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ABSTRACT
The zinc oxide nanostructures were synthesized by oxidizing zinc thin
films. The zinc thin films are grown on silicon and alumina substrates by dc
sputtering at various times from 30, 60 and 90 minutes. The zinc thin films
were then heated at various temperatures from 600, 800 and 900 °C for 6
hr. The obtained zinc oxide nanostructures were investigated by Field
Emission Scanning Electron Microscopy (FE-SEM). The zinc oxide

nanostructures have a potential application for nanodevices such as nano

gas sensor.
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INTRODUCTION

ZnO is an n-type wide band gap semiconductor with the band gap of 3.37 eV and
have various potential applications such as optoelectronic devices, chemical sensors and gas
sensors. Also, bio-safe characteristics of ZnO make them very attractive for biomedical
applications. Moreover, ZnO in the form of nanostructures would enhance the gas sensing
properties of gas sensors due to a huge surface area. Thus, it is a great interest to study the
synthesis of ZnO nanostructures.

ZnO nanostructures can be synthesized by several methods such as sputtering
technique (Choopun et al., 2005), vapor deposition (Chen et al., 2005), pulsed laser deposition
(PLD) (Choopun et al., 2005), metalorganic chemical vapor deposition (MOCVD) (Xu et al.,
2005) and oxidation.(Chen et al., 2004; Zhang et al., 2005; Sekar et al., 2005). The oxidation
method is a simple, low-cost and most commonly use for the synthesis of ZnO nanostructures.
Chen and co-workers (Chen et al., 2004) have reported that ultra-fine ZnO nanowires can be
easily synthesized at 800 °C in air via oxidation of ZnO nanowires which is produced by heating
ZnO+C mixture at 1100 °C under a flow of nitrogen gas. Zhang and co-workers (Zhang et al.,
2005) have successfully synthesized ZnO nanostructures by oxidizing zinc foils at 700 °C in air
without the presence of catalyst and carrier gas. The different morphologies of ZnO nano- and
micro-structures such as porous membrane, nanowires (or nanorods), nanobelts, nanoneedles and
nanotetrapods have been achieved through tuning the heating rates in a tube furnace. Sekar and
co-workers (Sekar et al., 2005) have reported that ZnO nanowires were grown on Si (100)
substrates by oxidation of metallic Zn powder at 600 °C. Sea-urchin-like nanostructures,
consisting of straight nanowires of ZnO with blunt faceted ends have been observed.

Most of the oxidation works were on the oxidation of zinc powder or zinc
metallic foil or sheet. However, the work on the oxidation of zinc thin films has been rarely
reported. In this work, we report on the preparation of ZnO nanostructures by oxidation of zinc

thin films. The zinc thin films were prepared by dc sputtering technique.
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MATERIALS AND METHODS
The thin films of zinc were prepared by DC sputtering, at argon pressure of 30
mtorr, power of 200 watts, and time duration of 30, 60 and 90 minutes on silicon and alumina
substrates. The oxidation of the zinc thin films was performed by heating the thin films at various
temperatures from 600, 800 and 900 °C for 6 hours to obtain ZnO nanostructures. The ZnO
nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM) for

morphology.

RESULTS AND DISCUSSION

A typical color of zinc thin film is grey. After heating, a color of thin film turns
into white color which is a typical color for ZnO nanostructures. The general morphology of the
heated ZnO nanostructures is shown in Figure 1, 2 and 3. Figure 1 shows FE-SEM image of ZnO
nanostructures deposited on alumina substrates at various sputtering times and then, heated at
600°C for 6 hr. The columnar-like structures have been observed. It is worth noting that wire-like

structures have been typically observed in the case of oxidation zinc powder.

e

80-160 nm S 40-160 nm |

n WD 14.4mm MSe CMLUL. S 50 0000 Tam WD 156mm



114

50-160 nm

1,000 Tpm WD 14.6mm

Figure 1. FE-SEM images of ZnO nanostructures deposited on alumina substrates at (a)
sputtering time of 30 minutes, (b) sputtering time of 60 minutes, and (c) sputtering

time of 90 minutes and then, heated at 600°C for 6 hr.

It can be observed that the size of ZnO nanostructures almost does not depend on
the sputtering times. This indicated that the thickness of zinc thin films has almost no affect on
the size of ZnO nanostructures. Moreover, the similar results have been observed for ZnO
nanostructures deposited on silicon substrate at various sputtering times and then, heated at 600°C
for 6 hr (not shown).

Figure 2 shows FE-SEM image of ZnO nanostructures deposited on silicon
substrates at sputtering time of 90 minutes and heated at various temperatures for 6 hr. Clearly,
the size of ZnO nanostructures depends on the heating temperature. The higher the heating
temperature the larger the size of ZnO nanostructures. The same results have been observed in the
case of deposition on alumina substrates as shown in Figure 3. However, the size of ZnO
nanostructures in the case of deposition on alumina substrates is larger than in the case of
deposition on silicon substrates. The reason for the larger size is still under investigation.

In the case of ZnO nanostructures grown on p-type silicon substrate, the structure
would become p-i-n diode structure (p-Si/i-SiO,/n-ZnO) because there is a naturally formed SiO,
layer on silicon substrate. This p-i-n structure could be used for nanodevices such as nano gas

Sensor.
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Figure 2. FE-SEM images of ZnO nanostructures deposited on silicon substrates at sputtering
time of 90 minutes and heated at various temperatures (a) 600 °C, (b) 800 °C, and (c)

900 °C for 6 hr.
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Figure 3. FE-SEM images of ZnO nanostructures deposited on alumina substrates at sputtering
time of 90 minutes and heated at various temperatures (a) 600 °C, (b) 800 °C, and (c)

900 °C for 6 hr.

CONCLUSIONS
The zinc oxide nanostructures were successfully synthesized by oxidizing zinc thin films.
The zinc thin films are grown on silicon and alumina substrates by dc sputtering at various times
from 30, 60 and 90 minutes. The zinc thin films were then heated at various temperatures from
600, 800 and 900 °C for 6 hr. The size of ZnO nanostructures almost does not depend on
sputtering time but strongly depends on heating temperatures. The zinc oxide nanostructures have

a potential application for nanodevices such as nano gas sensor.
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