สารบาญ

	หน้า
กิตติกรรมประกาศ	ค
บทคัดย่อภาษาไทย	9
บทคัดย่อภาษาอังกฤษ	จ
สารบัญตาราง	ୟ
สารบัญภาพ	ល្ង
บทที่ 1 บทนำ	1
บทที่ 2 หลักการ ทฤษฎี และเหตุผล	5
2.1 ซึ่งก้ออกไซด์	5
2.2 ลักษณะเฉพาะของเส้นใยนาโน	7
2.3 โครงสร้างนาโน มิติ และผลเนื่องจากขนาด	8
2.4 การสร้างตัวของเส้นใยนาโน	15
2.5 วิธีการสังเคราะห์เส้นใยนาโน	19
2.6 เทคนิคที่ใช้ในการวิเคราะห์สารตัวอย่าง	23
บทที่ 3 การทดลอง	34
3.1 การตกสะสมด้วยการเผาด้วยกระแสไฟฟ้า	34
3.2 การระเหิดด้วยวิธีการ์โบเทอร์มอล	37
บทที่ 4 ผลการทดลอง	45
4.1 ผลที่ได้จากการสังเคราะห์เส้นใยนาโนซิงก์ออกไซด์โดย	45
วิธีการตกสะสมค้วยการเผาด้วยกระแสไฟฟ้า	
4.2 สรุปเงื่อนไขที่ดีที่สุดในการสังเคราะห์เส้นใยนาโนซิงก์	78
ออกไซด์โดยวิธีการตกสะสมด้วยการเผาด้วยกระแสไฟฟ้า	
4.3 ผลที่ได้จากการสังเคราะห์เส้นใยนาโนซิงก์ออกไซค์โดย	79
วิธีการระเหิดด้วยวิธีการ์โบเทอร์มอล	
4.4 สรุปเงื่อนไขที่ดีที่สุดในการสังเคราะห์เส้นใยนาโนซิงก์	100
ออกไซด์โดยวิธีการระเหิดด้วยวิธีการ์ โบเทอร์มอล	
4.5 การตรวจสอบหาสารประกอบและ โครงสร้างผลึกของเส้น	101
ใยนาโนที่สังเคราะห์ได้ด้วยเทกนิก XRD	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

สารบาญตาราง

ตาราง		หน้า
2.1	แสดงทิศทางที่อิเล็กตรอนนำถูกจำกัดเขต และ ไม่ถูกจำกัด	10
	เขตของโครงสร้างระดับนาโน	
2.2	แสดงสมบัติของโคออร์ดิเนตและ k space ทั้งสามมิติ	11
2.3	แสดงจำนวนอิเล็กตรอน N และ ความหนาแน่นสถานะ	12
	$D(E) = \frac{dN(E)}{dE}$ ซึ่งเป็นความสัมพันธ์ของพลังงานของ	
	อิเล็กตรอนนำที่เคลื่อนที่ได้ใน 1, 2 และ 3 มิติ	
4.1	แสดงอัตราการให้กำลังกระแสไฟฟ้า	5 2 46
4.2	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.1 (ก)	47
4.3	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.2 (ก)	48
4.4	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.3 (ค)	50
4.5	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.4 (ก)	52
4.6	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.5 (ก)	53
4.7	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.6 (ค)	55
4.8	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.7 (ก)	56
4.9	แสดงปริมาณธาตุองก์ประกอบของเส้นใยนาโนในรูปที่ 4.9 (ข)	60
4.10	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.10 (ค)	61
4.11	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.11 (ข)	62
4.12	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.12 (ค)	64
4.13	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.13 (ค)	65
4.14	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.14 (ค)	Univer ₆₆ t
4.15	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.15 (ข)	68 68 68
4.16	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.16 (ข)	70
4.17	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.17 (ค)	72
4.18	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.18 (ค)	74

ตาราง		หน้า
4.19	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.19 (ค)	76
4.20	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.20 (ค)	77
4.21	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.21 (ค)	80
4.22	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.21 (จ)	80
4.23	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.24 (ค)	85
4.24	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.25 (ค)	87
4.25	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.25 (จ)	87
4.26	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.26 (ข)	89
4.27	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.26 (ฉ)	90
4.28	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.27 (ค)	92
4.29	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.28 (ค)	94
4.30	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.29 (ค)	96
4.31	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.29 (จ)	97
4.32	แสดงปริมาณธาตุองค์ประกอบของเส้นใยนาโนในรูปที่ 4.30 (ค)	99
4.33	แสดงก่ามุม 2 $ heta$ (deg) กับก่า h k l ของข้อมูลมาตรฐาน JCPDS – PDF	102
	เลขที่ 79-2205>ZnO-Zinc Oxide ที่ตรงกับผลการทดลองที่ได้	
4.34	แสดงค่ามุม 2 $ heta$ (deg) กับค่า h k l ของข้อมูลมาตรฐาน JCPDS – PDF	103
	เลขที่ 87-0713> Zinc ที่ตรงกับผลการทดลองที่ได้	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

สารบาญภาพ

รูป		หน้า	
2.1	โครงสร้างของ ZnO	5	
2.2	โครงสร้างนาโนของซิงค์ออกไซด์	7	
2.3	การเปรียบเทียบพื้นที่ผิวสี่เหลี่ยมลูกบาศก์กับเส้นใยนาโนเมื่อปริมาตรเท่ากัน	7	
2.4	โครงสร้างระดับนาโนที่มีรูปร่างแบบเหลี่ยม	8	
2.5	โครงสร้างระดับนาโนที่มีรูปร่างแบบโค้ง	9	
2.6	จำนวนอิเล็กตรอนซึ่งเป็นฟังก์ชันของพลังงาน E เทียบกับก่าพลังงานสำหรับ	12	
	อิเล็กตรอนที่เกลื่อนที่ได้ในหนึ่งมิติ สองมิติ และสามมิติ		
2.7	ความหนาแน่นสถานะเทียบกับค่าพลังงานสำหรับอิเล็กตรอนนำที่สามารถ	13	
	เคลื่อนที่ได้ในหนึ่งมิติ สองมิติ และสามมิติ		
2.8	กลไกการสร้างตัวของเส้นใยนาโนแบบ VLS	° 16	
2.9	แสดงกลไกการสร้างตัวของเส้นใยนาโนแบบ VS	17	
2.10	ภาพถ่าย TEM ของลำคับการเกิดเส้นใยนาโนซิลิกอน	18	
2.11	แผนภาพการเกิดกลไก Oxide-assisted growth	18	
2.12	แผนภาการตกสะสมของไอเคมี	19	
2.13	แผนภาพการระเหยด้วยเลเซอร์	19	
2.14	แม่แบบ Polycarbonate ที่เกิดจากวิธี "track – etch"	20	
2.15	แม่แบบอะลูมินา porous alumina	21	
2.16	(ก) แสดงท่อนาโน และ (ก) แสดงเส้นใยนาโน ที่สังเกราะห์ได้โดยวิธีใช้แม่แบบ	21	
2.17	แสดงส่วนประกอบของอุปกรณ์ในเทคนิคการให้ความร้อนด้วยกระแสไฟฟ้า	22	
2.18	องค์ประกอบของกล้องอิเล็กตรอน	23	
2.19	ผลที่เกิดจากอันตรกิริยาระหว่างอะตอมของสารตัวอย่างกับอิเล็กตรอน	24	
2.20	ภาพถ่ายจาก SEM ที่กำลังขยาย 30,000 เท่า	25	
2.21	สเปคตรัมที่ได้จากการวิเคราะห์ธาตุที่เป็นองค์ประกอบของสสาร โดยเทคนิค EDS	27	
2.22	แสดงผลที่ได้จากการวิเคราะห์เชิงปริมาณโดยเทคนิค EDS	28	
2.23	ผลที่ได้จากการวิเคราะห์ด้วยเทคนิค IL	29	
2.24	แผนผังแสดงการเลี้ยวเบนผ่านระนาบผลึกของรังสีเอ็กซ์	30	
2.25	หลอดกำเนิครั้งสีเอ็กซ์	31	

รูป		หน้า
2.26	การเกิดรังสีเอ็กซ์	31
2.27	แสดงถำดับการวิเคราะห์ด้วยเทคนิก XRD	32
2.28	แสดงถำคับการวิเคราะห์ด้วยเทคนิก XRD ในเชิงปริมาณ	33
2.29	ลำดับการวิเคราะห์ด้วยเทคนิค XRD	33
3.1	เป้าอัคสาร	40
3.2	แท่งสารตั้งต้นแบบไม่ขัดผิวหน้า	40
3.3	แท่งสารตั้งต้นที่ขัดผิวหน้า	40
3.4	แสดงเครื่องเคลือบทอง (gold sputtering)	41
3.5	แผ่นรองรับที่ได้จากการเกลือบด้วยทอง	41
3.6	แผ่นรองรับที่ได้จากการเผา	41
3.7	แหล่งจ่ายไฟฟ้ากระแสตรง	- 42
3.8	ชุดอุปกรณ์ให้ความร้อน	42
3.9	การต่ออุปกรณ์แหล่งไฟฟ้ากระแสตรงให้กับอุปกรณ์การให้ความร้อน	43
3.10	ผลิตภัณฑ์ที่ได้จากการเผาโดยกระบวนการตกสะสมด้วยการเผาด้วยกระแสไฟฟ้า	43
3.11	แหล่งจ่ายไฟฟ้ากระแสตรงพร้อมที่วัดอุณหภูมิ	43
3.12	อุปกรณ์ให้ความร้อนในการระเหิดด้วยวิธีการ์โบเทอร์มอล	44
3.13	การต่ออุปกรณ์การระเหิดด้วยวิธีการ์ โบเทอร์มอล	44
3.14	ผลิตภัณฑ์ที่ได้จากการระเหิดด้วยวิธีการ์ โบเทอร์มอล	44
4.1	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห์องค์ประกอบธาตุของเส้น	
	ใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.1(1)	46
4.2	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห้องค์ประกอบธาตุของเส้น	48
	ใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.1(2)	
4.3	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห์องค์ประกอบธาตุของเส้น	49
	ใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.1(3)	
4.4	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห์องค์ประกอบธาตุของเส้น	51
	ใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.2(1)	
4.5	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห์องค์ประกอบธาตุของเส้น	52
	ใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.2(2)	

รูป		หน้า
4.6	(ก) และ (ข) ภาพถ่าย SEM (ก) และ (ง) กราฟวิเคราะห์องก์ประกอบธาตุของเส้น ใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่	54
4.7	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห์องค์ประกอบธาตุของเส้น ใยนาโน ที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.2(4)	55
4.8	(ก) ความหนาของฟิล์มทองก่อนให้ความร้อนวัคด้วยเทคนิค AFM (ข) และ (ค) ภาพถ่ายSEM ของอนุภาคนาโนของทองหลังให้ความร้อน (ง) แสดงความ หนาของอนุภาคทองหลังการให้ความร้อนวัคด้วยเทคนิค AFM	57
4.9	(ก) ภาพถ่าย SEM (ข) และ (ค) กราฟวิเคราะห์องค์ประกอบธาตุของเส้นใยนาโน ที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.3(2)	59
4.10	ก) และ (ข) ภาพถ่าย SEM (ก) และ (ง) กราฟวิเคราะห์องค์ประกอบธาตุของเส้น ใยนาโน ที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.3(3)	60
4.11	(ก) ภาพถ่าย SEM (ข) และ (ค) กราฟวิเคราะห์องค์ประกอบธาตุของเส้นใยนาโน ที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.3(4)	62
4.12	(ก) และ (ข) ภาพถ่าย SEM (ก) และ (ง) กราฟวิเคราะห์องก์ประกอบชาตุของเส้น ใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.3(5)	63
4.13	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห์องค์ประกอบธาตุของเส้น ใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.3(6)	64
4.14	ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห้องค์ประกอบชาตุของเส้น ใยนาโน ที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.3(7)	66
4.15	(ก) ภาพถ่าย SEM (ข) และ (ค) กราฟวิเคราะห์องก์ประกอบธาตุ (ง) เส้น สเปคตรัมที่ได้จากการวัด โดยเทคนิค IL ของเส้นใยนาโนที่สังเคราะห์ได้จาก การทดลองชุดที่ 4.1.4(1)	68
4.16	(ก) ภาพถ่าย SEM (ข) และ (ค) กราฟวิเคราะห์องก์ประกอบธาตุ (ง) เส้น สเปกตรัมที่ได้จากการวัด โดยเทกนิก IL ของเส้นใยนาโนที่สังเคราะห์ได้จาก	70 1511 y
	การทดลองชุดที่ 4.1.4(2)	
4.17	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวีเคราะห้องค้ประกอบธาตุ (จ) เส้นสเปคตรัมที่ได้จากการวัดโดยเทคนิค IL ของเส้นใยนาโนที่สังเคราะห์ ได้จากการทดลองชุดที่ 4.1.4(3)	72

รูป		หน้า
4.18	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห้องค์ประกอบธาตุของเส้น	74
	ใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.4(4)	
4.19	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห้องค์ประกอบธาตุของเส้น	75
	ใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.4(5)	
4.20	(ก) และ (ข) ภาพถ่าย SEM (ก) และ (ง) กราฟวิเคราะห้องค์ประกอบธาตุของเส้น	76
	ใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่ 4.1.4(6)	
4.21	(ก) และ (ข) ภาพถ่าย SEM (ก) (ง) (ง) และ (ฉ) กราฟวิเคราะห์องค์ประกอบธาตุ	79
	(ช) เส้นสเปกตรัมที่ได้จากการวัดโดยเทกนิก IL ของเส้นใยนาโนที่ที่สังเกราะห์	
	ใด้จากการทดลองชุดที่ 4.3.1(1)	
4.22	(ก) และ (ข) ภาพถ่าย SEM (ค) เส้นสเปคตรัมที่ได้จากการวัค โดยเทคนิค IL	82
	ของเส้นใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่ 4.3.1(2)	
4.23	(ก) และ (ข) ภาพถ่าย SEM (ก) เส้นสเปกตรัมที่ได้จากการวัด โดยเทคนิค IL	82
	ของเส้นใยนาโนที่สังเคราะห์ได้จากการทดลองชุดที่ 4.3.1(3)	
4.24	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห้องค์ประกอบธาตุ	84
	(จ) เส้นสเปกตรัมที่ได้จากการวัดโดยเทกนิก IL ของเส้นใยนาโนที่สังเกราะห์	
	ใด้จากการทคลองชุดที่ 4.3.1(4)	
4.25	(ก) และ (ข) ภาพถ่าย SEM (ค) (ง) (จ) และ (ฉ) กราฟวิเคราะห์องค์ประกอบธาตุ	86
	(ช) เส้นสเปคตรัมที่ได้จากการวัดโดยเทคนิค IL ของเส้นใยนาโนที่ที่สังเคราะห์	
	ได้จากการทคลองชุคที่ 4.3.2(1)	
4.26	(ก) (ง) และ (ง) ภาพถ่าย SEM (ง) (ค) (ฉ) และ (ช) กราฟวิเคราะห้องค์ประกอบ	89
	ธาตุ (ซ) แสดงเส้นสเปกตรัมที่ได้จากการวัคโดยเทกนิก IL ของเส้นใยนาโนที่	
	สังเคราะห์ได้จากการทดลองชุดที่ 4.3.2(2)	
4.27	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห้องค์ประกอบธาตุ	92
	(จ) เส้นสเปคตรัมที่ได้จากการวัดโดยเทคนิก IL ของเส้นใยนาโนที่สังเคราะห์	
	ได้จากการทดลองชุดที่ 4.3.2(3)	
4.28	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห้องค์ประกอบธาตุ	94
	(จ) เส้นสเปคตรัมที่ได้จากการวัดโดยเทคนิก IL ของเส้นใยนาโนที่สังเคราะห์	
	ได้จากการทคลองชุดที่ 4.3.2(4)	

รูป		หน้า
4.29	(ก) และ (ข) ภาพถ่าย SEM (ค) (ง) (ง) และ (ฉ) กราฟวิเคราะห์องค์ประกอบธาตุ	96
	(ช) เส้นสเปกตรัมที่ได้จากการวัด โดยเทคนิก IL ของเส้นใยนาโนทีที่สังเกราะห์	
	ใด้จากการทดลองชุดที่ 4.3.2(5)	
4.30	(ก) และ (ข) ภาพถ่าย SEM (ค) และ (ง) กราฟวิเคราะห์องค์ประกอบธาตุ	98
	(จ) เส้นสเปกตรัมที่ได้จากการวัดโดยเทกนิก IL ของเส้นใยนาโนที่สังเกราะห์	
	ใด้งากการทดลองชุดที่ 4.3.2(6)	
4.31	แสดงการเลี้ยวเบนของรังสีเอ็กซ์	101
4.32	แสดงผลที่ได้จากการเทียบข้อมูลมาตรฐาน (JCPDS – PDF)	102
	ของซิงก์ออกไซด์	
4.33	แสดงผลที่ได้จากการเทียบข้อมูลมาตรฐาน (JCPDS – PDF)	103
	ของสังกะสี	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved