel version 2016	
A-8	Calculation of residual sum of squares (RSS) and regression sum of	178
	square (RegSS) using the $K_{\rm m}$ and $V_{\rm max}$ from goal seek function	
A-9	Calculation of residual sum of squares (RSS), regression sum of	178
	squares (RegSS), mean squares (MS) and the corresponding	
	correlation coefficient (R^2) result after fitting the plot to the	
	experimental data from Table A-8	
	Copyright [©] by Chiang Mai University	
	All rights reserved	

LIST OF FIGURES

Figure		Page
1.1	Diagram of the integrated process of xylooligosaccharide and	4
	bioethanol production from corncob	
2.1	The transmission electron micrograph of maize cell wall and the	6
	structure of the lignocellulose framework in secondary cell walls	
2.2	Molecular structures of celluloses	8
2.3	Celluloses organization in structural level from natural celluloses	9
	sources	
2.4	Various categories of hemicelluloses: galactomannan, glucomannan,	11
	galactoglucumannan, homoxylan, arabinoxylan, glucuronoxylan,	
	arabinoglucuronoxylan and xyloglucan	
2.5	Structure of three monoolignols and three phenylpropane monomers	16
	of lignins	
2.6	Action of different cellulases on cellulose polymer	25
2.7	Schematic degradation of glucuronoxylan by xylanase GH10,	27
	xylanase GH11, α -glucuroninase and β -xylosidase	
2.8	Schematic degradation of arabinoglucuronoxylan by xylanase GH10,	27
	xylanase GH11, α -L-arabinofuranosidase, ferulic acid esterase	
	(feruloyl esterase) and β -xylosidase	
2.9	The first phosphorylation of glucose	38
2.10	An isomerization to convert glucose 6-phosphate into fructose 6-	38
	phosphate	
2.11	The second phosphorylation of fructose 6-phosphate to fructose 1,6-	39
	bisphosphate	
2.12	Cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-	39
	phosphate and dihydroxyacetone phosphate	

Figure

2.13	The conversion of dihydroxyacetone phosphate into glyceraldehyde	40
	3-phosphate	
2.14	Oxidation of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate	41
2.15	Phosphoryl transfer from 1,3-bisphosphoglycerate to ADP	41
2.16	The generation of ATP and the formation of pyruvate	42
2.17	Ethanol fermentation	43
2.18	Glucose metabolism through glycolysis pathway and the ethanol	44
	fermentation by Saccharomyces cerevisiae	
2.19	The unit operation of separate hydrolysis and fermentation (SHF)	49
	process	
2.20	The unit operation of simultaneous saccharification and fermentation	49
	(SSF) process	
3.1	TLC chromatogram of the time course for xylooligosaccharide	60
	production from KOH-treated corncob catalyzed by endo-xylanase	
	from Streptomyces thermovulgaris TISTR1948	
3.2	TLC chromatogram of the time course for xylooligosaccharide	61
	production from oat spelt xylan catalyzed by endo-xylanase from	
	Streptomyces thermovulgaris TISTR1948	
3.3	TLC chromatogram of the time course for xylooligosaccharide	61
	production from beech wood xylan catalyzed by endo-xylanase from	
	Streptomyces thermovulgaris TISTR1948	
3.4	Xylooligosaccharide production from KOH-treated corncob in three-	67
	dimensional graphic for quadratic response surface optimization. The	
	comparison was made between enzyme concentration and pH value	
	of buffer, enzyme concentration and temperature and pH value of	
	buffer and temperature	

Figure

3.5	Time course of xylooligosaccharide production from KOH-treated	69
	corncob in validation of CCD experiment model and HPLC	
	chromatogram of xylooligosaccharides from alkali-pretreated	
	corncob at 12 h of reaction time	

- 3.6 Scanning electron microscope (SEM) photomicrograph of the surface 70 of raw corncob at 350× and 500×, KOH-treated corncob at 350× and 500×, and hydrolyzed KOH-treated corncob at 350× and 500×
- 3.7 Maximum viable cell counts and maximum specific growth rates of 72 Lactobacillus casei TISTR1463, L. lactis TISTR1464 and L. plantarum TISTR1465 in MRS medium supplemented with different carbon source
- 4.1Purification profile of xylanase from *Streptomyces thermovulgaris*81TISTR1948 on ion exchange chromatography (DEAE-Toyopearl)
- 4.2 Purification profile of xylanase from *Streptomyces thermovulgaris* 81 TISTR1948 on gel filtration chromatography (Toyopearl HW-55)
- 4.3 SDS-PAGE of xylanase from *Streptomyces thermovulgaris* 82 TISTR1948
- 4.4Lineweaver-Burk plot of the purified xylanase from Streptomyces83thermovulgaris TISTR1948 using beech wood xylan as substrate
- 4.5 Effect of pH on the activity of the purified xylanase_1948 and pH
 84 stability of the xylanase purified from *Streptomyces thermovulgaris* TISTR1948
- 4.6 Effect of temperature on the activity of the purified xylanase_1948.85 and thermal stability of the purified xylanase_1948
- 4.7 TLC chromatogram of the time course of xylooligosaccharides 88 production from KOH-treated corncob by the crude xylanase, partially purified xylanase and purified xylanase_1948

Figure 4.8 HPLC analysis of time course of xylooligosaccharide production from KOH-treated corncob by the crude xylanase, partially purified

xylanase and purified xylanase_1948

- 4.9 Scanning electron microscope (SEM) photomicrograph of the surface 90 of KOH-treated corncob hydrolyzed by the crude, the partially purified and purified xylanase_1948 at 1,000×
- 4.10Time course of xylooligosaccharide fermentation by Lactobacillus93plantarum TISTR1465
- 5.1 Schematic process of xylooligosaccharide and bioethanol production 99 from corncob
- 5.2 Composition of corncob-xylooligosaccharides compared with 107 commercial XOs
- 5.3 Morphological observations of cellulose-rich corncob (CRC) by 110 scanning electron microscope
- 5.4 Glucose production from cellulose-rich corncob in three-dimensional 111 graphic for quadratic response surface optimization. The comparison was made between enzyme concentration and pH value, enzyme concentration and temperature, enzyme concentration and celluloserich corncob concentration, pH value and temperature, pH and cellulose-rich corncob concentration and temperature and celluloserich corncob concentration

Page

89

Figure

- 5.5 Xylose production from cellulose-rich corncob in three-dimensional 112 graphic for quadratic response surface optimization. The comparison was made between enzyme concentration and pH value, enzyme concentration and temperature, enzyme concentration and cellulose-rich corncob concentration, pH value and temperature, pH and cellulose-rich corncob concentration and temperature and cellulose-rich corncob concentration
- 5.6 Arabinose production from cellulose-rich corncob in three- 113 dimensional graphic for quadratic response surface optimization. The comparison was made between enzyme concentration and pH value, enzyme concentration and temperature, enzyme concentration and cellulose-rich corncob concentration, pH value and temperature, pH and cellulose-rich corncob concentration and temperature and cellulose-rich corncob concentration
- 5.7 Total sugar production from cellulose-rich corncob in three- 114 dimensional graphic for quadratic response surface optimization. The comparison was made between enzyme concentration and pH value, enzyme concentration and temperature, enzyme concentration and cellulose-rich corncob concentration, pH value and temperature, pH and cellulose-rich corncob concentration and temperature and cellulose-rich corncob concentration
- 5.8 Time course of bioethanol production from cellulose-rich corncob 121 hydrolysate by Sacchromyces cerevisiae and by Candida glabrata KY618709 at 35°C in 100-mL bottles via separate hydrolysis and fermentation (SHF)

Figure

- 5.9 Time course of bioethanol production from cellulose-rich corncob 121 hydrolysate by Saccharomyces cerevisiae and by Candida glabrata KY618709 at 37°C in 100-mL bottles via separate hydrolysis and fermentation (SHF)
- 5.10 Time course of bioethanol production from cellulose-rich corncob
 hydrolysate by Saccharomyces cerevisiae and by Candida glabrata
 KY618709 at 40°C in 100-mL bottles via separate hydrolysis and
 fermentation (SHF)
- 5.11 Time course of bioethanol production from cellulose-rich corncob 122 hydrolysate by Saccharomyces cerevisiae and by Candida glabrata KY618709 at 42°C in 100-mL bottles via separate hydrolysis and fermentation (SHF)
- 5.12 Time course of bioethanol production from cellulose-rich corncob by 124 Saccharomyces cerevisiae and by Candida glabrata KY618709 at 35°C in 100-mL bottles via simultaneous saccharification and fermentation (SSF)
- 5.13 Time course of bioethanol production from cellulose-rich corncob by 124 Saccharomyces cerevisiae and by Candida glabrata KY618709 at 37°C in 100-mL bottles via simultaneous saccharification and fermentation (SSF)
- 5.14 Time course of bioethanol production from cellulose-rich corncob by 125
 Saccharomyces cerevisiae and by Candida glabrata KY618709 at 40°C in 100-mL bottles via simultaneous saccharification and fermentation (SSF)

Figure

166

- 5.15 Time course of bioethanol production from cellulose-rich corncob by 125 Saccharomyces cerevisiae and by Candida glabrata KY618709 at 42°C in 100-mL bottles via simultaneous saccharification and fermentation (SSF) bioethanol production 5.16 128 Time course of via simultaneous saccharification and fermentation with 7.8% (w/v) cellulose-rich corncob, fed-batch simultaneous saccharification and fermentation with 11.7% (w/v) cellulose-rich corncob and fed-batch simultaneous saccharification and fermentation with 15.6% (w/v) cellulose-rich corncob by the thermotolerant yeast Candida glabrata KY618709 in a 5-L bioreactor at 40°C
- 5.17 Mass balance of the integrated process for xylooligosaccharide and 132 bioethanol production from corncob
- A-1 Calibration curve of xylose concentration and absorbance at 540 nm 164 A-2
- Calibration curve of glucose concentration and absorbance at 540 nm Calibration curve of tyrosine concentration and absorbance at 600 nm A-3 170
- A-4 Michaelis–Menten plot of actual v_0 by the purified xylanase from 173 Streptomyces thermovulgaris TISTR1948 and predicted v₀
- Scatter plot of the residual from Figure A-4 A-5 174
- Michaelis–Menten plot of actual v_0 by the purified xylanase from A-6 176 Streptomyces thermovulgaris TISTR1948, predicted v_0 and predicted v_0 after using goal seek function
- A-7 Scatter plot of the residual from Figure A-6 177 Lignin filtration apparatus A-8 179
- A-9 Sample dispersion apparatus 181

ABBREVIATIONS AND SYMBOLS

%	percent
/	per
<	less than
±	deviation
°C	degree Celsius
μg	microgram
μL	microliter
μm	micrometer
ADP 6	adenosine diphosphate
ANOVA	analysis of variance
Ara	arabinose
ATP	adenosine triphosphate
BBD	Box-Behnken design
CCD	central composite design
CFU	colony forming unit
cm	centimeter
CO_2	carbon dioxide
CRC	cellulose-rich corncob
Da adal	Dalton
DEAE Copyr	diethylaminoethyl
DNS	dinitrosalicylic acid
DP	degree of polymerization
e.g.	exampli gratia
EDTA	ethylenediaminetetraacetic acid
EMP pathway	the Embden-Meyerhof-Parnas pathway
etc.	et cetera

F	Fisher's
g	gram
GH	glycoside hydrolase
h	hour
Н	hydrogen
HPLC	high performance liquid chromatography
k	kilo
K _m	Michaelis constant
L	liter ALE A
LAB	lactic acid bacteria
LCM	lignocellulosic material
m	meter, milli
М (С	molarity
mA	milliampere
mg	milligram
min	minute
mL	milliliter
mm	millimeter
mM	millimolar
Мра	megapascal
MW	molecular weight
NCBI	The National Center for Biotechnology Information
ND adal	not determined
o- Copyr	ortho- by Chiang Mai University
OD ₆₀₀	optical density at 600 nm
-OH	hydroxyl group
<i>p</i> -	para-
pH	power of hydrogen
pI	isoelectric point
ppm	part per million
<i>p</i> -value	probability value
R^2	coefficient of determination

rpm	round per minute
RSM	response surface methodology
SDS	sodium dodecyl sulfate
SDS-PAGE	sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEM	scanning electron microscope
SHF	separate hydrolysis and fermentation
SSF	simultaneous saccharification and fermentation
TAPPI	Technical Association of the Pulp and Paper Industry
TIM-barrel	triosephosphate isomerase-barrel
TISTR	Thailand Institute of Scientific and Technological Research
TLC	thin layer chromatography
U	unit
v/v	volume by volume
V _{max}	limiting reaction rate
w/v	weight by volume
w/w	weight by weight
X1	xylose
X2	xylobiose
X3	xylotriose
X4	xylotetraose
X5	xylopentaose
XO Sala	xylooligosaccharide
y adal	response value
y Copyr	yield by Chiang Mai University
α	alphaights reserved
β	beta
γ	gamma

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้แสดงกระบวนการทางเอนไซม์ที่มีประสิทธิภาพเพื่อเปลี่ยนซังข้าวโพดให้เป็น ผลิตภัณฑ์ที่มีมูลก่าสูง คือ ไซโลโอลิโกแซกกาไรด์และไบโอเอทานอล
- 2) เพื่อเพิ่มประสิทธิภาพของกระบวนการผลิตไซโลโอลิโกแซกคาไรด์ จึงทำการหาสภาวะที่ เหมาะสมต่อการผลิตไซโลโอลิโกแซกคาไรด์จากซังข้าวโพดที่ผ่านการแปรสภาพด้วย โพแทสเซียมไฮดรอกไซด์ โดยใช้เอนไซม์เอนโดไซลาเนสทนร้อนที่ผลิตได้เองจากเชื้อ Streptomyces thermovulgaris TISTR1948 โดยใช้การออกแบบทางสลิติ ตลอดจนทดสอบ คุณสมบัติความเป็นพรีไบโอติกส์ของไซโลโอลิโกแซกคาไรด์จากซังข้าวโพดที่ผลิตได้
- 3) เพื่อประเมินประสิทธิภาพของเอนไซม์ดังกล่าวในการผลิตไซโลโอลิโกแซกกาไรด์ที่มีความ บริสุทธิ์สูง จึงทำเอนไซม์ให้บริสุทธิ์และสึกษาคุณลักษณะของเอนไซม์ จากนั้นจึงประยุกต์ใช้ เอนไซม์ที่ผ่านการทำให้บริสุทธิ์แล้วในการผลิตไซโลโอลิโกแซกกาไรด์จากซังข้าวโพด และ ประเมินคุณสมบัติกวามเป็นพรีไบโอติกส์ของไซโลโอลิโกแซกกาไรด์ที่มีความบริสุทธิ์สูงที่ ผลิตได้ ในระดับหลอดทดลอง
- 4) เพื่อนำซังข้าวโพดที่อุดมไปด้วยเซลลูโลสซึ่งเป็นของเหลือทิ้งจากกระบวนการผลิตไซโลโอลิ-โกแซกคาไรด์ไปใช้ประโยชน์ จึงนำมาใช้เป็นสารตั้งต้นในการผลิตไบโอเอทานอลด้วย กระบวนการย่อยและการหมักที่เกิดขึ้นพร้อมกันโดยใช้ยีสต์ทนร้อนสายพันธุ์ใหม่ที่แยกได้ Candida glabrata KY618709 ซึ่งสามารถช่วยลดระยะเวลาในการหมักให้สั้นลง
- 5) เพื่อศึกษากระบวนการผลิตไซโลโอลิโกแซกคาไรด์และไบโอเอทานอลแบบบูรณาการ จึงทำ การขยายขนาดการผลิตไซโลโอลิโกแซกคาไรด์ต่อเนื่องด้วยการผลิตไบโอเอทานอลในถัง ปฏิกรณ์ชีวภาพโดยกระบวนการแบบบูรณาการ ซึ่งรายละเอียดต่าง ๆ เหล่านี้ได้นำเสนอไว้ ในวิทยานิพนธ์ฉบับนี้

STATEMENTS OF ORIGINALITY

- This thesis demonstrates an effective enzymatic process to convert corncob into the high-value products of xylooligosaccharides and bioethanol.
- 2) In order to enhance the efficacy of xylooligosaccharide production process, the optimization of xylooligosaccharide production from KOH-treated corncob using an in-house thermostable endo-xylanase from *Streptomyces thermovulgaris* TISTR1948 via statistical design has been investigated. Moreover, the prebiotic property of corncob-xylooligosaccharides has also been tested.
- 3) To evaluate the performance of this xylanase on producing of high-purity xylooligosaccharides, the purification, characterization, as well as application of this purified enzyme on production of corncob-xylooligosaccharides have been investigated. A prebiotics property of these high-purity xylooligosaccharides have been assessed by *in vitro* evaluation.
- 4) In order to valorize a cellulose-rich corncob, a waste from xylooligosaccharide production process, so it has been used as a substrate for bioethanol production. The bioethanol production via simultaneous saccharification and fermentation (SSF) employing by a new isolated thermotolerant yeast *Candida glabrata* KY618709 can minimize the fermentation time.
- 5) In order to study the integrated process for xylooligosaccharide and bioethanol productions, the scaling up of the consecutive integrated process of xylooligosaccharide and bioethanol production has been investigated in a bioreactor, as the providing details in this thesis.