CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (THAI)	iv
ABSTRACT (ENGLISH)	vii
LIST OF TABLES	X
LIST OF FIGURES	ixv
ABBREVIATIONS AND SYMBOLS	XV
ABBREVIATIONS AND SYMBOLS STATEMENTS OF ORIGINALITY (THAI) STATEMENTS OF ORIGINALITY (ENGLISH) CHAPTER 1 Introduction	xviii
STATEMENTS OF ORIGINALITY (ENGLISH)	xix
CHAPTER 1 Introduction	1
CHAPTER 2 Literature review	7
2.1 Heavy metals	7
2.2Arsenic	8
2.3 The use of arsenic	8
2.4Toxicity of arsenic compounds	9
2.5Arsenic in the environment	12
2.6 Microorganism and heavy metals	16
2.7 Bioremediation of arsenic-contaminated in agricultural soils	21
References	24
CHAPTER 3 Screening of arsenic resistant bacteria and evaluation of their	
detoxification mechanisms	32
3.1 Introduction	32
3.2 Materials and methods	33
3.3 Results	37
3.4 Discussion	63
3.5 Conclusion	65
References	66

CONTENTS (CONTINUED)

	Page
CHAPTER 4 Evaluation of plant-growth promoting traits of	
arsenic-resistant bacteria	
4.1 Introduction	69
4.2 Materials and methods	70
4.3 Results	73
4.4 Discussion	81
4.5 Conclusion	83
References	84
CHAPTER 5 Characterization of arsenic redox transforming bacteria	87
5.1 Introduction	87
5.2 Materials and methods	89
5.3 Results	92
5.4 Discussion	98
5.5 Conclusion	100
References	101
CHAPTER 6 Plant uptake and accumulation of arsenic	105
6.1 Introduction	105
6.2 Materials and methods	107
6.3 Results	112
6.4 Discussion	120
6.4 Conclusion	122
References rights reserved	123
CHAPTER 7 Conclusion	126
APPENDIX	128
CURRICULUM VITAE	133

LIST OF TABLES

	Page
Table 2.1 Arsenic compounds used in industry, agriculture and medicine	10
Table2.2Arsenic species important in toxicity	11
Table 2.3 Examples of arsenic-resistant microbes.	20
Table 3.1 Arsenic concentrations and bacterial isolates obtained from arsenic	
contaminated soil.	38
Table 3.2 Growth of bacterial isolate under different levels of NaAsO ₂ at pH 4.5	39
Table 3.3 Growth of bacterial isolate under different levels of NaAsO ₂ at pH 4.7	40
Table 3.4 Growth of bacterial isolate under different levels of NaAsO ₂ at pH 7.0	41
Table 3.5 The minimum inhibitory concentration (MIC) of NaAsO ₂ against	
selected isolates	42
Table3.6Growth of bacterial isolate under different levels of NaAsO ₂ at pH 4.5	44
Table 3.7 Growth of bacterial isolate under different levels of NaAsO ₂ at pH 4.7	47
Table3.8Growth of bacterial isolate under different levels of NaAsO ₂ at pH 5.5	50
Table3.9Growth of bacterial isolate under different levels of NaAsO ₂ at pH 6.0	53
Table4.1Phosphate solubilizing ability of arsenic-resistant bacteria under	
different levels of NaAsO ₂	74
Table4.2Effect of different phosphate substrates on solubilization by	
arsenic-resistant bacteria	76
Table4.3Effect of different phosphate substrates on pH changed	
by arsenic-resistant bacteria	77
Table4.4Indole-3-acetic acid (IAA) produced by arsenic-resistant bacteria 79	
Table4.5 Siderophore production by arsenic-resistant bacteria.	79
Table4.6 Effects of arsenic-resistant strains on seed germination	
and root length of Chinese Kale.	80

LIST OF TABLES (CONTINUED)

	Page
Table 5.1 Colony morphology and biochemical reaction of arsenic resistant isolates	92
Table 5.2 The 16S rDNA sequence homologous identity of the selected strains	
with the most relevant species retrieved from the GenBank by blast	95
Table5.3Evaluation of the arsenite oxidation and arsenate reduction by	
selected isolates	98
Table6.1Experimental treatments using PangdaSoils	108
Table 6.2 Soil properties and arsenic concentration of Pangda soils	112
Table 6.3 pH change after 0,15, and 90 days after incubation of Pangda soils	113
Table 6.4 Available P of Pangda soils after incubation with	
arsenic resistant bacteria	114
Table 6.5 Fresh and dry weights of carrot grown in Pangda soils after 75 days of	
growing	115
Table6.6Nutrients uptake by carrot grown in Pangda soils after 75 days	
of growing	116
Table 6.7 Total arsenic (As) concentration in Pangda soils after 0, 15	
and 90 days of incubation.	118
Table 6.8 Arsenate As (V) concentration in Pangda soils after 0, 15 and	
90 days of incubation	119
Table 6.9 Arsenic accumulation in storage roots and leaves of carrot grown	
in Pangda soils	120
Copyright [©] by Chiang Mai University	
All rights reserved	

LIST OF FIGURES

	Page
Figure 2.1 Redox potential Eh-pH diagram	15
Figure 3.1 Site map of the study areas, highland areas, northern Thailand;	34
Figure 3.2 Standardized pH color chart for Bromocresol green	43
Figure 3.3 Effect of different arsenite concentration on growth of high arsenic-	
resistantisolates and pH change of the culture broth	56
Figure 3.4 Effects of NaAsO ₂ concentration (50 and 100 mg/L)	59
Figure 3.5 Chromatograms obtained from the HPLC-ICPMS analyses	60
Figure 3.6 Effectiveness of arsenic-resistant bacteria in arsenite transformation	62
Figure 4.1 Siderophore production by strain BAs 11	79
Figure 5.1 Colony morphology and gram strain of arsenic resistant bacteria on	
NA medium	93
Figure 5.2 Representative gel of PCR amplicons of 16S rRNA gene	94
Figure 5.3 Phylogenetic tree based on 16S rDNA sequence showing the position	
of BAs7, BAs8, BAs19, BAs29 (A)	96
Figure 5.4 Phylogenetic tree based on 16S rDNA sequence showing	
the position of BAs 11	97
Figure 6.1 Carrot grown in Pangda soils after 75 days of growing	115
Copyright [©] by Chiang Mai University	
All rights reserved	

ABBREVIATIONS AND SYMBOLS

°C Degree Celsius

μg/l microgram per lite

μg/mL Microgram per millilitre

µmol Micromole

Al-P Aluminum phosphate

ars arsenic-resistant gene

As Arsenic

As(III) Arsenite

AS(V) Arsenate

As⁺³ Arsenite

As⁺⁵ Arsenate

ASV Anodic stripping voltammetry

ATP Adenosine triphosphate

ATSDR Agency for Toxic Substances and Disease Registry

C Carbon

Ca Calcium

Ca₃(PO₄)₂ Calcium phosphate

CAO Chemoautotrophic Arsenite Oxidizer

Ca-P Calcium phosphate

CCA chromated copper arsenate

Cd Copyright Cadmium niang Mai University

CEC High cation exchange capacity

CFU Colony forming units

Cm Centimeter

cm² centimetre squared

CO₂ Carbon dioxide

CRD Completely Randomized Design

DMA dimethylarsinic acid

DMSO Dimethyl sulfoxide

ABBREVIATIONS AND SYMBOLS (CONTINUED)

DNA Deoxyribonucleic acids

DW Dry weight
e Electron
g Gram

GC Gas chromatography

H Hydrogen

HAOs heterotrophic arsenite oxidizers

HG-AAS hydride generation-atomic absorption spectrometry

HPLC High-pressure liquid chromatography

hr Hour

IAA Indole acetic acid

IARC The International Agency for Research on Cancer

ICP-AES inductively coupled plasma atomic emission spectrometer

ICP-MS Inductively Coupled Plasma Mass Spectrometry

K Potassium

KCl Potassium chloride

kg Kilogram

LC Liquid chromatography

LD₅₀ Lethal dose 50%

LOD Limit of detection

LSD Least significant difference

MCL maximum contaminant level

Mg Magnesium

mg Milligram

mg/kg milligrams per kilogram (equivalent to ppm)

mg/L Milligram per litre

mL Milliliter mM Millimolar

MMA monomethylarsonic acid

ABBREVIATIONS AND SYMBOLS (CONTINUED)

MSM monosodium methanearsonate, the sodium salt of MMAA

N Nitrogen

Na-As(III) Sodium arsenite

nd below analytical detection limit

ng/m³ Nanogram per cubic meter

O Oxygen

-OH groups Hydroxyl groups

OM Organic matter

OM Organic matter

P Phosphorus

Pb Lead

PGPM Plant growth promoting microorganisms

PGPR Plant growth-promoting rhizobacteria

pH Potential of hydrogen ion

ppm parts per million (equivalent to mg/kg)

PSB Phosphate solubilizing bacteria

PVK Pikovskaya's

RNA Ribonucleic acids

rpm Round per minute

S Sulfur

Tr Treatments

U.S. EPA The United State Environmental Protection Agency

USEPA United States Environmental Protection Agency

UV Ultraviolet

UV-vis Ultraviolet-visible

WHO World Health Organization

 $\begin{array}{cc} \mu g & \quad Microgram \\ \mu M & \quad Micromole \end{array}$

ข้อความแห่งการริเริ่ม

ข้าพเจ้าขอรับรองว่าวิทยานิพนธ์ฉบับนี้เป็นผลงานวิจัยริเริ่มยกเว้นในกรณีเอกสารอ้างอิงข้าพเจ้า ขอรับรองว่าวิทยานิพนธ์นี้ไม่ได้ละเมิดลิขสิทธิ์กรรมสิทธิ์และเทคนิคใดๆจากการทำงานของคนอื่นๆ และผลงานของข้าพเจ้านี้ไม่ได้ถูกส่งไปเพื่อขอประกาศนียบัตรหรือปริญญาบัตรจากสถาบันอื่นๆของ ระดับการศึกษาที่สูงขึ้น

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENTS OF ORIGINALITY

I hereby certify that this thesis is original research work except where due reference is made. I certify that, my thesis does not infringe upon anyone's copyright nor violate any proprietary rights. It has not been submitted for any other degree or diploma to any other institution of higher learning.

