CONTENTS

Acknowledgement	c
Abstract in Thai	d
Abstract in English	g
List of Tables	m
List of Figures	0
Statement of Originality in Thai	t
Statement of Originality in English	u
Chapter 1 Introduction	1
1.1 Rationale	1
1.2 Research Objectives	3
Chapter 2 Literature review	4
2.1 Postharvest Quality	4
2.2 Precooling Method	6
2.3 Physico-chemical quality of lettuces	15
2.4 Application of artificial neural networks (ANNs) for fresh produces	18
Chapter 3 Materials and methods	21
3.1 Plant material	21

CONTENTS

Page

3.2 Research Methods	21
3.2.1 Experiment 1: The study of optimum parameter conditions for	
baby cos lettuce under vacuum cooling	21
3.2.2 Experiment 2: Prediction of Baby cos lettuce final temperature	
and weight loss percentage using Artificial Neural Network (ANNs)	
and Multiple linear regression (MLR)	22
3.2.3 Experiment 3: Effect of vacuum cooling on qualities of baby cos	
lettuce during storage compare with the forced-air cooling and	
room cooling	25
3.2.4 Experiment 4: Rapid Determination of Lettuces Antioxidant Capacity	
by e-Tongue Based on Flow Injection Coulometry	30
Chapter 4 Results and Discussions	33
4.1 Experiment 1: The study of optimum parameter conditions for baby cos	
lettuce under vacuum cooling	33
4.2 Experiment 2: Prediction of Baby cos lettuce final temperature and weight	
loss percentage using Artificial Neural Network (ANNs) and Multiple linear	
regression (MLR)	39
4.3 Experiment 3: Effect of vacuum cooling on qualities of baby cos lettuce	
during storage compare with the forced-air cooling and room cooling	54
4.4 Experiment 4: Rapid Determination of Lettuces Antioxidant Capacity	
by e-Tongue based on Flow Injection Coulometry	79

k

CONTENTS

LIST OF TABLE

Table 2.1	Heat of respiration of produce at different temperatures	5
Table 2.2	Comparison of estimated cost and expected benefits related to	6
	cooling mangoes and maintaining the cold chain during handling,	
	storage, transport and marketing.	
Table 2.3	Chemicals compound of baby cos lettuce	16
Table 3.1	Rating scale for visual quality	29
Table 4.1	Vacuum cooling parameters for vacuum cooling process of baby cos lettuce	34
Table 4.2	Recommendation parameters setting for vacuum cooling of baby cos lettuce	36
Table 4.3	The optimum neurons in hidden layer for the prediction of final temperature	46
Table 4.4	The optimum neurons in hidden layer for the prediction of weight	46
	loss percentage	
Table 4.5	Statistical characteristics and performance measurement of the	48
Table 4.6	Statistical characteristics and performance measurement of the developed MLR models for weight loss percentage prediction	49
Table 4.7	Performance criteria used for predicting final temperature by ANNs and MLR models	50
Table 4.8	Performance criteria used for predicting weight loss percentage by	50
	ANNs and MLR models	
Table 4.9	Cooling parameters of difference precooling methods	56
Table 4.10	Weight loss, texture and overall visual quality of baby cos lettuce	61
	during storage at 4 °C with 85 % RH	

LIST OF TABLE

Table 4.11	Chlorophyll content, carotenoid content and total soluble solids of	77
	baby cos lettuce during storage at 4 °C with 85 % RH	
Table 4.12	Ascorbic acid, antioxidant activity and total phenolic content of	78
	baby cos lettuce during storage at 4 °C with 85 % RH	
Table 4.13	Antioxidant capacity and sum of 16 peak areas Coularray (μ C) of	85
	lettuce treated with different precooling methods	
Table 4.14	Moisture and color parameters of lettuce treated with different	85
	precooling methods	
	CHAI UNIVERSIT	
	ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved	

n

Figure 2.1	Room cooling	7
Figure 2.2	Forced horizontal air flow	9
Figure 2.3	Forced vertical air flow	10
Figure 2.4	Water Vapor Saturation Pressure Curve	12
Figure 2.5	Typical structure and basic principles of artificial neural networks	18
Figure 3.1	Architecture of ANNs selected for prediction of vacuum cooling process	23
Figure 3.2	Different precooling methods for baby cos lettuce	26
Figure 4.1	Relationship of pressure and temperature during vacuum cooling process of baby cos lettuce	38
Figure 4.2	Relationship of pressure and temperature during vacuum cooling process of baby cos lettuce	38
Figure 4.3	Comparison of ANNs performance for final temperature prediction with 5 input parameters and 1-30 neurons in hidden layer	40
Figure 4.4	The optimum number of hidden layer neurons for final temperature prediction with 5 input parameters	40
Figure 4.5	Comparison of ANNs performance for final temperature prediction with 4 input parameters and 1-30 neurons in hidden layer	41
Figure 4.6	The optimum number of hidden layer neurons for final temperature prediction with 4 input parameters	41
Figure 4.7	Comparison of ANNs performance for final temperature prediction with 3 input parameters and 1-30 neurons in hidden layer	42
Figure 4.8	The optimum number of hidden layer neurons for final temperature prediction with 3 input parameters	42

Figure 4.9	Comparison of ANNs performance for weight loss percentage	43
	prediction with 5 input parameters and 1-30 neurons in hidden layer	
Figure 4.10	The optimum number of hidden layer neurons for weight loss	43
	percentage prediction with 5 input parameters	
Figure 4.11	Comparison of ANNs performance for weight loss percentage	44
	prediction with 4 input parameters and 1-30 neurons in hidden layer	
Figure 4.12	The optimum number of hidden layer neurons for weight loss	44
	percentage prediction with 4 input parameters	
Figure 4.13	Comparison of ANNs performance for weight loss percentage	45
	prediction with 3 input parameters and 1-30 neurons in hidden layer	
Figure 4.14	The optimum number of hidden layer neurons for weight loss	45
	percentage prediction with 3 input parameters	
Figure 4.15	Relationship between actual and predicted value of final temperature	51
	using the best fit ANNs model	
Figure 4.16	Relationship between actual and predicted value of weight loss	51
	percentage using the best fit ANNs model	
Figure 4.17	Relationship between actual and predicted value of final temperature	52
	using the best fit MLR model	
Figure 4.18	Relationship between actual and predicted value of weight loss	52
	percentage using the best fit MLR model	
Figure 4.19	Cooling rate of difference precooling treatment of baby cos lettuces	56
Figure 4.20	Changes in visual quality of baby cos lettuce during storage at 4 $^{\circ}\mathrm{C}$	62
	with 85 % RH (Dash line represents the limit of marketability)	
Figure 4.21	L* value of baby cos lettuce leave during storage at 4 $^\circ C$ with 85 $\%$	62
	RH	

Figure 4.22	Hue angle of baby cos lettuce leave during storage at 4 $^{\circ}$ C with 85 %	63
	RH	
Figure 4.23	Chroma of baby cos lettuce leave during storage at 4 $^{\circ}$ C with 85 %	63
	RH	
Figure 4.24	L* value of baby cos lettuce cut surface during storage at 4 $^{\circ}$ C	64
	with 85 % RH	
Figure 4.25	Hue angle of baby cos lettuce cut surface during storage at 4 $^{\circ}C$	64
	with 85% RH	
Figure 4.26	Chroma of baby cos lettuce cut surface during storage at 4 $^{\circ}C$	65
	with 85 % RH	
Figure 4.27	Transmission electron microscope images of baby cos lettuce cell in	67
	control treatment at day 0 of storage	
Figure 4.28	Transmission electron microscope images of baby cos lettuce cell	67
	after forced-air cooling	
Figure 4.29	Transmission electron microscope images of baby cos lettuce cell	68
	after vacuum cooling treatment	
Figure 4.30	Transmission electron microscope images of baby cos lettuce cell	68
	after oom cooling	
Figure 4.31	Transmission electron microscope images of baby cos lettuce cell in	69
	control treatment after 13 days of storage	

Figure 4.32	Transmission electron microscope images with higher magnification	69
	view of chloroplast in baby cos lettuce cell	
	at day 0 of storage	
Figure 4.33	Transmission electron microscope images with higher magnification	70
	view of precooled baby cos lettuce cell with forced-air cooling after	
	13 days of storage	
Figure 4.34	Transmission electron microscope images of baby cos lettuce cell in	70
	control treatment after 13 days of storage	
Figure 4.35	Transmission electron microscope images of precooled baby cos	71
	lettuce cell with forced-air cooling after 13 days of storage	
Figure 4.36	Transmission electron microscope images of precooled baby cos	71
	lettuce cell with forced-air cooling after 13 days of storage	
Figure 4.37	Transmission electron microscope images of precooled baby cos	72
	lettuce cell with room cooling after 13 days of storage	
Figure 4.38	Transmission electron microscope images of precooled baby cos	72
	lettuce cell with vacuum cooling after 13 days of storage	
Figure 4.39	Transmission electron microscope images of precooled baby cos	73
	lettuce with vacuum cooling after 13 days of storage	
Figure 4.40	Raw data from the lettuce extract injection in 16 channel coulometric	80
	array detector poised from 100 to 850 mV, by step of 50 mV	
Figure 4.41	Comparison of different extraction techniques. Cumulative peak area	81
	(μC) of 16 channels poised at 100-850 mV is shown.	
Figure 4.42	Correlation graph of peak area at +400 mV by Coularray flow	82
	injection and antioxidant activity by traditional DPPH scavenging	
	method.	

Page

Figure 4.43	Peak area at Coularray channel $+400 \text{ mV}, \mu C$	83
0		

Figure 4.44 Principal Component Analysis of lettuce extracts after various 86 precooling treatments and seven day storage at 5°C (n=6).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved