CHAPTER 4

Conclusion and suggestions

4.1 Conclusion

Novel FeVO₄/Bi₇O₉I₃ nanocomposites with different weight percentages of FeVO₄ were reported. The FeVO₄ and Bi₇O₉I₃ contents played an important role in the photocatalytic performance of the nanocomposites. The 6.25% wt-FeVO₄/Bi₇O₉I₃ photocatalyst exhibited excellent photocatalytic efficiencies for the degradation of different organic compounds under visible light irradiation in comparison to the single FeVO4 and Bi7O9I3 photocatalysts. In addition, the 6.25% wt-FeVO4/Bi7O9I composite photocatalyst exhibited good stability after three times of usage, demonstrating the reusability property. Active species trapping experiments revealed that the $O_2^{\bullet-}$ and h^+ played an important role during the photocatalytic RhB degradation process. For the 6.25% wt-FeVO₄/Bi₇O₉I₃ photocatalyst, the Mott-Schottky plots revealed the p-type and n-type characters of Bi₇O₉I₃ and FeVO₄, respectively, suggesting the p-n junction formation of this composite. Evidenced by the experimental results, the enhanced photocatalytic activities of these photocatalyst were attributed to the improved visible light absorption, and the efficient separation and transportation of photogenerated charge carriers through the interfacial contact between FeVO₄ and Bi₇O₉I₃. Owing to notable enhancements in the photocatalytic properties of the FeVO₄/Bi₇O₉I₃ heterojunction, it is potentially applicable to the field of environmental remediation as well as solar water splitting.

4.2 Suggestions

- 4.2.1 Other electrochemical properties of FeVO₄/Bi₇O₉I₃ hybrid materials such as IPCE, APCE, or transient photocurrent density should be investigated for confirming the enhancement in charge separation and transportation.
- 4.2.2 Other photocatalytic activities such as H₂ and O₂ evolution, antibacterial, and inorganic pollutant mineralization of the synthesized composites should be explored.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved