

CONTENTS

	Page
Acknowledgement	d
Abstract in Thai	e
Abstract	f
List of Tables	i
List of Figures	j
Chapter 1 Introduction	1
1.1. Rational	1
1.2. Research objectives	5
1.3. Research scope	5
1.4. Research location	6
1.5. Usefulness and application of the research	6
Chapter 2 Hydrothermal synthesis and characterization	7
2.1. Hydrothermal procedure	7
2.2. Material characterization	8
2.2.1. Crystal structure of TiO ₂	8
2.2.2. Energy band of TiO ₂	9
2.3. Charge recombination mechanism	12
2.4. Growth mechanisms of TiO ₂ NRs	14
2.5. Effect of seed layer on TiO ₂ nanorods	16
2.6. Application in Perovskite and dye solar cells	19
2.6.1 Perovskite solar cell (PSCs)	19
2.6.2 Dye-sensitized solar cell (DSSCs)	20
Chapter 3 Methodology	21
3.1. Preparation of seed layers	21
3.2. Hydrothermal Synthesis of TiO ₂ NRs	22
Chapter 4 Results and discussions	25
4.1. Effect of Seed layer	25
4.1.1. Characterization of morphology by field emission scanning electron microscopy (FE-SEM)	25

4.1.2. Characterizarion of crystallininty by X-ray diffraction (XRD)	27
4.2. Effect of calcination at high temperature	29
4.2.1 Characterization of morphology by field emission scanning electron microscopy (FE-SEM)	29
4.2.2 Characterizarion of crystallininty by X-ray diffraction (XRD)	31
4.3. Effect of precursor concentration	32
4.3.1 Characterization of morphology by field emission scanning electron microscopy (FE-SEM)	32
4.3.2 Characterizarion of crystallininty by X-ray diffraction (XRD)	35
4.3.3 Optical Charaterization byUV-vis spectroscopy (UV-VIS)	37
4.4. Effect of hydrothermal reaction time	40
4.4.1. Characterization of morphology by field emission scanning electron microscopy (FE-SEM)	40
4.4.2. Characterizarion of crystallininty by X-ray diffraction (XRD)	45
4.4.3 Structural characterization by transmossion electron microscopic (TEM)	46
Chapter 5 Conclusion	53
5.1 Synthesis and characterization of well-aligned TiO ₂ NRs	53
5.2. Suggestions and future perspectives	55
5.2.1 Suggestions	55
5.2.2 Future perspective	55
References	57
List of Publication	61
Curriculum vitate	62

LIST OF TABLES

	Page
Table 3.1 Effect of TiO ₂ seed layer on the growth of TiO ₂ NRs	23
Table 3.2 Effect of calcination treatment at high temperature on morphology and size of TiO ₂ NRs	24
Table 3.3 Hydrothermal synthesis of TiO ₂ NRs at different hydrothermal times	24
Table 4.1 Average diameter and length of TiO ₂ NRs at various TBO concentrations	33
Table 4.2 Band gap energy of TiO ₂ depending on phase structure and approach.	38
Table 4.3. Average diameter and length of 0.7% TBO TiO ₂ NRs at various times.	42
Table 4.4 Average diameter and length of 1.0 % TBO TiO ₂ NRs at various times	42

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved

LIST OF FIGURES

	Page
Figure 1.1 Band diagram of perovskite solar cell	4
Figure 2.1 Molecular structures of TiO_2 (a) rutile and anatase (b)	9
Figure 2.2 The DOS and band structures of anatase (a) and rutile(b) TiO_2 with Fermi level shown by a dashed line	11
Figure 2.3 Recombination processes of photoexcited electrons and holes within indirect gap anatase and direct gap rutile (b)	13
Figure 2.4 Formation of the TiO_6 octahedra from protonation	15
Figure 2.5 (a) Face-sharing octahedra of anatase (b) and edge-sharing octahedra of rutile	16
Figure 2.6 FE-SEM and TEM images of the TiO_2 NRs. (a,c) and (b,d) are images of the TiO_2 /FTO and TiO_2 /SLs/FTO	17
Figure 2.7 (a) UV-Vis transmittance spectra of the bare FTO, SLs/FTO, TiO_2 NRs/SLs/FTO and TiO_2 NRs/FTO grown by hydrothermal method using 1.0 mL of Ti precursor. (b) X- ray diffraction patterns of the TiO_2 NRs/SLs/FTO, TiO_2 NRs/FTO, and FTO	18
Figure 2.8 Diagram of the dye adsorption and electron transport of the TiO_2 NRs grown on bare and seeded-FTO	19
Figure 3.1 Phase diagram of seed layer preparation	22
Figure 3.2 Phase diagram of hydrothermal synthesis	23
Figure 4.1 Cross section FE-SEM images of (a) FTO (b) seed on FTO (c) 1.0% TiO_2 NRs on FTO (d) 1.0% TiO_2 NRs on seed layers. (e) Top view FE-SEM images of 1.0% TBO NRs on FTO (b) Top view FE-SEM images 1.0% TBO NRs on seed layers	26
Figure 4.2 XRD patterns of bare FTO and seed layers on FTO	27
Figure 4.3 XRD patterns of 1.0% TBO TiO_2 NRs on bare FTO and TiO_2 NRs on Seed/FTO	28

Figure 4.4 Cross section FE-SEM images of (a) non calcined 0.7% TBO TiO ₂ NRs (b) calcined 0.7% TBO TiO ₂ NRs, Top view FE-SEM images of (c) non calcined 0.7% TBO NRs (d) calcined 0.7% TBO NRs (e) non calcined 1.0 % TBO NRs (f) calcined 1.0% TBO NRs	31
Figure 4.5 XRD patterns of 0.7% TBO TiO ₂ NRs that non calcined and calcined	31
Figure 4.6 XRD patterns of 0.7% TBO TiO ₂ NRs that non calcined and calcined	31
Figure 4.7 Top view FE-SEM images of TiO ₂ nanorods using titanium IVbutoxide (TBO) (a)0.3 %, (b)0.5 %, (c)1.0 %, (d) 1.5%	32
Figure 4.8 Cross-section view and top view FE-SEM images of TiO ₂ nanorods using titanium IV butoxide (TBO) (a,b) 0.3%, (c,d) 0.5% (e, f) 0.7%, (g,h) 1.0 %	34
Figure 4.9 XRD pattern of synthesized TiO ₂ NRs on TiO ₂ seed layer prepared on FTO substrate (a) at various TBO precursors (0.3-1.0% TBO) against TiO ₂ seed layer and (b) at 0.7 % TBO and 1.0 %TBO	36
Figure 4.10 (a) UV-VIS transmittance spectra of bare FTO and TiO ₂ NRs grown seeded-FTO substrates at different TBO concentration (b) Relation between and of TiO ₂ NRs with varying concentrations of TBO at 0.3% -1.0%.	37
Figure 4.11 Cross-section view and top view FE-SEM images of 0.7% TiO ₂ NRs obtained by hydrothermal reaction at (a,b)1 h, (c,d) 1.5h and(d,f) 2 h	40
Figure 4.12 Cross-section view and top view FE-SEM images of 1.0% TiO ₂ NRs obtained by hydrothermal reaction at (a,b)1 h, (c,d) 1.5h and(d,f) 2 h	41

Figure 4.13 Phase diagram of HCl role in rutile growth mechanism.

where R is the component of Ti(IV)-butoxide named butyl-group with the general formula C_4H_9

44

Figure 4.14 XRD pattern of (a) 0.7% TBO TiO_2 NRs with reaction time 1 h, 1.5 h and 2 h (b) 1.0% TBO TiO_2 NRs with reaction time 1 h, 1.5 h and 2 h.

45

Figure 4.15 XRD pattern of 0.7% TBO TiO_2 NRs with reaction time 1 h and 4 h.

46

Figure 4.16 Image of 0.7% TBO TiO_2 NRs hydrothermal for 1.5 h (a) TEM (b) High resolution transmission electron microscope (HRTEM) of figure a (c) Selected area electron diffraction patterns (SAED) of (110) plane

48

Figure 4.17 Image of 1.5 h hydrothermal of 1.0% TBO TiO_2 NRs (a,d) TEM (b) High resolution transmission electron microscope (HRTEM) of a area (c) Selected area electron diffraction patterns (SAED) of a area (e) HRTEM of b area (f) SAED of b area

49

Figure 4.18 Dominant planes of rutile TiO_2 structure; (a) (110) plane in 3D space (b) (110) plane in [001] direction (c) (101) plane in 3D space (d) (101) plane in [010] direction (e) (002) plane in 3D space (f) (002) plane in [010] direction

51

Figure 4.19 Dominant planes of rutile TiO_2 structure; (a) (110) plane in [110] direction (b) orientation of (110) plane (c) (101) plane in [010] direction (d) orientation of (101) plane (e) (002) plane in [010] direction (f) orientation of (002) plane

52

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved