
CHAPTER 2

Preliminaries

In this chapter, we give some definitions, notations and some known results that

will be used in later chapters.

2.1 Magic squares

A magic square of order n is the square with n rows and n columns filled with

integers such that the sum of these integers in every row, in every column and in each of

the two principal main diagonals is the same [2].

If the integers forming a magic square are consecutive positive numbers from 1 to

n2, the square is said to be normal magic square of the nth order. Otherwise it is

non-normal magic squares which integers are not restricted in 1 to n2. However, magic

squares are used as a general term to cover both the normal and non-normal ones [6].

The sum of numbers on every row, every column and the two principle diagonals is

called the magic constant or magic sum of the magic square. For normal magic square of

order n, the magic sum can be found by 1
2n(n

2 + 1) . For example, normal magic squares

of orders n = 3, 4, 5, 6, 7, and 8, the magic constants are, respectively: 15, 34, 65, 111,

175, and 260 [6].

A normal magic square of order 3 has exactly one but, it can be rotated and reflected

to produce 8 trivially distinct squares [6].

For example, the normal magic square of the 3th order

8 1 6

3 5 7

4 9 2

In 1675, Bernard Frenicle de Bessey was the first who found that there are exactly

880 normal magic squares of order 4 and it can be generated to 7, 040 different magic

squares [6].

For example, the normal magic square of the 4th order
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7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4

In 1973, Richard Schroeppel was the first to compute the number of magic squares

of order 5. He found that there are exactly 68, 826, 306 squares which can be generated

to 275, 305, 224 of 5× 5 magic squares [10]. For example, the normal magic square of the

5th order

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

However, for the 6×6 case, it has not known the exactly number yet but there are

estimated to be approximately 1.7745±0.0016×1019 squares [10]. For example, the normal

magic square of the 6th order

35 1 6 26 19 24

3 32 7 21 23 25

31 9 2 22 27 20

8 28 33 17 10 15

30 5 34 12 14 16

4 36 29 13 18 11

A magic square is said to be a pandiagonal magic square (sometimes diabolic or

Nasik) if it has the property that not only the numbers in the rows, columns and principle

diagonals add to the magic constant, but also the numbers in all broken diagonals, short

broken diagonals and long broken diagonals, add to the magic constant [6]. For instance,

the magic square of order 4 below

Table 2.1: A magic square

a b c d

e f g h

i j k l

m n o p
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The square 2.1 above will be a pandiagonal magic square if not only the numbers

in rows, columns and principal diagonals add to magic constant, but also the numbers in

short broken diagonals, namely, e b o l, i n c h and long broken diagonals, namely, a h k n,

c g i p, mbg l, e j o d.

For example, the magic square below is a pandiagonal magic square of order 4

7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4

For a normal magic squares of order 4, there are 384 pandiagonal magic squares [9].

A magic square is said to be a semi-pandiagonal magic square or semi-Nasik if

the short broken diagonals add to magic constant, but not long broken diagonals [6]. For

instance, the square 2.1 will be a semi-pandiagonal magic square if it is a magic square

and the numbers in short broken diagonals, namely, e b o l, i n c h add to magic constant.

Here is an example of semi-pandiagonal magic square. It is easy to see that all rows,

columns and principle diagonals add to 34. Moreover, 2 short broken diagonals such as 6

11 10 7, 5 12 9 8 add to 34 but, the long broken diagonals do not such as 4 8 16 12, 9 13

5 1.

4 11 5 14

6 13 3 12

9 2 16 7

15 8 10 1

2.2 A Lanna Magic Square

A Lanna Magic Square is a square recieved from substracting 6 to every number

from Buddha Khunnung 56 Yantra

Table 2.2: Buddha Khunnung 56 Yantra

16 14 18 8

19 7 17 13

10 10 12 14

11 15 9 21

Buddha Khunnung 56 Yantra is a Lanna Yantra which talisman of Lanna people [5].

It was recorded by using Lanna letters or Lanna numbers in fabric or thin silver plate or
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copperplate. There are a lot of Lanna Yantra with different supernatural. Lanna people

keep Yantra at home or bring it with themselves [1].

Buddha Khunnung 56 Yantra actually is a (non-normal) magic square of order 4

filling with the numbers 7 to 21 which appear the number 14 twice and its magic constant

is 56.

After substracting 6 to every number, we get the magic square 2.3 which contains

the numbers 1 to 15 with repeat 8 and magic constant is 32. We call 2.3 square, a Lanna
Magic Square and all magic squares creating by the numbers in this square 1 to 15 with

repeat 8 and their magic constant 32, Lanna Magic Squares too. Clearly, a Lanna Magic

Square is a pandiagonal magic square.

Table 2.3: A Lanna Magic Square

10 8 12 2

13 1 11 7

4 14 6 8

5 9 2 15

Moreover, we call pandiagonal magic squares of order 4 created by numbers 1 to

15 with repeated number 8 twice and magic constant 32, pandiagonal Lanna Magic
Squares (it means each row, each column, 2 main diagonals and all 6 broken diagonals

sum to 32). In addition, we call semi-pandiagonal magic squares of order 4 created by

numbers 1 to 15 with repeated number 8 twice and magic constant 32, semi-pandiagonal
Lanna Magic Squares.

The principle knowledge in mathematics that was used in this study are equivalence

relation, group theory, groups of permutation and group action. Here are important

definition, theorem and examples for the study. For more details see [4] and [3].

2.3 Equivalence Relation

Definition 2.3.1. Let X and Y be sets. The set X × Y = {(x, y) |x ∈ A and y ∈ B} is

the Cartesian product of X and Y .

For example, X = {1, 2, 3} and Y = {5, 8}, then we have

X × Y = {(1, 5), (1, 8), (2, 5), (2, 8), (3, 5), (3, 8)}.

Definition 2.3.2. (Relation between two sets) If X and Y are sets, a relation between
X and Y is a subset R ⊆ X×Y . For a relation R ⊆ X×Y and x ∈ X, y ∈ Y if (x, y) ∈ R,
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we write xRy and if (x, y) /∈ R, we write x ̸R y.

If xRy, we say that x is R-related to y and if x ̸R y, we say that x is not R-related

to y.

Definition 2.3.3. (Binary relation on a set) A binary relation on a set X is a relation R

between X and X, that is, a subset R ⊆ X ×X.

For example,(1) For any set X, ∅ is a binary relation on X.

(2) For any set X ̸= ∅, the set X ×X is a binary relation on X.

(3) For X = R, the set {(x, y) ∈ R× R |x ≤ y} is a binary relation on R.

Definition 2.3.4. (Properties of relations) Let R be a binary relation on a set X.

1.The relation R is called reflexive if for every x ∈ X we have xRx.

2.The relation R is called symmetric if for all x, y ∈ X we have xRy ↔ yRx.

3.The relation R is called transitive if whenever x, y, z ∈ X are such that xRy and yRz then xRz.

4.The relation R is called anti-symmetric if whenever x, y ∈ X are such that

xRy and yRx, then x = y.

For example, (1) The relation for any set X, ∅ is symmetric, anti-symmetric.

(2) The relation for any set X ̸= ∅, the set X × X is reflexive, symmetric and

transitive.

(3) The relation for X = R the set {(x, y) ∈ R×R |x ≤ y} is reflexive, anti-symmetric

and transitive, but it is not symmetric.

Definition 2.3.5. (Equivalence relation) An equivalence relation on a set X is a binary

relation R on X such that R is reflexive, symmetric and transitive.

Definition 2.3.6. (Equivalence classes) Let ∼ be an equivalence relation on X. For

x ∈ X, the equivalence class of x denoted by [x] = {y ∈ X |x ∼ y}.

For example, (1) The relation for any set X ̸= ∅, the set X ×X gives equivalencr relation

and the relation for X = R the set {(x, y) ∈ R× R |x ≤ y} is not equivalence relation.

Proposition 2.3.7. Let ∼ be an equivalence relation on X then

1. If x, y ∈ X are such that x ∼ y then [x] = [y].

2. If x, y ∈ X are such that x ̸∼ y then [x] ∩ [y] = ∅.

3. For any x ∈ X we have x ∈ [x].

Definition 2.3.8. A partition of a set S is a collection of nonempty subsets of S such

that every element of S is in exactly one of the subsets. The subsets are the cells of the

partition and denote x be the cell containing the element x of S.
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Theorem 2.3.9. Let S be a nonempty set and let ∼ be an equivallence relation on S.

Then ∼ yields a partition of S, where a = {x ∈ S |x ∼ a}.

Definition 2.3.10. A function f mapping X into Y is a relation between X and Y with

the property that each x ∈ X appears as the first member of exactly on ordered pair (x, y)

in f . Such a function is also called a map or mapping of X into Y denoted by f : X → Y

and express (x, y) ∈ f by f(x) = y.

The domain of f is the set X and the range of f is f [X] = {f(x) |x ∈ X}.

Definition 2.3.11. A function f : X → Y is one to one (or injection) if f(x1) = f(x2)

only when x1 = x2.

The function f is onto (or surjection) Y if the range of f is Y .

And the function f is call bijection if it is both one to one and onto.

For example, The functioin f : R → R where f(x) = x2 is not one to one because

f(2) = f(−2) = 4 but 2 ̸= −2. It is not onto R because the range is the proper subset of

all nonnegative numbers in R. The functioin g : R → R defined by g(x) = x3 is both one

to one and onto R.

2.4 Group Theory

Definition 2.4.1. A group < G , ∗ > is a set G, closed under a binary operation ∗ such

that the following axioms are satisfied:

G1: For all a, b, c ∈ G we have (a ∗ b) ∗ c = a ∗ (b ∗ c). (associativity of ∗)

G2: There is an element e in G such that for all x ∈ G, e∗x = x∗e = x. (identity

element e for ∗)

G3: Corresponding to each a ∈ G, there is an element a′ ∈ G such that a ∗ a′ =

a′ ∗ a = e. (inverse a′ of a)

For example, (1) Z with the addition and 0 as identity is a group.

(2) Z with the multiplication is not a group since there are elements which are not

invertible in Z.

(3) The set Z+ under multiplication is not a group since there is an identity 1, but

no inverse of 5.

Theorem 2.4.2. Let G be a group then

1. (ab)′ = b′a′ For all a, b ∈ G.

2. (a′)′ = a For all a ∈ G.
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Definition 2.4.3. A group G is called abelian if its binary operation is commutative.

For example, Z with the addition and 0 as identity is an abelian group.

Definition 2.4.4. Let G and H be groups. A function f : G → H is said to be a

homomorphism if

f(ab) = f(a)f(b) for all a, b ∈ G.

If f is injective, f is said to be a monomorphism. If f is surjective, f is called an

epimorphism. If f is bijective, f is called an isomorphism. In this case G and H are

said to be isomorphic and written G ∼= H.

A homomorphism f : G → G is called an endomorphism of G and an isomorphism

f : G → G is called an automorphism of G.

Definition 2.4.5. The order of a group G, denoted by |G|, is the cardinality of G, that

is the number of element in G.

For example, The group G = {0} has order 1 and the group G = {0, 1, 2, . . . , n − 1} of

integers modulo n is a group of order n.

Definition 2.4.6. A subgroup H of a group G is a non-empty subset of G that forms a

group under the binary operation of G. We shall let H ≤ G or G ≥ H denote that H is

a subgroup of G.

Theorem 2.4.7. Let G be a group. Let H be a non-empty subset of G. The following

are equivalence:

1. H is a subgroup of G.

2. (a) x, y ∈ H implies xy ∈ H for all x, y.

(b) x ∈ H implies x′ ∈ H.

3. x, y ∈ H implies xy′ ∈ H for all x, y.

Definition 2.4.8. The order of an element a ∈ G is the least positive integer n such

that an = 1. If no such integer exists, the order of a is infinite. We denote it by |a|.

For example, consider Z10 under addition modulo 10. Since 1 · 2 = 2, 2 · 2 = 4,

3 · 2 = 6, 4 · 2 = 8, 5 · 2 = 0, we know that |2| = 5

Definition 2.4.9. A group is cyclic if it is generated by a single element which denoted

by G =< a >.

For example, Z4 is cyclic with generators 1 and 3, that is, < 1 >=< 3 >= Z4.
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Theorem 2.4.10. Every cyclic group is abelian.

Theorem 2.4.11. A subgroup of cyclic group is cyclic.

Corollary 2.4.12. The subgroups of Z under addition are precisely the group nZ under

addition for n ∈ Z.

Proposition 2.4.13. If G is a cyclic group of order n generated by a, the following

conditions are equivalence:

1. |ak| = n.

2. k and n are relatively prime.

3. k has an inverse modulo n, that is there exists an integers s such that ks ≡

1 modulo n.

Definition 2.4.14. Let H be a subgroup of a group G. If g ∈ G, the right coset of H

generated by g is

Hg = hg, h ∈ H

and similarly the left coset of H generated by g is

gH = gh, h ∈ H.

For example, the group Z4 = {0, 1, 2, 3} and its subgroup H = {0, 2}, the cosets of H in

G are 0 +H = H, 1 +H = {1, 3}, 2 +H = H, 3 +H = {1, 3}.

Clearly, 0 +H = 2 +H and 1 +H = 3 +H.

Lemma 2.4.15. Ha = Hb if and only if ab′ ∈ H for a, b ∈ G. Similarly, aH = bH if

and only if a′b ∈ H for a, b ∈ G.

Saying that two elements a, b ∈ G generate the same coset is actually an equiva-
lence relation in the following sense. We say that s is equivalence to b if and only if

ab′ ∈ H and this relation satisfies the three properties of an equivalence relation:

1. reflexivity: aa′ = 1 ∈ H.

2. symmetry: if ab′ ∈ H then (ab′)′ = ba′ ∈ H.

3. transitivity: if ab′ ∈ H and bc′ ∈ H then (ab′)(bc′) = ac′ ∈ H.

The equivalence class of a is the set of elements in G which are equivalent to a.

Definition 2.4.16. The index of a subgroup H in G is the number of right (or left)

cosets. It is positive number or infinity and denoted by [G:H].
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For example, R as an additive group with subgroup Z the index [R : Z] is infinite, since

there are infinitely many cosets of Z in R.

Theorem 2.4.17. If K,H,G are groups with K < H < G, then [G : K] = [G : H][H : K].

If any two of these indices are finite, then so is third.

Theorem 2.4.18. (Lagrange’s Theorem) If H is a subgroup of G, then |G| = |H|[G : H].

In particular, if G is finite then |H| divides |G| and [G : H] = |G|/|H|.

For example, consider G = Z, H = 3Z, then [G : H] = 3.

Corollary 2.4.19. 1. Let G be a finite group. If a ∈ G, then |a| divides |G|. In particular,

a|G| = 1.

2. If G has prime order, then G is cyclic.

Theorem 2.4.20. Let H and K be finite subgroups of a group G. Then |HK| =

|H||K|/|H ∩K|.

Normal subgroups and quotient group

Definition 2.4.21. Let H be a subgroup of G. H is a normal subgroup of G (or H is

normal in G) if

gHg = H, for all h ∈ G.

and denote it H EG, or H ▹G when emphasizing that H is a proper subgroup of G.

Lemma 2.4.22. Let H be a subgroup of G, the following are equivalent:

1. gHg′ =⊆= H for all g ∈ G.

2. gHg′ = H for all g ∈ G, that is gH = Hg for all g ∈ G.

3. Every left coset of H in G is also a right coset (and vice-versa, every right coset

of H in G is also a left coset).

Proposition 2.4.23. If H is normal in G, then the coset of H form a group.

Definition 2.4.24. The group of cosets of a normal subgroup N of G is called the quo-
tient group of G by N and denoted by G/N .

2.5 Groups of Permutations

Definition 2.5.1. A permutation of a set A is a function ϕ : A → A that is both one

to one and onto.
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For example, define a permutation α of the set {1, 2, 3, 4} by giving α(1) = 2,

α(2) = 3, α(3) = 1, α(4) = 4 or we can write

 1 1 3 4

2 3 1 4


We now show that function composition ◦ is a binary operation on the collection of

all permutations of a set A. We call this operation permutation multiplication. Let

A be a set, and let σ and τ be permutations of A so that σ and τ are both one to one

functions mapping A onto A. The composite function σ ◦ τ defined schematically by

A
τ−→ A

σ−→ A,

gives a mapping of A into A. Rather than keep the symbol ◦ for permutation multipli-

cation, we will denote σ ◦ τ by the juxtaposition στ , as we have done for general groups.

Now στ will be a permutation if it is one to one and onto A. Remember that the action

of στ on A must be read in right to left order: first apply τ and then σ.

For example, suppose that A = {1, 2, 3, 4, 5} and

σ =

 1 2 3 4 5

4 2 5 3 1

 , τ =

 1 2 3 4 5

3 5 4 2 1


so, (στ)(1) = σ(τ(1)) = σ(3) = 5, (στ)(4) = σ(τ(4)) = σ(2) = 2.

Definition 2.5.2. Let A be the finite set {1, 2, 3, …, n }. The group of all permutations

of A is symmetric group on n letters, and is denoted by Sn .

For example, all permutations of S3 are

 1 2 3

1 2 3

,

 1 2 3

1 3 2

,

 1 2 3

2 1 3

,

 1 2 3

2 3 1

,

 1 2 3

3 1 2

,

 1 2 3

3 2 1


Theorem 2.5.3. Let A be a nonempty set, and let SA be the collection of all permutations

of A. Then SA is a group under permutation multiplication.

Note that Sn has n! elements, where n! = n(n− 1)(n− 2)(3)(2)(1).

Theorem 2.5.4. (Cayley’s Theorem) Every group is isomorphic to a group of permuta-

tions.

For example, consider the group {0, 1, 2} of integers modulo 3. 0 corresponds to the

identity permutation, 1 corresponds to the permutation (1 2 3), and 2 corresponds to the

permutation (1 3 2).
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Generating sets

Definition 2.5.5. Let {Si|i ∈ I} be a collection of sets. The intersection ∩i∈I Si of the
sets Si is the set of all elements that are in all the sets Si; that is,

∩i∈I Si = {x|x ∈ Si for all i ∈ I}.

If I is finite, I = {1, 2, . . . , n}, we may denote ∩i∈I Si by S1 ∩ S2 ∩ . . . ∩ Sn.

Theorem 2.5.6. The intersection of some subgroups Hi of a group G for i ∈ I is a

subgroup of G.

Definition 2.5.7. Let G be a group and let ai ∈ G for i ∈ I. The smallest subgroup of

G containing {ai|i ∈ I} is the subgroup generated by {ai|i ∈ I} and denoteed < ai >.

If this subgroup is all of G, then < ai > generates G and the ai are generators of G.

If there is a finite set {ai|i ∈ I} that generates G, then G is finitely generated. If

a ∈ G, the subgroup < a > is called the cyclic subgroup generated by a.

Note that this definition is consist with the defition of a generator for a cyclic group.

Theorem 2.5.8. If G is a group and X is a nonempty subset of G, then the subgroup

< X > generated by X consists of all finite products an1
1 an2...

2 anm
m (ai ∈ X;ni ∈ Z). In

particular for every a ∈ G,< a >= {an |n ∈ Z}.

2.6 The Action of a Group on a Set

Definition 2.6.1. An action of a group G on a set S is a function G × S → S (usually

denoted by (g, x) 7→ gx) such that for all x ∈ S and g1, g2 ∈ G :

ex = x and (g1g2)x = g1(g2x).

When such an action is given, we say that G acts on the set S.

For example, an action of the symmetric group Sn on the set In = {1, 2, . . . , n} is given

by (σ, x) 7→ σ(x).

Theorem 2.6.2. Let G be a group that acts on a set S.

1. The relation on S defined by x ∼ x′ ↔ gx = x′ for some g ∈ G is an equivalence

relation.

2.For each x ∈ S,Gx = {g ∈ G | gx = x} is a subgroup of G.
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The equivalence classes of the equivalence relation of Definition 2.6.2 are called

orbits of G on S; the orbit of x ∈ S is denoted x̄. The subgroup Gx is called the

stabilizer of x.

Theorem 2.6.3. If a group G acts on a set S, then the cardinal number of the orbit of

x ∈ S is the index [G : Gx].

Definition 2.6.4. Let G be a group acting on a set S . G is transitive if for each x, y ∈ S,

there exists g ∈ G such that gx = y.

Next theorem is an exercise in [4] 6(a) page 93.

Theorem 2.6.5. Let G be a group acting on a set S and G transitive. For x ∈ S, the

orbit x of x is S (or there is only one orbit).

Proof. Suppose that G is transitive and S ̸= ∅. Let x ∈ S. Since G is transitive so, it is

clearly that for all y ∈ S there is g ∈ G such that x = gy. Thus, y ∈ x. Hence, S ⊆ x.

Conversely, given x is orbit of S so, for any y ∈ x has some g ∈ G such that x = gy.

Hence, x ⊆ S. Thus, x = S.

Therefore, the orbit x of x is S.
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