CHAPTER 3

Pandiagonal Lanna Magic Squares

In this chapter, we study about how many pandiagonal Lanna Magic Squares are by using a concept of abstract algebra, a group action on subgroup of S_{16} .

Since l is a pandiagonal Lanna Magic Square so, all 4 rows, each row sum is 32, all 4 columns, each sum is 32 also 2 main diagonals and 6 broken diagonals each sum is 32. And let T_1, T_2, T_3, T_4 and T_5 be transformations of pandiagonal Lanna Magic Square when T_1 : Reflection about the a, f, k, p diagonal.

- T_2 : Rotation through 90 ° counter-clockwise.
- T_3 : Putting the first column last.
- T_4 : Putting the first row last.

	a	d	h	e
$T_{\rm c}$: The transformation of a pandiagonal Lanna Square l into	b	с	g	f
15. The transformation of a panellagonal Damia Square i mo	n	0	k	j
	m	p	l	i

If we consider the transformations $T_1 - T_5$ of pandiagonal Lanna Magic Squares in permutation form of subgroup of S_{16} when the number 1-16 represent the position in the square

Table 3.1: A Lanna Magic Square in permutation form

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

we get

T_1 : (1)(6)(11)(16)(25)(39)(413)(710)(814)(1215),

 T_2 : $(1 \ 4 \ 16 \ 13)(2 \ 8 \ 15 \ 9)(3 \ 12 \ 14 \ 5)(6 \ 7 \ 11 \ 10),$

- $T_3: (1 4 3 2)(5 8 7 6)(9 12 11 10)(13 16 15 14),$
- $T_4: (1\ 13\ 5\ 9)(2\ 14\ 10\ 6)(3\ 15\ 11\ 7)(4\ 16\ 12\ 8),$
- T_5 : (1)(7)(11)(13)(2 5 4)(3 6 8)(9 16 4)(10 12 15).

When $(i_1 i_2 \cdots i_r)$ is a cycle of length r or an r-cycle. The notation $(i_1 i_2 \cdots i_r)$ means that the i_1 element is replaced by the i_2 , the i_2 by the i_3 , \cdots the i_{r-1} by i_r and the i_r by the i_1 .

Example, consider one of pandiagonal Lanna Magic Squares

Table 3.2 :	One of	pandiagonal	Lanna	Magic	Squares
---------------	--------	-------------	-------	-------	---------

10	8	12	2
13	1	11	7
4	14	6	8
5	9	3	15

The notation T_1 : $(1)(6)(11)(16)(2\ 5)(3\ 9)(4\ 13)(7\ 10)(8\ 14)(12\ 15)$ mean that the position 1, 6, 11, 16 stay in the same position and 2 replaced by 5, 3 replaced by 9, 4 replaced by 13 and so on. Thus, applied T_1 to 3.2 we have

Table 3.3: Applied T_1 to table 3.2

10	13	4	5
8	1	14	9
12	11	6	3
2	7	8	15

It is obvious that the square 3.3 is a pandiagonal Lanna Magic Square.

For another example, consider T_3 : $(1 \ 4 \ 3 \ 2)(5 \ 8 \ 7 \ 6)(9 \ 12 \ 11 \ 10)(13 \ 16 \ 15 \ 14)$. From the notation it means that the position 1 replaced by 4, 4 replaced by 3, 3 replaced by 2 and 2 replaced by 1. The position 5 replaced by 8, 8 replaced by 7, 7 replaced by 6 and 6 replaced by 5. Namely, applied T_3 to 3.2 we get

Table 3.4: Applied T_3 to table 3.2

13	1	11	7
4	14	6	8
5	9	3	15
10	8	12	2

which is obvious to see that the square 3.4 is a pandiagonal Lanna Magic Square. Clearly that the transformations $T_1, T_2, T_3, T_4, T_5 \in S_{16}$. Now we will show that a pandiagonal Lanna Magic Square preserves to be a pandiagonal Lanna Magic Square after applying the transformations T_1, T_2, T_3, T_4, T_5 .

Since l is a pandiagonal Lanna Magic Square so, all 4 rows, each row sum is 32. That are,

$$a + b + c + d = 32, (3.1)$$

$$e + f + g + h = 32, (3.2)$$

$$i + j + k + l = 32, (3.3)$$

$$m + n + o + p = 32. (3.4)$$

All 4 columns, each sum is 32. That are,

$$a + e + i + m = 32, (3.5)$$

$$b + f + j + n = 32, (3.6)$$

$$c + g + k + o = 32, (3.7)$$

$$d + h + l + p = 32. (3.8)$$

Moreover, 2 main diagonals each sum to 32,

$$a + f + k + p = 32, (3.9)$$

$$d + g + j + m = 32. (3.10)$$

Also 6 broken diagonals, each sum is 32. That are,

$$a + h + k + n = 32, (3.11)$$

$$b + e + l + o = 32,$$
 (3.12)

$$c + f + i + p = 32, (3.13)$$

$$d + e + j + o = 32, (3.14)$$

$$c + h + i + n = 32, (3.15)$$

$$b + g + l + m = 32. \tag{3.16}$$

Consider applying transformation T_1 : reflection about the a, f, k, p diagonal, to l we have

Table 3.5: Applied T_1 to l

a	e	i	m
b	f	j	n
c	g	k	0
d	h	l	p

It is easy to see that

a + e + i + m = 32	(from 3.5)	b+f+j+n=32	(from 3.6)
c + g + k + o = 32	(from 3.7)	d+h+l+p=32	(from 3.8)
a+b+c+d=32	(from 3.1)	e+f+g+h=32	(from 3.2)
i+j+k+l=32	(from 3.3)	m+n+o+p=32	(from 3.4)
a+f+k+p=32	(from 3.9)	m+j+g+d=32	(from 3.12)
a+n+k+h=32	(from 3.10)	e+b+o+l=32	(from 3.11)
i + f + c + p = 32	(from 3.12)	m+b+g+l=32	$(\mathrm{from}3.15)$
i+n+c+h=32	(from 3.14)	e+j+o+d = 32	(from 3.13)

Thus, the square 3.5 is a pandiagonal Lanna Magic Square.

In other words we can see that the transformation T_1 carries rows into columns and columns into rows so, all 4 columns and 4 rows each sum are 32. Moreover, it is clearly that all main and broken diagonals each sum are 32.

Thus, a pandiagonal Lanna Magic Square remains a pandiagonal Lanna Magic Square after applied T_1 .

Consider apply transformation T_2 : Rotation through 90 ° counter-clockwise, to l we have

Copyright [©]	Table 3.6	6: A	ppli	$\operatorname{ed} T_{\underline{f}}$	$_2$ to l			
	d	h	l k	p	e s			
	$\frac{c}{b}$	$\frac{g}{f}$	к j	$\frac{b}{n}$				
	a	e	i	m				

It is easy to see that

d+h+l+p=32	(from 3.8)	c + g + k + o = 32	(from 3.7)
b+f+j+n=32	(from 3.6)	a+e+i+m=32	(from 3.5)
d + c + b + a = 32	(from 3.1)	h+g+f+e=32	(from 3.2)

l+k+j+i=32	(from 3.3)	p + o + n + m = 32	(from 3.4)
d+g+j+m=32	(from 3.12)	p+k+f+a=32	(from 3.9)
d + o + j + e = 32	(from 3.13)	c+h+i+n=32	(from 3.14)
l+g+b+m=32	(from 3.15)	p+c+f+i=32	(from 3.12)
l + o + b + e = 32	(from 3.11)	h+k+n+a = 32	(from 3.10)

Thus, the square 3.6 is a pandiagonal Lanna Magic Square.

In other words we can see that the transformation T_2 applied to a pandiagonal Lanna Magic Square. As in a transformation T_1 , it carries rows into columns and columns into rows so, all 4 columns, 4 rows and all 2 main and 6 broken diagonals each sum are 32.

Thus, a pandiagonal Lanna Magic Square remains a pandiagonal Lanna Magic Square after applied T_2 .

Consider apply transformation T_3 : Putting the first column last, to l we have

b	c	d	a
f	g	h	e
j	k	l	i
n	0	p	m

Table 3.7: Applied T_3 to l

It is easy to see that

b + c + d + a = 32	(from 3.1)	f + g + h + e = 32	(from 3.2)
j+k+l+i=32	(from 3.3)	n+o+p+m=32	(from 3.4)
b+f+j+n=32	(from 3.6)	c+g+k+o=32	(from 3.7)
d+h+l+p=32	(from 3.8)	a+e+i+m=32	(from 3.5)
b+g+l+m=32	(from 3.15)	a+h+k+n = 32	(from 3.10)
b+e+l+o=32	(from 3.11)	c+f+i+p=32	(from 3.12)
d+g+j+m=32	(from 3.12)	a+f+k+p=32	(from 3.9)
d + e + j + o = 32	(from 3.13)	c+h+i+n=32	(from 3.14)

Thus, the square 3.7 is a pandiagonal Lanna Magic Square.

In other words we can see that the transformation T_3 applied to a pandiagonal Lanna Magic Square. It carries rows into rows and columns into columns so, all 4 columns and 4 rows each sum are 32. In addition, all 2 main and 6 broken diagonals each sum still are 32.

Thus, a pandiagonal Lanna Magic Square remains a pandiagonal Lanna Magic Square after applied T_3 .

Consider apply transformation T_4 : Putting the first row last, to l we have

Table 3.8: Applied T_4 to l

e	f	g	h
i	j	k	l
m	n	0	p
a	b	с	d

It is easy to see that

e + f + g + h = 32	(from 3.2)	i+j+k+l = 32	(from 3.3)
m+n+o+p=32	(from 3.4)	a+b+c+d=32	(from 3.1)
e+i+m+a=32	(from 3.5)	f+j+n+b=32	(from 3.6)
g + K + o + c = 32	(from 3.7)	h+l+p+d=32	(from 3.8)
e+j+o+d=32	(from 3.13)	h+k+n+a=32	(from 3.10)
e+l+o+b=32	(from 3.11)	f + i + p + c = 32	(from 3.12)
g+j+m+d=32	(from 3.12)	h+i+n+c=32	(from 3.14)
g+l+m+b=32	(from 3.15)	f + k + p + a = 32	$(\mathrm{from}3.9)$

Thus, the square 3.8 is a pandiagonal Lanna Magic Square.

In other words we can see that the transformation T_4 applied to a pandiagonal Lanna Magic Square. As in transformation T_3 , it carries rows into rows and columns into columns so, it is clear that all 4 columns, 4 rows and all 2 main and 6 broken diagonals each sum are 32.

Thus, a pandiagonal Lanna Magic Square remains a pandiagonal Lanna Magic Square after applied T_4 .

Before we prove that the transformation T_5 preserves pandiagonal Lanna Magic Squares' properties, we have to show some important lemmas that help us to prove it.

Lemma 3.1. The four elements of any 2×2 subsquare of a pandiagonal Lanna Magic Square add up to 32.

Proof. Consider a pandiagonal Lanna Magic Square l,

a	b	c	d
e	f	g	h
i	j	k	l
m	n	0	p

from the pandiagonal Lanna Magic Square's properties that each row, column principle diagonal and broken diagonal add up to 32.

Consider
$$(a + f + k + p) + (d + g + j + m) + (e + f + g + h) +$$

 $(i + j + k + l) - (a + e + i + m) - (d + h + l + p) = 64$
 $2(f + g + j + k) = 64$
 $\therefore f + g + j + k = 32$

By use of transformations T_3 and T_4 , this can be applied to any square of order two. \Box

For example, if we want to show that a, b, e, f in l sum to 32, we can first take T_3 to l 3 times and then take T_4 3 times, we will get the square

p	m	n	0
d	a	b	c
h	e	f	g
l	i	j	k

This square remains a pandiagonal Lanna Magic Square because as we show above that both T_3 and T_4 preserve pandiagonal Lanna Magic Squares' properties. So that, after we applied T_3 to l first time, the square we got also a pandiagonal Lanna Magic Square. Next, we applied T_3 again to the square we got from applying first time, it also remains a pandiagonal Lanna Magic Square and so on. After that, we can prove similar to Lemma 3.1. We will get that a + b + e + f = 32.

Lemma 3.2. All pandiagonal Lanna Magic Square, the sum of any element and the element that is two distant from it along a diagonal is 16. (This include main diagonals and broken diagonals.)

Proof. Consider a pandiagonal Lann	a Ma	agic	Squ	lare	l,			
	a	b	c	d	Mai			
	e	f	g	h	I VICEI			
	i	j	k	l	es			
	m	n	0	p				

from the pandiagonal Lanna Magic Square's properties that each row, column principle diagonal and broken diagonal add up to 32. Thus,

$$(a + b + c + d) + (i + j + k + l) + (a + e + i + m) + (c + g + k + o) +$$

$$(a + f + k + p) + (a + n + k + h) - (e + b + o + l) - (i + f + c + p) -$$

$$(m + j + g + d) - (i + n + c + h) = 64$$

$$4(a + k) = 64$$

$$\therefore a + k = 16$$

By use of transformations T_3 and T_4 , this can move position of a and k to any pair of two distant elements along diagonal.

For example, if we want to show that c + i = 16, we can first take T_4 to $l \ 2$ times, we will get the square

9	i	j	k	l
	m	n	0	p
	a	b	c	d
	e	f	g	h

Clearly, this square remains a pandiagonal Lanna Magic Square after applied T_4 . Then we can prove similar to 3.2 and we will get that c + i = 16.

Now we can prove that the transformation T_5 preserves a pandiagonal Lanna Magic Square properties.

Consider apply transformation T_5 to l we have

Table 3.9: Applied T_5 to l

_

According to l; a pandiagonal Lanna Magic Square,

	C	ai a	100.0	. A.	Ani		
	a	b	c	d	al		
l righ	e	f	g	h	e s		
$\iota =$	i	j	k	l			
	m	n	0	p			

From l we have,

$$a + f + k + p = 32$$
 $c + h + i + n = 32$
 $e + b + o + l = 32$ $d + q + j + m = 32$

and by lemma 3.1 we have,

a+d+h+e=32	b + c + g + f = 32
n+o+k+j=32	m+p+l+i=32
a+b+n+m = 32	d + c + o + p = 32
h+g+k+l = 32	e + f + j + i = 32

and by lemma 3.2 we have,

 $\begin{array}{ll} a+k=16 & c+i=16 & \text{so}, & a+c+k+i=32 \\ e+o=16 & g+m=16 & \text{so}, & e+g+o+m=32 \\ b+l=16 & d+j=16 & \text{so}, & b+d+j+l=32 \\ h+n=16 & f+p=16 & \text{so}, & h+f+n+p=32 \end{array}$

Thus, the square 3.9 is a pandiagonal Lanna Magic Square or we can say that a pandiagonal Lanna Magic Square remains a pandiagonal Lanna Magic Square after applied T_5 .

Thereby, a pandiagonal Lanna Magic Square remains a pandiagonal Lanna Magic Square after applied transformations T_1, T_2, T_3, T_4, T_5 .

Let $G = \langle T_1, T_2, T_3, T_4, T_5 \rangle$ be a subgroup of S_{16} generated by T_1, T_2, T_3, T_4 , and T_5 and e be the identity of G and let L be a set of all pandiagonal Lanna Magic Squares.

Define $F:G\times L\to L$ by $(g,l)\mapsto gl=l\circ g, \forall g\in G, l\in L$

Since, $T_i l = l \circ T_i \in L \ \forall i \in \{1, 2, 3, 4, 5\}$ and $G = \langle T_1, T_2, T_3, T_4, T_5 \rangle$, we have F is an action of a group G.

Theorem 3.3. All pandiagonal Lanna Magic Squares can be derived from a single one (the Lanna magic square) by successive transformations of T_1, T_2, T_3, T_4 , and T_5 .

Proof. Let l be any pandiagonal Lanna Magic Square,

By use of transformation T_3 and T_4 , the number 1 in any pandiagonal Lanna Magic Squares can be brought into the position f, the second row and the second column. So, there is no loss of generality in taking f = 1 and by Lemma 3.2, we have p = 15.

a	b	c	d
e	1	g	h
i	j	k	l
m	n	0	15

From f = 1 then g and h can be at most 13 and 14. Thus, $g + h \leq 27$ and we get $e \geq 4$. Similarly, e and h can be at most 13 and 14 so, $e + h \leq 27$ we derive $g \geq 4$. In the same way, we also acquire $h \geq 4$, $b \geq 4$, $j \geq 4$, $n \geq 4$, $a \geq 4$, $k \geq 4$.

By Lemma 3.1, we know that b + c + f + g = 32, e + f + i + j = 32. Thus, b and g can be at most 13 and 14 so, $b + g \le 27$ and we get $c \ge 4$. Similarly, we also get $i \ge 4$. Thus, 2 and 3 can only occur in d, l, m and o.

If 2 occurs in o, it can be brought into l by taking T_5 2 times. If it occurs in l, it can be brought into d by taking T_3 2 times and if it occurs in m, it can be brought into d by taking T_1 . Hence we take d = 2 then we also get j = 14. Now we have the square

0	a	b	c	2	
1	e	1	g	h	
1	i	14	k	l	
	m	n	0	15	

If 3 occurs in l, it can be brought into o by taking T_5 , if it occurs in p, it can be brought into o by taking T_3 3 times and If it occurs in m, it can be brought into o by taking T_3 2 times. So, one can take o = 3 and then e = 13.

a	b	c	2
13	1	g	h
i	14	k	l
m	n	3	15

By Lemma 3.1, we also get i = 4 and c = 12.

				a	b	12	2				
			5	13	1	g	h_{-}				
			กรบห	4	14	k	l				
			ight [©]	m	n	3	15				
Now we	ha	ve		ĥ	+ 0		0				
	m	-	32 - e - i - e	ı =	= 32	2 - 13	3 - 4	-a		-	15 - a
	g	=	32 - d - j - c	<i>m</i> =	= 32	2 - 2	-14	$-15 \cdot$	+a	=	a + 1
	n	=	32 - m - o -	<i>p</i> =	= 32	2 - 15	5 + a	- 3 -	15	=	a-1
	b	=	32 - a - c - a	d =	= 32	2 - 12	2 - 2	-a		=	18 - a
	k	=	32 - a - f - b	<i>p</i> =	= 32	2-a	- 1 -	- 15		=	16 - a
	l	=	32 - i - j - k	k =	= 32	2 - 4	-14	- 16 -	+a	=	a-2
	h	=	32 - e - f - f	g =	= 32	2 - 13	3 - 1	- <i>a</i> -	1	=	17 - a

a	18 - a	12	2
13	1	a+1	17 - a
4	14	16 - a	a-2
15 - a	a-1	3	15

So, we have to find values of a such that 15 - a, a + 1, a - 1, 18 - a, 16 - l, a - 2 and 17 - a are 5, 6, 7, 8, 9, 10, 11 in some order. For instance, if a = 5, consider h = a - 2 = 3 which already exists at o. So, $a \neq 5$ and by doing all substitution, a can be only 7 or 10.

For a = 7, we get

1	7	11	12	2
4	13	1	8	10
	4	14	9	5
	8	6	3	15

and for a = 10, we get exactly the same as the Lanna Magic Square

10	8	12	2	
13	P	11	7	
4	14	6	8	
5	9	3	15	

The square a = 7 can be the same as the square a = 10 by applying $T_2^2 T_1 T_2^3 T_5 T_3^2$.

Thus, all pandiagonal Lanna Magic Squares can be obtained from the Lanna Magic Square by applying application T_1, T_2, T_3, T_4 and T_5 .

From Theorem 3.3, we can say that the group $G = \langle T_1, T_2, T_3, T_4, T_5 \rangle$ acts on L is transitive.

The proof of next theorem is similar to Theorem 4 in [9]. However, for the sake of completeness, we describe below.

Theorem 3.4. The order of subgroup of S_{16} generated by T_1, T_2, T_3, T_4, T_5 is 384.

Proof. If T_X and T_Y are two transformations, denote by $T_X T_Y$. The transformation effected by first applying T_Y and then T_X .

Consider (1)
$$T_2T_1 = T_1T_2^3$$
 (2) $T_3T_1 = T_1T_4$
(3) $T_4T_1 = T_1T_3$ (4) $T_3T_2 = T_2T_4$
(5) $T_4T_2 = T_2T_3^3$ (6) $T_4T_3 = T_3T_4$
(7) $T_5T_1 = T_1T_2^2T_3T_4T_5$ (8) $T_5^2T_1 = T_2^2T_3T_4T_5^2$
(9) $T_5T_2 = T_2^3T_3T_4T_5$ (10) $T_5^2T_2 = T_1T_2T_3T_4T_5^2$

(11) $T_5T_3 = T_3^3T_5^2$ (12) $T_5^2T_3 = T_2^2T_3T_4^2T_5$ (13) $T_5T_4 = T_1T_2^2T_4T_5$ (14) $T_5^2T_4 = T_1T_2^2T_4T_5$ (15) $T_1^2 = T_2^4 = T_3^4 = T_4^4 = T_5^3$ which is identical transformation.

By inspection from (1)-(15), any product of T_1, T_2, T_3, T_4, T_5 all can get T_1 to the left, then T_2 next to T_1 , then T_3, T_4 and T_5 is on the right. So, any product of T_1, T_2, T_3, T_4, T_5 equal to the form $T_1^{\alpha} T_2^{\beta} T_3^{\gamma} T_4^{\delta} T_5^{\epsilon}$. For the transformation in Theorem 3.3 $T_2^2 T_1 T_2^3 T_5 T_3^2 = T_1 T_2^3 T_3^2 T_4^2 T_5$.

It is clear that T_2, T_3, T_4 are independent. Moreover, T_5 or T_5^2 is not the product of T_1, T_2, T_3, T_4 since all of T_1, T_2, T_3, T_4 carry rows into rows, columns into columns, columns into rows or rows into columns which cannot yield neither T_5 nor T_5^2 . Besides the transformation T_2, T_3, T_4 preserve the orientation so, T_1 is not a product of T_2, T_3, T_4 .

Therefore, $T_1^{\alpha}T_2^{\beta}T_3^{\gamma}T_4^{\delta}T_5^{\epsilon} = T_1^aT_2^bT_3^cT_4^dT_5^e$ if and only if $\alpha = a, \ \beta = b, \ \gamma = c, \ \delta = d$ and $\epsilon = e$.

Thus, the order of subgroup generated by T_1, T_2, T_3, T_4, T_5 is $2 \times 4 \times 4 \times 4 \times 3 = 384$. \Box

Theorem 3.5. There are 384 pandiagonal Lanna Magic Squares.

Proof. Since G acts on L, consider for each $l \in L$ there is only the identity e of G such that el = l. So, $G_l = \langle e \rangle$.

From Theorem 3.3 the group G acts on L is transitive so, by Theorem 2.6.5 for $l \in L$ we have that the orbit of l is L.

From Theorem 2.6.3 the cardinal number of the orbit $l \in L$ is $[G : G_l]$ and Theorem 3.4 |G| = 384 we have $|L| = |l| = [G : G_l] = [G : < e >] = |G| = 384$.

Hence, there are 384 pandiagonal Lanna Magic Squares.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved