CONTENTS

	с
	d
	f
3	j
1004	k

Page

1

19 22 22

23

29

Abstract in Thai	
Abstract in English	
Lis of Tables	3
List of Figures	戀
Chapter 1	964
1.1 Photocatalysis	\sim
1.2 Bismuth oxyhalide	× //
1.3 Bismuth-rich strategy	//
1.4 Semiconductor-Semiconductor Heterostructures	
1.5 Z-scheme heterojunction	
1.6 Microwave synthesis	
1.7 Literatures review	ยงเหม
1.8 Research objectives	001115
1.9 Usefulness of this research	niversity
All rights rese	rved
Chapter 2	

2.1	Chemical reagents and equipment	23
2.2	Synthesis method	25
2.3	Characterizations	26

Acknowledgement

Abstract in Thai

3.1	XRD analysis	29
3.2	FESEM, TEM, and EDX analyses	30
3.3	Optical properties	36
3.4	XPS analysis	37
3.5	Photocatalytic dye degradation	40
3.6	Electrochemical analysis	47
3.7	Photocatalytic mechanism	50
Chapter 4	ามยนติ	52
41	Conclusion	52
4.2	Suggestions	53
References	a 29 13	54
Appendix		70
The Join	nt Committee for Powder Diffraction Standards (JCPDS) of FeVO ₄	70
The Joint Committee for Powder Diffraction Standards (JCPDS) of BiOI		75
Curriculum V	itae	79

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

- Table 1Dielectric constant and tangent delta for some solvents (values
determined at 2.45 GHz and room temperature).16
- Table 2Weights (mg) and contents (mmol) of the FeVO4 and $Bi_7O_9I_3$, and mole
ratios of FeVO4 (or $Bi_7O_9I_3$) to methylene blue.42

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1.1	Reactive oxygen species generated in the photocatalytic reduction and	
	oxidation steps of oxygen and water.	3
Figure 1.2	Primary steps in the photocatalytic mechanism (TiO ₂).	3
Figure 1.3	Valence band and conduction band positions and the energy band gap	of
	BiOX (X = Cl, Br, I).	4
Figure 1.4	(a) Crystal structure of BiOCl. (b) Model showing the direction of the	
	internal electric field in BiOCl with (001) exposed facets.	5
Figure 1.5	(a-c) UV-vis diffuse reflection spectra (DRS) of Bi_2O_3 and as-	
	synthesized bismuth oxyhalides, the inset shows the plots of $(\alpha h \nu)^{1/2} \nu s$	7.
	photon energy (hv), and (d) comparison of the band structures of Bi_2O_2	3
	and bismuth oxyhalides.	6
Figure 1.6	Degradation of bisphenol A (BPA) using blank (no catalyst), Bi ₂ O ₃ and	d
	as-synthesized bismuth oxyhalides as photocatalyst, respectively, under	r
	visible-light irradiation for 2 h; inset shows the chemical structure of	
	BPA. AI UNIVERS	7
Figure 1.7	Diagrams illustrating the different types of heterojunctions.	8
Figure 1.8	(a) The discovery and evolution of Z-scheme photocatalysts. Schemati	c
Q	diagrams of (b) Traditional Z-scheme process (c) All-solid-state Z-	
C	scheme process, and (d) Direct Z-scheme process.	8
Figure 1.9	Schematic illustration of semiconductor-semiconductor with similar	
	work function: (a) before contact, (b) after contact, (c) charge transfer	
	process in Z-scheme mechanism, (d) charge transfer process in type-II	
	mode, and (e) charge carrier recombination.	10
Figure 1.10	Schematic illustration of semiconductor-semiconductor with large	
	different work function: (a) before contact, (b) after contact, (c) charge	:
	transfer process in type-II mode, and (d) charge transfer process in Z-	
	scheme mechanism.	11

Figure 1.11	Electromagnetic wave.	11
Figure 1.12	Dipolar molecules which align itself with an applied electric field.	13
Figure 1.13	Charged particles in a heated substance following the applied electric	
	field.	13
Figure 1.14	The temperature of ethanol and acetone. The upper curve is ethanol and	nd
	the lower curve is acetone.	15
Figure 1.15	Sample heating; tradition heating (left) and microwave heating (right)	. 18
Figure 3.1	The XRD pattern of the FeVO ₄ , $Bi_7O_9I_3$, and FeVO ₄ / $Bi_7O_9I_3$	
	nanocomposites with different weight percentages of FeVO ₄ .	30
Figure 3.2	FESEM images of the (a) FeVO ₄ , (b) $Bi_7O_9I_3$, and (c) 6.25%wt-	
	$FeVO_4/Bi_7O_9I_3$ nanocomposite and (d) EDX spectrum of the 6.25% w	't-
	FeVO ₄ /Bi ₇ O ₉ I ₃ nanocomposite.	32
Figure 3.3	EDX spectrum and detailed chemical composition of the synthesized	
	Bi ₇ O ₉ I ₃ nanoparticles.	32
Figure 3.4	TEM and HRTEM images of FeVO ₄ .	33
Figure 3.5	TEM and HRTEM images of Bi ₇ O ₉ I ₃ .	34
Figure 3.6	e 3.6 The TEM image of the 6.25% wt-FeVO ₄ /Bi ₇ O ₉ I ₃ nanocomposite. Upp	
	and lower insets show the corresponding HRTEM images of FeVO4 a	nd
	Bi ₇ O ₉ I ₃ parts, respectively.	35
Figure 3.7	EDX mapping of the 6.25% wt-FeVO ₄ /Bi ₇ O ₉ I ₃ nanocomposite.	35
Figure 3.8	(a) UV-vis DRS of the FeVO ₄ , $Bi_7O_9I_3$, and 6.25% wt-FeVO ₄ / $Bi_7O_9I_3$	3
A	nanocomposites, and (b) PL spectrum of the 6.25%wt-FeVO4/Bi ₇ O9I3	3
	nanocomposite in comparison with the Bi ₇ O ₉ I ₃ .	37
Figure 3.9	(a) Survey XPS spectra of the FeVO ₄ , $Bi_7O_9I_3$, and 6.25% wt-	
	FeVO ₄ /Bi ₇ O ₉ I ₃ nanocomposite; high-resolution spectra of (b) Bi 4f, (c) I
	3d, (d) Fe 2p, (e) V 2p, and (f) O 1s, and (g) valence band XPS (VB	
	XPS) spectra of FeVO ₄ and Bi ₇ O ₉ I ₃ .	39

Figure 3.10 (a) Decolorization efficiency (%) of the MB irradiated using LED lamp and (b) photocatalytic reaction kinetics of the degradation of MB. Photocatalysis condition: 200 mL of methylene blue (10 mgL^{-1} or 0.0255 mmol) with 100 mg of the photocatalyst. 41 43 Figure 3.11 FESEM image of the 12.5% wt-FeVO₄/Bi₇O₉I₃ powder. Figure 3.12 (a) Decolorization efficiency (%) of RhB and MO compared to that of MB, (b) the reusing assessment of the 6.25% wt-FeVO₄/Bi₇O₉I₃ photocatalyst for photocatalytic degradation of 10 mgL⁻¹ of RhB, (c) the effect of initial concentration on photocatalytic degradation of RhB, and (d) the trapping experiments of active species in the photocatalytic reaction in the presence of the 6.25% wt-FeVO₄/Bi₇O₉I₃ photocatalyst. 45 Photocatalytic reaction kinetics of the degradation of the (a) 10 mgL^{-1} of Figure 3.13 MB, RhB, and MO solutions and (b) different initial concentrations of RhB solution. 46 The UV-vis absorption spectra of the (a) RhB, (b) MO, and (c) MB. Figure 3.14 46 Linear sweep voltammograms of the Bi₇O₉I₃ and the 6.25% wt-Figure 3.15 FeVO₄/Bi₇O₉I₃ photoanodes in dark and under light illumination. 48 Figure 3.16 Mott-Schottky plots for the as-synthesized (a) Bi₇O₉I₃ and (b) FeVO₄. 49 49 Figure 3.17 EIS plots of FeVO₄, Bi₇O₉I₃, and 6.25% wt-FeVO₄/Bi₇O₉I₃. Figure 3.18 Schematic diagrams of formation of p-n junction and proposed charge separation process in the FeVO₄/Bi₇O₉I₃ heterostructure under visiblelight irradiation. by Chiang Mai University 51 rights reserved