CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (THAI)	iv
ABSTRACT (ENGLISH)	v
CONTENTS	vi
LIST OF TABLES	ix
LIST OF ILLUSTRATIONS	X
LIST OF ABBREVIATIONS AND SYSBOLS	xvi
CHAPTER 1 INTRODUCTION	1
1.1 Ions in natural water	1
1.1.1 Dissolved inorganic carbon (DIC)	2
1.1.2 Ammonium ion	3
1.2 Flow injection analysis (FIA)	5
1.3 Gas diffusion flow injection analysis (GD-FI)	7
1.4 Conductivity detector	11
1.5 Fluorescence detector	14
1.6 Research aims	16
CHAPTER 2 EXPERIMENT	17
2.1 Chemicals and reagent	17
2.2 Apparatus and components	18
2.3 Preparation of standard solution and reagents	18
2.4 Experimental setup	19

CONTENTS (CONTINUED)

2.4.1 Fabrication of the direct current conductivity detector	19
2.4.2 Fabrication of the LED-Photodiode based fluorescence	22
detector	
2.4.3 FI system with the DC conductivity detector	24
2.4.4 The single-FI system with the FL detector for NH_4^+	27
determination	
CHAPTER 3 RESULTS AND DISCUSSION	29
3.1 Direct current conductivity detector with GD-FI system for DIC	29
determination	
3.1.1 Characteristic of the fabricated DC Conductivity detector	29
in FI system	
3.1.2 DC-conductivity detector coupled with GD-FI system	36
3.1.3 Optimization of GD-FI system for DIC determination	39
3.1.4 The analytical performance for DIC determination	44
3.1.5 Application of DIC determination in the hot spring water	49
sample	
3.2 LED-photodiode based fluorescence detector with FI system	52
for NH ₄ ⁺ determination	
3.2.1 Some analytical characteristic in the FI system	53
3.2.2 The analytical performance for NH ₄ ⁺ determination	56
3.2.3 Application of NH4 ⁺ determination in air sample	57

CONTENTS (CONTINUED)

CHAPTER 4 CONCLUSION	59
REFERENCES	61
APPENDICES	68
APPENDIX A	69
APPENDIX B	70
APPENDIX C	72
APPENDIX D	74
CURRICULUM VITAE	76
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved	

LIST OF TABLES

Table 1.1	The brief review of detection methods using GD-FI	9
	system for DIC determination	
Table 1.2	The brief review of detection methods using GD-FI	11
	system for NH ₄ ⁺ determination	
Table 2.1	List of chemicals and reagent	17
Table 2.2	List of apparatus and components	18
Table 3.1	Comparison of the fabricated DC conductivity detectors	32
	performance	
Table 3.2	The recovery of DIC determination in hot spring water	47
	samples with proposed conductivity detector	
Table 3.3	Performance of the GD-FI system with the proposed DC	48
	conductivity detector for DIC determination comparing	
	with other previous methods	
Table 3.4	Comparison of DIC determination by using proposed	50
~	detector and pulse conductivity detector	
Table 3.5	The recovery of NH_4^+ determination in air sample with a	56
	simple fluorescence detector	
Table 3.6	Concentration of NH ₃ in air	57
Table B1	The concentration of DIC form the DC conductivity	70
	detector and commercial pulse conductometer (712	
	Metrohm) for evaluation of paired t-test	
Table B2	The theoretical t value for levels of confidence interval	71

LIST OF ILLUSTRATIONS

Figure 1.1	Bjerrum diagram shows a mole fraction of different DIC	3
	species vs the pH	
Figure 1.2	The mole fraction of ammonia and ammonium as a	4
	function of pH	
Figure 1.3	Typical flow technique: C, Carrier; R, Reagent; A, Air;	6
	S, Sample; D, Detector, W, Waste; MC, Mixing coil; P,	
	Peristaltic pump; DB, Debubbler; SP, Syringe pump; HC,	
	Holding coil; SV, Selection valve; SnV, Solenoid valve;	
	MS, Multi-syringe pump; P1, P2, Solenoid micro pump	
	[19]	
Figure 1.4	Simple diagram of gas diffusion unit (GDU)	7
Figure 1.5	Conductance cell for measuring a conductivity in solution	13
Figure 1.6	The energy level for photoluminescent molecule; S_0 ,	14
	Ground electronic singlet state; S1, S2, First and second	
	excited electronic singlet state; T ₁ , First excited	
	electronic triplet state	
Figure 1.7	Schematic diagram of the simple fluorometer	16
Figure 2.1	Schematic diagram (a) and photograph (b) of	20
A	conductivity cell	

Figure 2.2	The DC conductivity circuits: a) circuitry diagram of	21
	using 78xx IC; b) a photographical circuit using 78xx IC;	
	c) a circuitry diagram using WB-OA; CC, conductivity	
	cell and d) a photographical circuit using WB-OA	
Figure 2.3	Photograph of DC conductivity detector using 9V-battery	22
	to supply the WB-OA based DC conductivity detector	
Figure 2.4	Schematic diagram of fluorescence cell	23
Figure 2.5	The circuit of integrated photodiode (OPT301 model)	23
	and operational amplifier	
Figure 2.6	Photograph of the LED-photodiode based fluorescence	24
	detector	
Figure 2.7	The dimensional diagram (a) and photograph (b) of gas	26
	diffusion unit (GDU)	
Figure 2.8	The manifold of gas diffusion flow injection (GD-FI)	27
	system for DIC determination: MC, mixing coil; GDU,	
	gas diffusion unit; CC, conductivity cell; DCC, direct	
ลิ	current conductivity circuit; DAQ, data acquisition unit;	
	COMP, computer	
Figure 2.9	The FI-manifold for NH4 ⁺ determination; P, peristaltic	28
A	pump; I, 6-ports-2-position injection valve; MC, mixing	
	coil; FL, LED-photodiode based fluorescence detector;	
	DAQ, data acquisition unit (Bluetooth)	

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

NH₄⁺ detection)

Page

Potential divider circuit	30
Wheatstone bridge circuit	31
Comparison of FI-gram signal of 10-100 µmol L ⁻¹ KCl	33
injection in a single-FI of investigating DC-conductivity	
detector, blue line (±5V-WB-OA) and a commercial	
pulse conductivity detector (712 Metrohm) which the	
signal is shown in inverse signal, red line	
The FI-gram of standard KCl injections for investigation	34
the repeatability of DC- conductivity detector: a) The 40	
injections of 60 µmol L ⁻¹ KCl in 1.0 mL min ⁻¹ of water	
stream solution with using the external power from $\pm 12V$	
desktop power supply and b) The signal of DC-	
conductivity detector along 8 hours using two 9V-battery	
The peak height signal of KCl and standard deviation of	35
baseline signal with various stream flow rate of carrier in	
single line FI system	
Typical GD-FI gram and calibration graph with DC	39
conductivity detector. a) 1.0-10 mmol $L^{-1} HCO_3^-$ b) 0.1-	
1.0 mmol L^{-1} NH ₄ ⁺ c) 1-10 mmol L^{-1} S ²⁻ ; comparison	
with pulse conductometer which the signal is shown in	
inverse signal, dash line (40 μ L injection volume with 20	
cm length-mixing coil, 1.0 mL min ⁻¹ flow rate of both	
carrier, DI water as acceptor solution stream and 0.1 mol	
L^{-1} H ₃ PO ₄ as a donor solution stream for HCO ₃ ⁻ , S ²⁻	
detection and 0.1 mol L ⁻¹ NaOH as a donor stream for	

Figure 3.7	Optimization of an acceptor stream in GD-FI system	41
	using DC conductivity detector for DIC determination	
	with using 1.0 mL min ⁻¹ of 0.1 mmol L^{-1} H ₃ PO ₄ as a	
	donor stream: a) Signal of 10 mmol L^{-1} HCO ₃ ⁻ in 1.0	
	mL min ⁻¹ of various solution types of acceptor stream,	
	b) Signal of 5 mmol L ⁻¹ HCO ₃ ⁻ in various flow rates of	
	DI-water acceptor stream (0.1 mol L ⁻¹ H ₃ PO ₄ with flow	
	rate of 1.0 mL min ⁻¹ as a donor stream)	
Figure 3.8	Optimization of an acidic donor solution in GD-FI	43
	system using DC conductivity detector for DIC	
	determination with using 1.0 mL min ⁻¹ of DI water as	
	an acceptor stream: a) Injection of 10 mmol L ⁻¹ HCO ₃ -	
	in various acid concentrations and typical acid solution	
	and b) Injection of 5 mmol L ⁻¹ HCO ₃ ⁻ in various flow	
	rates of 0.1 mol L^{-1} H ₃ PO ₄ as a donor stream	
Figure 3.9	The GD-FI gram of 7 injections of 6 mmol L ⁻¹ HCO ₃ ⁻	44
ลิข	$(40 \mu L \text{ injection volume with } 20 \text{cm length-mixing coil},$	
C.	1.0 mL min ⁻¹ flow rate of both carrier, DI water as	
CO	acceptor line and 0.1 mol L^{-1} H ₃ PO ₄ as donor line)	
Figure 3.10	The comparison of signal of major interference studies	46
	for DIC determination and adding KMnO ₄ for removing	
	sulfide and sulfite ion as interference	

a) Schematic diagram of simple flow injection-gas	51
diffusion unit with serial arrangement of pulse	
conductometer and DC-conductometer; V, 6-ports-2-	
positions injection valve; MC, mixing coil; GDU, gas	
diffusion unit; CC, conductivity cell; CPC, commercial	
pulse conductometer; DCC, direct current conductivity	
circuit; DAQ, data acquisition unit; COMP, computer	
and b) Photograph of two identical conductivity flow	
cells	
The fluorescence spectrum of chemical product of NH ₃ -	53
OPA-sulfite reaction in 0.1 mol L^{-1} phosphate buffer pH	
11 and the overlaid spectra of UV-LED and UV filter	
The FI-gram and linear calibration graph (inset) of 1-	54
100 μ mol L ⁻¹ fluorescein injection in a single-FI system	
(using UV-LED as the light source and an integrated	
photodiode and amplifier (OPT301) as the light sensor)	
The FI-gram and linear calibration graph (inset) of 0.5-	55
$10 \mu mol L^{-1} NH_4^+$ in a single-FI system (67 μL injection	
volume with 200 cm length-mixing coil in 65°C water	
bath, 0.5 mL min ⁻¹ flow rate of OPA reagent as a carrier)	
Schematic diagram (a) and photograph (b) of air	58
sampling system (0.1 mol L^{-1} H ₂ SO ₄ as an absorbing	
solution, 300 mL min ⁻¹ flow rate and 65-120 min	
· · · ·	
	a) Schematic diagram of simple flow injection-gas diffusion unit with serial arrangement of pulse conductometer and DC-conductometer; V, 6-ports-2- positions injection valve; MC, mixing coil; GDU, gas diffusion unit; CC, conductivity cell; CPC, commercial pulse conductometer; DCC, direct current conductivity circuit; DAQ, data acquisition unit; COMP, computer and b) Photograph of two identical conductivity flow cells The fluorescence spectrum of chemical product of NH ₃ - OPA-sulfite reaction in 0.1 mol L ⁻¹ phosphate buffer pH 11 and the overlaid spectra of UV-LED and UV filter The FI-gram and linear calibration graph (inset) of 1- 100 μ mol L ⁻¹ fluorescein injection in a single-FI system (using UV-LED as the light source and an integrated photodiode and amplifier (OPT301) as the light sensor) The FI-gram and linear calibration graph (inset) of 0.5- 10 μ mol L ⁻¹ NH ₄ ⁺ in a single-FI system (67 μ L injection volume with 200 cm length-mixing coil in 65°C water bath, 0.5 mL min ⁻¹ flow rate of OPA reagent as a carrier) Schematic diagram (a) and photograph (b) of air sampling system (0.1 mol L ⁻¹ H ₂ SO ₄ as an absorbing solution, 300 mL min ⁻¹ flow rate and 65-120 min

Page

Figure A1 The acrylic block design and components for holding 69 the integrated photodiode and built-in amplifier (OPT301)

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS AND SYSBOLS

Μ	Molar
L	Liter
mol	Mole
m	Meter
h	Hour
min	Minute Minute
v	Volt
С	Celsius
ID S	Inner diameter
OD G	Outer diameter
DI	Deionized
DC	Direct current
LED	Light emitting diode
IC	Integrated circuit
ADC	Analog to digital converter
DAQ	Data acquisition
	MAI UNIVERO

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved