บทที่ 5

ผลการทดสอบและการวิเคราะห์ผล

บทนี้เป็นการแสดงผลการทคสอบหัวเผาพลาสมาต้นแบบที่ได้จากการดำเนินงานตาม ขั้นตอนดังแสดงไว้ในบทที่ 4 ซึ่งประกอบด้วยเนื้อหาและรายละเอียดดังนี้

5.1 มิติเปลวพลาสมา

จากการทดสอบหัวเผาพลาสมาต้นแบบโดยทำการปรับค่าอัตราการใหลเชิงมวลของอากาศ ที่ใช้เป็น Carrier Gas เท่ากับ 0.006 kg/s และปรับค่ากระแสไฟฟ้าที่จ่ายให้กับขั้วอิเล็กโทรดเท่ากับ 30 A, 40 A และ 50 A (DC) ตามลำดับ ที่แรงดันไฟฟ้าคงที่ 380 V พบว่าเปลวพลาสมามีความยาว เฉลี่ยในแนวแกน (Axial Position) 10 cm และความกว้างเฉลี่ยในแนวรัศมี (Radial Position) 3 cm ในทุกค่ากระแสไฟฟ้าที่ใช้ในการทดสอบ

รูป 5.1 ขนาดของเปลวพลาสมาในแนวแกน (Axial Position) และแนวรัศมี (Radial Position)

5.2 ผลการทดสอบ

5.2.1 ผลการวัดอุณหภูมิในแนวแกนกลาง (Axial Position) ของเปลวพลาสมา

ผลการวัดอุณหภูมิในแนวแกนกลาง (Axial Position) ของเปลวพลาสมาที่ระยะ $L_1 = 0.0$ cm, $L_2 = 1.0$ cm, $L_3 = 3.0$ cm, $L_4 = 5.0$, $L_5 = 7.0$ cm, $L_6 = 9.0$ cm และ $L_7 = 11.0$ cm ตามลำคับ ดังที่ได้แสดงวิธีการวัดในรูปที่ 4.8 โดยทำการปรับค่าอัตราการไหลเชิงมวลของอากาศที่ใช้เป็น Carrier Gas เท่ากับ 0.006 kg/s และปรับค่ากระแสไฟฟ้าที่ง่ายให้กับขั้วอิเล็กโทรคเท่ากับ 30 A , 40 A และ 50 A (DC) ตามลำคับ ที่แรงคันไฟฟ้าคงที่ 380 V ได้ผลดังตาราง 5.1

กระแสไฟฟ้า			อุณหรุ	ุ _่ เมิที่ระยะต่า	างๆ (K)	2	
(A)	0.0 cm	1.0 cm	3.0 cm	5.0 cm	7.0 cm	9.0 cm	11.0 cm
30	971	940	881	756	688	460	354
40	1018	974	928	845	760	542	364
50	1210	1144	1056	924	885	657	414

ตาราง 5.1 อุณหภูมิในแนวแกนกลาง (Axial Position) ของเปลวพลาสมา

รูป 5.2 อุณหภูมิในแนวแกนกลาง (Axial Position) ของเปลวพลาสมา

5.2.2 ผลการวัดอุณหภูมิในแนวรัศมี (Radial Position) ของเปลวพลาสมา

ผลการวัดอุณหภูมิในแนวรัศมี (Radial Position) ของเปลวพลาสมาที่ระยะ L₁=0 cm, L₂=0.5 cm, L₃=1.5 cm, L₄=2.5 และ L₅=3.5 cm ตามลำดับ ดังที่ได้แสดงวิธีการวัดในรูปที่ 4.9 โดย ทำการปรับค่าอัตราการไหลเชิงมวลของอากาศที่ใช้เป็น Carrier Gas เท่ากับ 0.006 kg/s และปรับค่า กระแสไฟฟ้าที่ง่ายให้กับขัวอิเล็กโทดเท่ากับ 30 A, 40 A และ 50 A (DC) ตามลำดับ ที่แรงดันไฟฟ้า กงที่ 380 V ได้ผลดังตาราง 5.2

กระแสไฟฟ้า	อุณหภูมิที่ระยะต่างๆ (K)					
(A)	0 cm	0.5 cm	1.5 cm	2.5 cm	3.5 cm	
30	971	553	351	324	317	
40	1018	776	481	333	318	
50	1210	945	532	367	335	

ตาราง 5.2 อุณหภูมิในแนวรัศมี (Radial Position) ของเปลวพลาสมา

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

รูป 5.3 อุณหภูมิในแนวรัศมี (Radial Position) ของเปลวพลาสมา

5.2.3 ผลทดสอบการเผาทำลายขยะอิเล็กทรอนิกส์ตัวอย่าง

หัวเผาพลาสมาต้นแบบใช้เวลา 2 นาทีในการเผาทำลายแผงวงจรคอมพิวเตอร์น้ำหนัก 200 g ที่ใช้เป็นขยะอิเล็กทรอนิกส์ตัวอย่าง และหัวเผาพลาสมาต้นแบบสามารถสร้างอุณหภูมิในห้องเผา จำลองขนาดห้องปฏิบัติการได้สูงสุด 1099 K เมื่อจ่ายกระแสไฟฟ้า 50 A (DC) ที่แรงดันไฟฟ้าคงที่ 380 V ให้กับขั้วอิเล็กโทด การแปรสภาพของขยะอิเล็กทรอนิกส์ตัวอย่างตามระยะเวลาการเผา ทำลายแสดงดังรูป 5.4 – 5.7

รูป 5.4 ขยะอิเล็กทรอนิกส์ตัวอย่างก่อนการเผาทำลาย

รูป 5.7 ขยะอิเล็กทรอนิกส์ตัวอย่างที่มีการแปรสภาพหลังการเผาทำลาย 2 นาที

5.3 ผลจากแบบจำลองการถ่ายเทความร้อน

5.3.1 ผลจากแบบจำลองการถ่ายเทความร้อนสู่บรรยากาศโดยตรง

จากแบบจำลองการถ่ายเทความร้อนของเปลวพลาสมาสู่บรรยากาศโดยตรงให้ผลการ วิเคราะห์ด้วยโปรแกรม CFD ดังนี้

ตาราง 5.3 อุณหภูมิในแนวแกนกลาง (Axial Position) จากแบบจำลองการถ่ายเทความร้อนของ เปลวพลาสมาสู่บรรยากาศโดยตรง

กระแสไฟฟ้า	อุณหภูมิที่ระยะต่างๆ (K)						
(A)	0.0 cm	1.0 cm	3.0 cm	5.0 cm	7.0 cm	9.0 cm	11.0 cm
30	971	965	959	908	836	775	729
40	1018	1010	1004	948	872	806	542
50	1210	1200	1194	1124	1027	945	882

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved ตาราง 5.4 อุณหภูมิในแนวรัศมี (Radial Position) จากแบบจำลองการถ่ายเทความร้อนของเปลว พลาสมาสู่บรรยากาศ โดยตรง

กระแสไฟฟ้า	อุณหภูมิที่ระยะต่างๆ (K)					
(A)	0 cm	0.5 cm	1.5 cm	2.5 cm	3.5 cm	
30	971	421	364	343	324	
40	1018	520	414	353	330	
50	1210	647	441	373	333	

รูป 5.8 แบบจำลองการถ่ายเทความร้อนด้วยโปรแกรม CFD เมื่อจ่ายกระแสไฟฟ้า 30 A (DC) ให้กับขั้วอิเล็กโทรด

รูป 5.10 แบบจำลองการถ่ายเทความร้อนด้วยโปรแกรม CFD เมื่อจ่ายกระแสไฟฟ้า 50 A (DC) ให้กับขั้วอิเล็กโทรด 5.3.2 ผลจากแบบจำลองการถ่ายเทความร้อนสู่ห้องเผาจำลอง จากแบบจำลองการถ่ายเทความร้อนของเปลวพลาสมาสำหรับกรณีการถ่ายเทความร้อนสู่ ห้องเผาจำลองให้ผลการวิเคราะห์ด้วยโปรแกรม CFD ดังนี้

- อุณหภูมิใจกลางห้องเผาจำลองเท่ากับ 1201 K

- อุณหภูมิทางออกห้องเผาจำลองเท่ากับ 1195 K

รูป 5.11 แบบจำลองการถ่ายเทความร้อนภายในห้องเผาจำลอง ด้วยโปรแกรม CFD เมื่อจ่ายกระแสไฟฟ้า 50 A (DC) ให้กับขั้วอิเล็กโทรด

5.4 การเปรียบเทียบผลการทดลอง

5.4.1 อุณหภูมิพลาสมาของหัวเผาพลาสมาต้นแบบกับอุณหภูมิ Microwave Plasma ของ Bang et al. (2006)

ทำการเปรียบเทียบอุณหภูมิที่ได้จากหัวเผาพลาสมาต้นแบบที่ใช้หลักการสร้างพลาสมาด้วย สนามไฟฟ้ากำลังสูงซึ่งใช้อากาศ 0.006 kg/s เป็น Carrier Gas และจ่ายไฟฟ้ากระแสตรง 50 A (DC) ที่แรงดันไฟฟ้าคงที่ 380 V ให้กับขั้วอิเล็กโทดกับอุณหภูมิ Microwave Plasma ของ Bang et al. (2006) ที่ใช้ก๊าซผสม (a) 60-L/min swirl air + mixture of 10-L/min CH₄ and 40L/min air, (b) 40-L/min swirl air + mixture of 10-L/min CH₄ and 60L/min air และ (c) อุณหภูมิพลาสมาของหัวเผา พลาสมาต้นแบบได้ผลดังนี้

รูป 5.13 อุณหภูมิที่วัดได้ในแนวรัศมีของเปลวพลาสมาจากหัวเผาต้นแบบกับอุณหภูมิ

หัวเผาพลาสมาต้นแบบสามารถสร้างพลาสมาที่มีอุณหภูมิสูงสุดเท่ากับ 1210 K สูงกว่า อุณหภูมิ Microwave Plasma ที่ใช้อากาศเป็น Carrier Gas เพียงชนิดเดียวของ Bang et al. (2006)ซึ่ง ทำอุณหภูมิเปลวพลาสมาได้สูงสุดเท่ากับ 600 K แต่อุณหภูมิสูงสุดที่ได้จากหัวเผาพลาสมาต้นแบบ จะต่ำกว่าอุณหภูมิ Microwave Plasma ที่ใช้ก๊าซผสม (a) 60-L/min swirl air + mixture of 10-L/min CH₄ and 40L/min air เป็นCarrier Gas ที่ทำอุณหภูมิเปลวพลาสมาได้สูงสุดเท่ากับ 1890 K และ Microwave Plasma ที่ใช้ก๊าซผสม (b) 40-L/min swirl air + mixture of 10-L/min CH₄ and 60-L/min air เป็น Carrier Gas ที่ทำอุณหภูมิเปลวพลาสมาได้สูงสุดเท่ากับ 1690 K ตามลำดับ

5.4.2 อุณหภูมิที่วัดจากจุดต่างๆ ในแนวแกน (Axial Position) ของเปลวพลาสมากับผลจาก แบบจำลองการถ่ายเทความร้อนด้วยโปรแกรม CFD

ทำการเปรียบเทียบอุณหภูมิที่วัดจากจุดต่างๆในแนวแกน (Axial Position) ของเปลว พลาสมากับผลจากแบบจำลองการถ่ายเทความร้อนด้วยโปรแกรม CFD ได้ผลดังนี้

ตาราง 5.5 อุณหภูมิในแนวแกนกลาง (Axial Position) ของเปลวพลาสมาที่ได้จากการวัดและจาก แบบจำลองการถ่ายเทความร้อน (CFD) เมื่อง่ายกระแสไฟฟ้าให้กับขั้วอิเล็กโทรค 30 A (DC)

กระ	แสไฟฟ้าที่จ่ายให้กับขัวอิเล็กโท	รดเท่ากับ 30 A (DC)	
ระยะ (cm)	measurements	CFD	error %
0.0	971	971	0.0
1.0	940	965	2.67
3.0	881	959	8.89
5.0	756	908	20.1
7.0	688	836	21.5
9.0	460	e 775 e f	68.5
11.0	354	729	105.9

รูป 5.14 อุณหภูมิที่วัดได้ในแนวแกน (Axial Position) ของเปลวพลาสมา กับผลจากแบบจำลองการถ่ายเทความร้อนด้วยโปรแกรม CFD เมื่อจ่ายกระแสไฟฟ้า 30 A (DC) ให้กับขั้วอิเล็กโทรด

ตาราง 5.6 อุณหภูมิในแนวแกนกลาง (Axial Position) ของเปลวพลาสมาที่ได้จากการวัดและจาก แบบจำลองการถ่ายเทความร้อน (CFD) เมื่อจ่ายกระแสไฟฟ้าให้กับขั้วอิเล็กโทรด 40 A (DC)

3 2	กระแสไฟฟ้าที่จ่ายให้กับขั้วอิเล็กโทรคเท่ากับ 40 A (DC)							
IU	ระยะ (cm)	measurements	CFD	error %				
Со	0.0	1018	1018	0.0				
	1.0	974	1010	3.7				
	3.0	928	1004	8.2				
	5.0	845	948	12.2				
	7.0	760	872	14.7				
	9.0	542	806	48.7				
	11.0	364	542	48.9				

รูป 5.15 อุณหภูมิที่วัดได้ในแนวแกน (Axial Position) ของเปลวพลาสมา กับผลจากแบบจำลองการถ่ายเทความร้อนด้วยโปรแกรม CFD เมื่อจ่ายกระแสไฟฟ้า 40 A (DC) ให้กับขั้วอิเล็กโทรด

ตาราง 5.7 อุณหภูมิในแนวแกนกลาง (Axial Position) ของเปลวพลาสมาที่ได้จากการวัดและจาก แบบจำลองการถ่ายเทความร้อน (CFD) เมื่อจ่ายกระแสไฟฟ้าให้กับขั้วอิเล็กโทรด 50 A (DC)

	กระแสไฟฟ้าที่จ่ายให้กับขั้วอิเล็กโทรดเท่ากับ 50 A (DC)						
a d	ระยะ (cm)	measurements	CFD	error %			
Co	0.0	1210	1210	0			
CU	1.0	1144	1200	4.9			
ΑΙ	3.0	1056	1194	13.1			
	5.0	924	1124	21.6			
	7.0	885	1027	16.0			
	9.0	657	945	43.8			
	11.0	414	882	113.0			

รูป 5.16 อุณหภูมิที่วัดได้ในแนวแกน (Axial Position) ของเปลวพลาสมา กับผลจากแบบจำลองการถ่ายเทความร้อนด้วยโปรแกรม CFD เมื่อจ่ายกระแสไฟฟ้า 50 A (DC) ให้กับขั้วอิเล็กโทรด

จากผลการทดสอบและผลจากแบบจำลองการถ่ายเทความร้อนพบว่า อุณหภูมิที่วัดจากจุด ต่างๆในแนวแกน (Axial Position) ของเปลวพลาสมากับผลจากแบบจำลองการถ่ายเทความร้อน ด้วยโปรแกรม CFD มีแนวโน้มไปในทิศทางเดียวกัน คือ อุณหภูมิสูงสุดของเปลวพลาสมาเกิดขึ้นที่ ปากทางออกของหัวเผาและอุณหภูมิจะลดลงเมื่อระยะห่างตามแนวแกน (Axial Position) เพิ่มขึ้น แต่หากทำการเปรียบข้อมูลที่ได้จากการวัดกับผลที่ได้จากแบบจำลองการถ่ายเทความร้อนพบว่าค่า ความผิดพลาด (Error) ของแบบจำลองมีค่าสูงขึ้นเมื่อระยะห่างมากขึ้น ซึ่งจากค่าความผิดพลาดที่ สูงขึ้นนั้นทำให้แบบจำลองการถ่ายเทความร้อนสามารถทำนายผลการถ่ายเทความร้อนของเปลว พลาสมาในแนวแกน (Axial Position) ที่ระดับค่าความคลาดเกลื่อนไม่เกิน 15% ได้ในช่วงระยะห่าง จากปากหัวเผา 0 cm - 3 cm เท่านั้น 5.4.3 อุณหภูมิที่วัดจากจุดต่างๆ ในแนวรัศมี (Radial Position) ของเปลวพลาสมา เปรียบเทียบกับผลการจำลองการถ่ายเทความร้อนของเปลวพลาสมาด้วยโปรแกรม CFD

ทำการเปรียบเทียบอุณหภูมิที่วัดจากจุดต่างๆ ในแนวรัศมี (Radial Position) ของเปลว พลาสมากับผลจากแบบจำลองการถ่ายเทความร้อนด้วยโปรแกรม CFD ได้ผลดังนี้

ตาราง 5.8 อุณหภูมิในแนวแกนกลาง (Radial Position) ของเปลวพลาสมาที่ได้จากการวัดและจาก แบบจำลองการถ่ายเทความร้อน (CFD) เมื่อจ่ายกระแสไฟฟ้าให้กับขั้วอิเล็กโทรค 30 A (DC)

ระยะ (cm)	measurements	CFD	error %
0.0	971	971	0.0
0.5	553	421	23.9
1.5	351	364	3.7
2.5	324	343	5.9
3.5	317	324	2.2
	Charles		

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

รูป 5.17 อุณหภูมิที่วัดได้แนวรัศมี (Radial Position) ของเปลวพลาสมา กับผลจากแบบจำลองการถ่ายเทความร้อนด้วยโปรแกรม CFD เมื่อจ่ายกระแสไฟฟ้า 30 A (DC) ให้กับขั้วอิเล็กโทรด

ตาราง 5.9 อุณหภูมิในแนวแกนกลาง (Radial Position) ของเปลวพลาสมาที่ได้จากการวัดและจาก แบบจำลองการถ่ายเทความร้อน (CFD) เมื่อจ่ายกระแสไฟฟ้าให้กับขั้วอิเล็กโทรด 40 A (DC)

	กระแสไฟฟ้าที่ง่ายให้กับขั้วอิเล็กโทรคเท่ากับ 40 A (DC)								
6	5 ະຍະ (cm)	measurements	CFD	error %					
a 2	0.0	1018	1018	0.0					
	0.5	776	520	33.0					
CO	1.5	481	414	14.0 L					
A	2.5	h f S ³³³ r e	353	6.0					
	3.5	318	330	3.8					

รูป 5.18 อุณหภูมิที่วัดได้แนวรัศมี (Radial Position) ของเปลวพลาสมา กับผลจากแบบจำลองการถ่ายเทความร้อนด้วยโปรแกรม CFD เมื่อจ่ายกระแสไฟฟ้า 40 A (DC) ให้กับขั้วอิเล็กโทรด

ตาราง 5.10 อุณหภูมิในแนวแกนกลาง (Radial Position) ของเปลวพลาสมาที่ได้จากการวัดและจาก แบบจำลองการถ่ายเทความร้อน (CFD) เมื่อจ่ายกระแสไฟฟ้าให้กับขั้วอิเล็กโทรด 50 A (DC)

	กระแสไฟฟ้าที่จ่ายให้กับขั้วอิเล็กโทรดเท่ากับ 40 A (DC)								
8.1	ระยะ (cm)	measurements	CFD	error %					
ດປ	0.0		1210						
Co	0.5	945	647	31.5					
	1.5	532	441	17.1					
AI	2.5	h t S ₃₆₇ r e	373	1.6					
	3.5	335	333	0.6					

รูป 5.19 อุณหภูมิที่วัดได้แนวรัศมี (Radial Position) ของเปลวพลาสมา กับผลจากแบบจำลองการถ่ายเทความร้อนด้วยโปรแกรม CFD เมื่อจ่ายกระแสไฟฟ้า 50 A (DC) ให้กับขั้วอิเล็กโทรด

จากผลการทดสอบและผลจากแบบจำลองการถ่ายเทความร้อนพบว่า อุณหภูมิที่วัดจากจุด ต่างๆในแนวรัศมี (Radial Position) ของเปลวพลาสมากับผลจากแบบจำลองการถ่ายเทความร้อน ด้วยโปรแกรม CFD มีแนวโน้มไปในทิศทางเดียวกัน คือ อุณหภูมิสูงสุดของเปลวพลาสมาเกิดขึ้นที่ ปากทางออกของหัวเผาและอุณหภูมิจะลดลงเมื่อระยะห่างตามแนวรัศมี (Radial Position) เพิ่มขึ้น เมื่อทำการเปรียบข้อมูลที่ได้จากการวัดกับค่าที่ได้จากแบบจำลองการถ่ายเทความร้อนพบว่าค่าความ ผิดพลาด (Error) ของแบบจำลองมีค่าลดลงอย่างมากเมื่อระยะห่างเท่ากับ 2.5 cm ซึ่งจากค่าความ ผิดพลาดที่ลดลงนี้ทำให้แบบจำลองการถ่ายเทความร้อนสามารถทำนายผลการถ่ายเทความร้อน ของเปลวพลาสมาในแนวรัศมี (Radial Position) ที่ระยะห่างตั้งแต่ 2.5 cm ขึ้นไป 5.4.4 อุณหภูมิที่วัดจากกลางห้องเผาจำลองเปรียบเทียบกับผลการจำลองการถ่ายเทความ ร้อนของเปลวพลาสมาด้วยโปรแกรม CFD

อุณหภูมิที่วัดได้จากกลางห้องเผาจำลองเท่ากับ 1099 K ต่างจากผลของแบบจำลองการ ถ่ายเทความร้อนสู่ห้องเผาจำลองด้วยโปรแกรม CFD ที่จำลองอุณหภูมิกลางห้องเผาได้เท่ากับ 1201 K คิดเป็นก่าความผิดพลาด (Error) เท่ากับ 9.3 %

5.5 วิเคราะห์ผล

อุณหภูมิสูงสุดในแนวแกนกลาง (Axial Position) ของเปลวพลาสมาวัคได้เท่ากับ 1210 K ที่ทางออกหัวฉีค (Nozzle) วิเคราะห์ได้ว่าที่จุคคังกล่าวเป็นจุคที่มีการแตกตัวของอิเล็กตรอนใน Carrier Gas สูงที่สุค ทั้งนี้สังเกตได้จากลักษณะของเปลวพลาสมาตามรูปที่ 5.1 ที่มีความกว้างเฉลี่ย ในแนวรัศมีสูงสุดเกิดขึ้นที่ทางออกหัวฉีค (Nozzle) เช่นกัน อุณหภูมิของเปลวพลาสมาจะลคลงตาม ระยะห่างจากปากหัวเผาที่มากขึ้นเนื่องจากการแตกตัวของอิเล็กตรอนใน Carrier Gas จะลคลงตาม ความคันก๊าซที่ลคลงด้วยซึ่งเป็นไปตามทฤษฎีการแตกตัวของก๊าซและทฤษฎีจลน์ของก๊าซ

ห้วเผาพลาสมาต้นแบบใช้หลักการสร้างพลาสมาด้วยสนามไฟฟ้ากำลังสูงขนาด 19 kW สามารถสร้างพลาสมาที่มีอุณหภูมิสูงสุดได้สูงกว่าอุณหภูมิ Microwave Plasma ขนาด 1.5 kW ของ Bang et al. (2006) ในกรณีที่ใช้อากาศเป็น Carrier Gas เพียงชนิดเดียว เนื่องจากพลังงานที่จ่าย ให้กับหัวเผาพลาสมาต้นแบบสูงกว่าพลังงานที่จ่ายให้กับ Microwave Plasma จึงทำให้อากาศที่เป็น Carrier Gas แตกตัวเป็นพลาสมาได้มากกว่าและให้ความร้อนสูงกว่า แต่ในกรณีที่ Microwave Plasma ใช้ Carrier Gas เป็นก๊าซผสม (a) 60-L/min swirl air + mixture of 10-L/min CH₄ and 40L/min air จะได้พลาสมาที่มีอุณหภูมิ 1890 K และ (b) 40-L/min swirl air + mixture of 10-L/min CH₄ and 40L/min air จะได้พลาสมาที่มีอุณหภูมิ 1890 K และ (b) 40-L/min swirl air + mixture of 10-L/min CH₄ and 60L/min air จะได้พลาสมาที่มีอุณหภูมิ 1680 K ตามลำดับ ซึ่งอุณหภูมิพลาสมาดังกล่าวสูง กว่าอุณหภูมิพลาสมาของหัวเผาพลาสมาต้นแบบ ทั้งนี้เนื่องจากก๊าซผสมที่ใช้เป็น Carrier Gas มี คุณสมบัติเป็นก๊าซเชื้อเพลิงซึ่งสามารถเกิดการสันดาปได้หากโมเลกุลของก๊าซนั้นแตกตัวเป็น พลาสมาไม่หมด สังเกตได้จากก๊าซผสมดังกล่าวมีส่วนผสมของอากาสทำให้การสันดาปอางเกิดขึ้น ได้ภายในท่อที่ใช้เป็นส่วนกำเนิดพลาสมาหรืออาจเกิดขึ้นหลังจากโมเลกุลของก๊าซเชื้อเพลิงที่ไม่ แตกตัวเป็นพลาสมาหลุดออกมาผสมกับอากาศที่ปากท่อแล้วได้รับความร้อนจากเปลวพลาสมาจน เกิดการสันดาปให้กวามร้อนเพิ่ม ส่งผลให้อุณหภูมิพลาสมาที่ได้จาก Microwave Plasma สูงกว่า อุณหภูมิพลาสมาของหัวเผาพลาสมาด้นแบบ

แบบจำลองการถ่ายเทความร้อนที่สมมุติให้กระแสก๊าซร้อน (Hot Jet Flow) เป็นตัวแทน ของเปลวพลาสมาสามารถทำนายผลการถ่ายเทความร้อนในแนวแกน (Axial Position) ของเปลว พลาสมาที่ระดับค่าความคลาดเคลื่อนไม่เกิน 15% ได้เมื่อระยะห่างจากปากหัวเผาอยู่ในช่วง 0 - 3 cm เท่านั้นไม่สามรถทำนายผลนอกช่วงคังกล่าวได้ และสามารถทำนายการถ่ายเทความร้อนในแนว รัศมี (Radial Position) ของเปลวพลาสมาได้ที่ระดับค่าความคลาดเคลื่อนไม่เกิน 15% เมื่อระยะห่าง เป็น 2.5 cm ขึ้นไปเท่านั้น ทั้งนี้ก่าความผิดพลาดของแบบจำลองการถ่ายเทความร้อนที่ใช้ใน งานวิจัยนี้เกิดจากพฤติกรรมการถ่ายเทพลังงานของอากาศสถานะพลาสมาแตกต่างจากพฤติกรรม การถ่ายเทพลังงานของอากาศสถานะก๊าซ ทั้งนี้เป็นอิทธิพลของปฏิกิริยาเคมีในเปลวพลาสมาซึ่ง เกิดจากการเปลี่ยนแปลงพลังงานในระดับโมเลกูล ทำให้เกิดการสร้างหรือสลายพันธะทางเคมีใน องก์ประกอบของ Carrier Gas รวมถึงอิทธิพลจากประจุไฟฟ้าอิสระซึ่งเคลื่อนที่อยู่ภายในเปลว พลาสมามีพลังงานจลน์ที่เปลี่ยนแปลงตามพลังงานที่ลคลง ทำให้พฤติกรรมการถ่ายเทความร้อน ของเปลวพลาสมามีความแตกต่างกับพฤติกรรมการถ่ายเทความร้อนของกระแสก๊าซร้อน (Hot Jet Flow) ทั่วไป ซึ่งไม่มีการเปลี่ยนแปลงพลังงานในระดับโมเลกุล จึงเป็นการยากที่จะจำลองการ ถ่ายเทความร้อนของเปลวพลาสมาให้มีความถูกต้องและแม่นยำ ในงานวิจัยนี้สรุปได้ว่าการใช้ แบบจำลองการถ่ายเทความร้อนของกระแสก๊าซร้อน (Hot Jet Flow) ไม่สามารถทำนายผลการ ถ่ายเทความร้อนของเปลวพลาสมาได้

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved