บทที่ 4

ผลการทดลองและวิเคราะห์ผลการทดลอง

บทนี้นำเสนอผลการวิเคราะห์จากผลการทคสอบระบบทำความเย็นแบบดูคซับที่ใช้ร่วมกับ ท่อความร้อน และใช้ถ่านกัมมันต์-เมทานอลเป็นคู่สารทำงาน ข้อมูลที่อภิปรายประกอบด้วย ผลเปรียบเทียบการใช้ท่อความร้อนกับระบบน้ำหล่อเย็นในการระบายความร้อนจากเครื่องดูคซับ การเปลี่ยนแปลงของอุณหภูมิ อัตราความร้อนที่ถ่ายเท สมดุลพลังงานของเครื่องดูดซับ สมรรถนะ ของระบบ แบบจำลองจากการทดลอง (Empirical model) สำหรับทำนายสมรรถนะของระบบ และแนวทางการปรับปรุงประสิทธิภาพของระบบ

4.1 ระบบทำความเย็นแบบดูดซับที่ใช้ร่วมกับท่อความร้อน

ท่อกวามร้อนแบบสั่นวงรอบ (Closed Loop Oscillating Heat Pipe: CLOHP) ใด้ถูก นำมาติดตั้งในเครื่องดูดซับ (Adsorber) เพื่อเพิ่มประสิทธิภาพการทำงานของระบบ ดังแสดงในรูป ที่ 4.1 โดยในช่วงหลังการกายสารดูดซับระบบจำเป็นต้องมีการระบายกวามร้อนที่ได้รับมาจาก แหล่งกวามร้อนในช่วงการกายสารดูดซับออกไป โดยทั่วไปวิธีการระบายกวามร้อนจากเครื่องดูด ซับทำได้โดยการใช้น้ำหล่อเย็นหมุนเวียนบริเวณส่วนแลกเปลี่ยนกวามร้อน (Water jacket) ของ เครื่องดูดซับ เป็นการระบายกวามร้อนทางเดียว กวามร้อนที่สะสมภายในสารดูดซับของเครื่องดูด ซับต้องถ่ายเทกวามร้อนผ่านวัสดุสารดูดซับ (Adsorbent material) หรือถ่านกัมมันต์ (Activated Carbon) และส่วนอื่นที่ไม่ใช่สารดูดซับ (Non-adsorbent material) มายังผนังท่อทองแดง ก่อน จะถ่ายเทไปยังสารถ่ายโอนกวามร้อนที่ไหลเวียนใน Water jacket ต่อไป

กรรมวิธีการเพิ่มอัตราการระบายความร้อนแก่เครื่องดูคซับ คือการติคตั้งท่อความร้อนแบบ สั่นวงรอบแทรกเข้าไปภายในเบคของสารดูคซับ (Adsorbent bed) ทำให้พื้นที่สัมผัสเพิ่มขึ้นและ ใช้หลักการทำงานแบบท่อความร้อนช่วยดูคกวามร้อนเพื่อระบายออกไปอีกทางหนึ่ง

ll rights reserved

รูปที่ 4.2 ส่วนประกอบภายในเครื่องดูดซับ

4.2 การวิเคราะห์ผลการทดสอบ

การวิเคราะห์ผลการทคสอบระบบดูคซับในงานวิจัยนี้ตามวัตถุประสงค์ของที่ 1 นำเสนอ โดยจัดแบ่งออกเป็น 7 ส่วน ตั้งแต่หัวข้อ 4.2.1 ถึง 4.2.7 ดังนี้

- ทฤษฎีที่เกี่ยวกับการรับและระบายความร้อนของวัฎจักรทำงานของระบบคูดซับ ที่แสดง โดยแผนภาพความดัน-อุณหภูมิ-ความเข้มข้นของสารทำความเย็นในสารคูดซับ (P-T-x diagram)
- (2) การทำงานของท่อความร้อน เมื่อเปรียบเทียบกับรูปแบบการระบายความร้อนอื่น ได้แก่ การใช้น้ำหล่อเย็น
- (3) การแปรผันอุณหภูมิของเครื่องดูดซับตลอด 3 วัฎจักรติดต่อกัน
- (4) การเปลี่ยนแปลงของอัตราการถ่ายเทความร้อนของเครื่องดูดซับที่สภาวะการทำงาน 6 วัฎ จักรที่แตกต่างกัน
- (5) สมดุลพลังงานของเครื่องดูคซับ ในรูปส่วนความอัตราการถ่ายเทความร้อนของแต่ละ องค์ประกอบ และส่วนแบ่งกิดเป็นร้อยละ
- (6) สมรรถนะของระบบในรูป สัมประสิทธิ์สมรรถนะ (COP) และค่าการเก็บพลังงานจำเพาะ ได้แก่ SCP และ VCP เมื่อได้รับอิทธิพลของอุณหภูมิเครื่องดูดซับและอุณหภูมิเครื่อง ควบแน่น จากนั้นจึงประมวลผลค่าตัวแปรและสมรรถนะของระบบจากการทดลองทั้งหมด 27 ชุดการทดลอง โดยข้อมูลอุณหภูมิ อัตราการไหล ความดัน และปริมาตรเมทานอล ที่ บันทึกได้จากการทดลอง ถูกนำมาวิเคราะห์การเปลี่ยนแปลงอุณหภูมิ และพลังงานภายใน เครื่องดูดซับ
- (7) การเปรียบเทียบสมรรถนะระบบดูคซับจากงานวิจัยนี้กับระบบดูคซับในงานวิจัยอื่นที่ เกี่ยวข้องซึ่งพบในเอกสารอ้างอิง (Literature)

4.2.1 แผนภาพ ความดัน-อุณหภูมิ-ความเข้มข้น (P-T-x diagram) ของวัฎจักรดูดซับ

แผนภูมิสมดุลความดัน-อุณหภูมิ-อัตราส่วนการดูดซับของสารทำงาน (*P-T-x*) ของระบบ ทำความเย็นแบบดูดซับ ดังรูปที่ 4.3 แสดงให้เห็นช่วงที่ต้องการระบายความร้อนคือช่วง Isosteric Cooling และ Isobaric Cooling หรือช่วงหมายเลข 3-4, 4-1 ซึ่งช่วงก่อนกระบวนการดูดซับ จำเป็นต้องระบายพลังงานความร้อนออกจากสารดูดซับก่อน เพื่อให้อุณหภูมิและความดันของ เครื่องดูดซับลดลงจนอยู่ในระดับที่เหมาะสมต่อกระบวนการดูดซับ (ช่วง 3 – 4 ของรูปที่ 4.3)

การระบายความร้อนในช่วงการดูดซับ ทำเพื่อให้ปฏิกิริยาดูดซับซึ่งเป็นแบบคายความร้อน เกิดขึ้นได้ดี และเข้าสู่สภาวะสมดุล (Equilibrium) ได้ช้าลง (ช่วง 4 – 1 ของรูปที่ 4.3) การระบาย ความร้อนด้วยอัตราที่สูงจะส่งผลให้ระยะเวลาที่ใช้ในรอบวัฏจักรสั้นลง

รูปที่ 4.3 แผนภาพความคัน-อุณหภูมิ-อัตราส่วนการคูคซับ (P-T-x) ถ่านกัมมันต์และเมทานอล

4.2.2. การทำงานของท่อความร้อน

การระบายความร้อนโดยน้ำหล่อเย็นหมุนเวียนผ่าน Water jacket ในช่วง Isosteric cooling และ Isobaric cooling ไม่เพียงพอที่จะทำให้การเกิดปฏิกิริยาดูดซับเกิดขึ้นได้อย่างดี จึง ได้ทดสอบเปรียบเทียบการระบายความร้อน 3 รูปแบบ ได้แก่

- การใช้ท่อความร้อนแบบสั่นวงรอบ (CLOHP) เพียงอย่างเดียว ซึ่งท่อความร้อนมีสาร ทำงานเมทานอลเติมอยู่ในอัตราส่วนร้อยละ 30 โดยปริมาตร
- 2) การใช้น้ำหล่อเย็น (Cooling water) ระบายความร้อนผ่าน Water jacket เพียงอย่างเคียว
- การใช้ท่อความร้อนแบบสั่นวงรอบระบายความร้อนจากภายใน <u>ร่วมกับ</u> การใช้น้ำหล่อเย็น ระบายความร้อนผ่าน Water jacket

โดยแสดงผลในรูปการลดลงของอุณหภูมิเกรื่องดูดซับตามเวลา เมื่อกำหนดให้อุณหภูมิ ลดลงจาก 80°C เป็น 30°C ดังรูปที่ 4.4 ผลปรากฏว่าอัตราการลดลงของอุณหภูมิ และระยะเวลาที่ ใช้ในการลดอุณหภูมิแตกต่างกัน สรุปได้ดังนี้

รูปที่ 4.4 การระบายความร้อนในเครื่องดูดซับ (1) กรณีใช้น้ำหล่อเย็นอย่างเดียว (2) ใช้ท่อความ ร้อนแบบสั่นวงรอบอย่างเดียว (3) กรณีใช้ท่อความร้อนแบบสั่นวงรอบร่วมกับน้ำหล่อเย็น

กรณีที่ (3) <u>การใช้ท่อความร้อนแบบสั่นวงรอบร่วมกับน้ำหล่อเย็น</u> ทำให้อัตราการระบาย ความร้อนเร็วที่สุด โดย

- การลดลงของอุณหภูมิในช่วง 10 นาทีแรก เกิดขึ้นอย่างรวดเร็ว เพราะอุณหภูมิในเกรื่องดูด ซับกับอุณหภูมิบรรยากาศต่างกันมาก
- จากนั้นอัตราการลดอุณหภูมิในเครื่องดูดซับจะลดลงเรื่อย ๆ โดยกระบวนการนี้ใช้เวลา ทั้งหมดเพียง 26 นาที
- เมื่อเปรียบเทียบกรณีท่อความร้อนแบบสั่นวงรอบร่วมกับน้ำหล่อเย็นกับการใช<u>้น้ำหล่อเย็น</u> <u>เพียงอย่างเดียว</u> (กรณี (1)) พบว่า สามารถลดเวลาในกระบวนการได้ถึงร้อยละ 42
- 4) กรณีใช้ร่วมกันสามารถลดเวลาในการระบายความร้อนให้สั้นลง เนื่องจาก
 - ก. ท่อความร้อนใช้การเคือดของสารทำงานภายในเพื่อพาความร้อนออกจากระบบไป
 ระบายสู่สิ่งแวดล้อมที่ส่วนควบแน่น โดยค่าความร้อนแฝงการกลายเป็นไอมีค่าสูงกว่า
 เมื่อเทียบกับค่าอัตราการนำและพาความร้อนของน้ำหล่อเย็น และ

 การวางตำแหน่งของท่อความร้อนสามารถแทรกเข้าไปในเนื้อถ่านกัมมันต์ได้มากกว่า เป็นการเพิ่มพื้นที่ผิวสัมผัสและลดระยะทางการส่งถ่ายความร้อนจากถ่านกัมมันต์สู่ผิว กระบอกที่สัมผัสกับ Water Jacket ทำให้การระบายความร้อนเกิดได้เร็วขึ้น

สรุปได้ว่า การระบายความร้อนโดยใช้ท่อความร้อนแบบสั่นวงรอบร่วมกับน้ำหล่อเย็น สามารถลดอุณหภูมิและเวลาของช่วง Isosteric Cooling ได้รวดเร็วที่สุด ดังนั้นในการทดสอบต่อ จากนี้จะใช้การระบายความร้อนในลักษณะนี้ โดยจะเน้นการศึกษาผลของตัวแปรอื่นต่อไป

4.2.3 อุณหภูมิของเครื่องดูดซับ

การแปรผันของอุณหภูมิเครื่องดูคซับตลอดวัฎจักรทำงาน แสดงให้เห็นสมรรถนะของการ ให้และระบายความร้อน หรือผลการรับพลังงานจากแหล่งความร้อนและการระบายความร้อนสู่ เป้าหมายที่ต้องการ โดยชุดทดสอบนี้ได้รับการติดตั้งเซนเซอร์วัดอุณหภูมิ ณ ตำแหน่งต่าง ๆ ดังรูป ที่ 4.1 ซึ่งจากข้อมูลอุณหภูมิที่บันทึกได้สามารถนำมาสร้างกราฟกวามสัมพันธ์ระหว่างอุณหภูมิกับ เวลาที่เปลี่ยนแปลงตลอดช่วงการทดสอบ ดังแสดงในรูปที่ 4.5

รูปที่ 4.5 แสดงลักษณะการเปลี่ยนแปลงอุณหภูมิของชุดทดสอบ 3 ช่วงวัฎจักรการดูดซับที่ ทำงานต่อเนื่องกัน ภายใต้เงื่อนไขเดียวกัน คืออุณหภูมิถ่านกัมมันต์ในเกรื่องดูดซับสูงสุดคือ 90°C และอุณหภูมิเกรื่องควบแน่นคือ 15°C สำหรับวัฎจักรแรก (เวลาที่ 0-70 นาที) สามารถอธิบายการ ทำงานได้ดังนี้

- (1) ช่วงให้ความร้อน (Heating process) การให้ความร้อนแก่เครื่องดูดซับโดยน้ำถ่ายโอนความ ร้อนที่ช่วงอุณหภูมิ 93°C - 96°C ใช้เวลาประมาณ 10 ถึง 15 นาที จนเครื่องดูดซับมีอุณหภูมิ เป็น 80°C สังเกตได้ว่าอุณหภูมิในเครื่องดูดซับเพิ่มขึ้นอย่างต่อเนื่อง
- (2) ช่วงให้ความร้อนและคายสารดูคซับ (Heating and Desorption process) เมื่ออุณหภูมิใน เครื่องดูคซับสูงถึง 80°C ทำการเปิดวาล์วในระบบพร้อมกับป้อนน้ำเย็นเข้าสู่เครื่องควบแน่น ในขณะที่การให้ความร้อนแก่เครื่องดูคซับอย่างต่อเนื่องจนอุณหภูมิเครื่องดูคซับเป็น 90°C เวลาในกระบวนการนี้ประมาณ 15 นาที จากนั้นปิดวาล์วทันที พร้อมกับระบายน้ำออกจาก เครื่องควบแน่น

กระบวนการนี้เมทานอลจะเกิดการหลุดออกจากถ่านกัมมันต์ในสภาวะ ไอ และเกลื่อน ลงสู่เครื่องกวบแน่น เมื่อ ไอเมทานอลกวบแน่นกวามร้อนจะถ่าย โอนสู่น้ำหล่อเย็น และคอน เดนเสทจะเก็บสะสมอยู่ในเครื่องทำระเหยต่อ ไป

เมื่อเปิดวาล์วระบายไอเมทานอลจากเครื่องดูดซับ เพื่อไหลไปยังเครื่องควบแน่น อุณหภูมิเครื่องดูดซับจะลดลงเล็กน้อย (ที่เวลา 15 นาที, 85 นาที และ 165 นาที) เนื่องจากไอเม ทานอลที่สะสมอยู่ในเครื่องดูคซับถูกควบแน่นทันที จากการสูญเสียความร้อนของระบบใน บางตำแหน่ง เมื่อทำการให้ความร้อนแก่ระบบต่อไปพบว่าความชันของกราฟจะชันน้อยกว่า ช่วงให้ความร้อนก่อนเปิดวาล์ว เนื่องจากความร้อนถูกใช้ในการแยกพันธะระหว่างผิวถ่านกัม มันต์กับเมทานอลประกอบกับไอเมทานอลได้พาความร้อนออกไปยังส่วนเครื่องควบแน่นด้วย อีกทางหนึ่ง

- (3) ช่วงการระบายความร้อน (Cooling process) เป็นการคึงความร้อนออกจากเครื่องดูดซับ เพื่อ ทำให้ระบบเย็นลง และเตรียมเครื่องดูดซับให้พร้อมสำหรับช่วงการดูดซับต่อไป ซึ่ง กระบวนการนี้จะสิ้นสุดเมื่ออุณหภูมิในเครื่องดูดซับลดลงถึงอุณหภูมิประมาณ 40°C ใน กระบวนการนี้สังเกตได้ว่า อุณหภูมิในเครื่องดูดซับลดลงอย่างรวดเร็ว ในช่วงเวลาประมาณ 10 นาที เนื่องมาจากการใช้น้ำหล่อเย็นร่วมกับท่อความร้อน ทำให้สามารถเริ่มกระบวนการต่อไป ได้เร็วขึ้น
- (4) ช่วงการดูดซับ (Adsorption process) เป็นกระบวนการที่สารดูดซับได้ดูดไอซับเมทานอล ที่มาจากเครื่องทำระเหย เริ่มต้นจากการเปิดวาล์วในระบบเมื่อสิ้นสุดกระบวนการระบายความ ร้อน โดยน้ำที่ป้อนเข้าสู่เครื่องทำระเหยทำให้เมทานอลเดือดและกลายเป็นไอ ซึ่งเมื่อมีการเปิด วาล์วในระบบพบว่าอุณหภูมิในเครื่องดูดซับจะเพิ่มขึ้นอย่างรวดเร็ว เนื่องมาจากการแพร่ (Diffusion) ของโมเลกุลไอเมทานอลปริมาณมากเข้าไปเกาะที่ผิวของถ่านกัมมันต์และทำ ปฏิกิริยากันอย่างรวดเร็ว (กันทิมา เอี่ยมมาก, 2548) และกายความร้อนจากการดูดซับซึ่งมีก่า มากกว่าความร้อนแฝงของการกลายเป็นไอของเมทานอลออกมา

หากอัตราการระบายความร้อนไม่ทันอุณหภูมิสารดูดซับจะเพิ่มขึ้น แต่เมื่อปริมาณเมทา นอลที่เข้าจับถ่านกัมมันต์ลดลง ในเวลาที่ผ่านไปอุณหภูมิถ่านกัมมันต์จึงลดลงอย่างช้าๆ จน ปฏิกิริยาเข้าสู่สภาวะสมดุล ใช้เวลาในกระบวนการนี้ ประมาณ 30 – 40 นาที ดังนั้นมีความ จำเป็นอย่างมากที่ต้องดึงความร้อนจากการเกิดปฏิกิริยาออกในอัตราที่เพียงพอกับอัตราความ ร้อนที่ได้จากการเกิดปฏิกิริยาการดูดซับระหว่างกู่สารทำงาน เพื่อให้การเกิดปฏิกิริยาไป ข้างหน้าไม่หยุดชะงัก จากนั้นจึงปิดวาล์วในระบบเมื่อสิ้นสุดกระบวนการ โดยสังเกตจาก อุณหภูมิภายในเครื่องดูดซับเข้าใกล้ 30°C

อุณหภูมิที่เปลี่ยนแปลงของทั้ง 3 วัฏจักรที่ต่อเนื่องกันถูกนำมาคำนวณหาอัตราการถ่ายเท กวามร้อนในช่วงคายสารดูดซับ คือ 614 W, 635 W และ 643 W ตามลำคับ ซึ่งมีความใกล้เคียง กัน และแสดงให้เห็นถึงความน่าเชื่อถือในการเป็นตัวแทนข้อมูลที่จะถูกนำไปวิเคราะห์ในลำดับ ต่อไป (Reliability)

4.2.4 อัตราการถ่ายเทความร้อนของเครื่องดูดซับ

อัตราการถ่ายเทความร้อนเข้าสู่ภายในและออกไปสู่ภายนอกของเครื่องดูดซับ ที่ เปลี่ยนแปลงตลอดวัฎจักรแสดงให้เห็นผลสัมฤทธ์ของการออกแบบเครื่องดูดซับ ว่าจะทำให้วัฎจักร ดูดซับทำงานได้เร็วขึ้นหรือไม่อย่างไร ข้อมูลอัตราการไหล อุณหภูมิขาเข้าและอุณหภูมิขาออกของ น้ำถ่ายโอนความร้อนในแต่ละช่วงกระบวนการ สามารถนำมาวิเคราะห์หาอัตราการถ่ายเทความ ร้อนของระบบ ดังแสดงในรูปที่ 4.6 สำหรับระบบที่ทำงาน 6 วัฏจักรต่อเนื่องกัน เงื่อนไขสำหรับ แต่ละวัฏจักรกำหนดโดย (อุณหภูมิสูงสุดในเครื่องดูดซับ (°C), อุณหภูมิเครื่องควบแน่น(°C)) ดังนี้ (70,5), (70,10), (80,5), (80,10), (90,5) และ(90,10)°C ตามลำดับ โดยแบ่งได้เป็น 4 ช่วงการ ทำงานคือ

- (1) ช่วงการให้ความร้อน (Heating process)
- (2) ช่วงการให้ความร้อนและคายสารดูคซับ (Heating and desorption process)
- (3) ช่วงการระบายความร้อน (Cooling process) และ
- (4) ช่วงการระบายความร้อนและการดูคซับ (Cooling and adsorption process)

ความร้อนที่ให้กับระบบในช่วงที่ (1) และที่ (2) จะมีค่าเป็นบวก (+) ในขณะที่ความร้อนที่ ระบายออกจากระบบในช่วงที่ (3) และ (4) จะมีค่าเป็นลบ (-) รูปที่ 4.6 แสดงให้เห็นว่าในช่วง Heating process อัตราการถ่ายเทความร้อนมีค่ามากในช่วงเวลาที่ 0 ถึง 5 นาทีแรกของวัฏจักร ทำงานของระบบดูดซับ

ช่วง Heating process มีความแตกต่างกันอย่างมากของอุณหภูมิน้ำร้อนกับเครื่องดูคซับ ทำให้อัตราการถ่ายเทความร้อนสูงมาก จากนั้นเมื่อกระบวนการเริ่มเข้าสู่ช่วง Heating and desorption process ได้มีการเปิดวาล์วในระบบทำให้อุณหภูมิของถ่านกัมมันต์ลดลงเล็กน้อย ส่งผลให้ก่าการถ่ายเทความร้อนของระบบเพิ่มขึ้นอีกเล็กน้อย

เมื่อเริ่มกระบวนการ Cooling Process ความแตกต่างอุณหภูมิระหว่างเกรื่องดูดซับกับน้ำ หล่อเย็นในตอนเริ่มต้นอย่างมากทำให้ได้กราฟแหลมทิ่มลง ช่วงนี้น้ำหล่อเย็นเพื่อการระบายความ ร้อนอุณหภูมิ 27°C ถูกส่งเข้าสู่เครื่องดูดซับ พร้อมกับการเริ่มทำงานของท่อความร้อนแบบสั่น วงรอบ โดยช่วงที่มีการถ่ายเทความร้อนมากที่สุด คือช่วง 5 นาทีแรกที่น้ำถูกส่งเข้าเครื่องดูดซับ จากนั้นอัตราการถ่ายเทความร้อนจะลดลงเรื่อย ๆ จนอุณหภูมิเครื่องดูดซับลดลงเหลือ 40°C จึงเริ่ม กระบวนการดูดซับ

ในกระบวนการระบายความร้อนและดูคซับ (Cooling and adsorption process)น้ำ ระบายความร้อนยังคงถูกส่งเข้าสู่ระบบ เพื่อรักษาอุณหภูมิภายในเครื่องดูคซับให้เหมาะสมกับการ เกิดกระบวนการดูดซับอยู่เสมอ อัตราการถ่ายเทความร้อนในช่วงนี้มีค่าน้อยมาก เนื่องจากมีเพียง ความร้อนที่เกิดจากปฏิกิริยาดูดซับเท่านั้น ซึ่งมีค่าไม่สูงกว่าความร้อนแฝงของสารทำความเย็นนัก โดยค่าเฉลี่ย (ตลอด 6 วัฏจักร) ของอัตราการถ่ายเทความร้อนในช่วงนี้ คือ 80 W

ค่าอัตราการถ่ายเทความร้อนในระบบสามารถนำมาหาก่าสมรรถนะของระบบ (COP) ซึ่ง เป็นก่าที่แสดงสัคส่วนระหว่างพลังงานที่นำไปใช้ประโยชน์ (อัตราการทำความเย็นหรือการถ่ายเท ความร้อนเฉลี่ยของ Cooling and Adsorption process) ต่อปริมาณพลังงานที่ป้อนเข้าไป (อัตรา การถ่ายเทความร้อนเฉลี่ยรวมของ 2 ช่วงคือ Heating process และ Heating and Cooling process) ดังแสดงในสมการที่ 2.5 ของบทที่ 2

4.2.5 สมดุลพลังงานของเครื่องดูดซับ

สมดุลพลังงานของเครื่องดูดซับ เป็นการแสดงสัดส่วนของการกระจายความร้อนในช่วง การทำงาน 4 ช่วงของวัฏจักรการดูดซับ โดยช่วงการคายสารดูดซับ ความร้อนที่ได้รับจากน้ำร้อน หรือแหล่งความร้อนจะถูกถ่ายโอนไปยังองค์ประกอบต่างๆ และมีส่วนหนึ่งสูญเสียไป แต่ส่วนที่ ต้องการได้รับความร้อนอย่างรวดเร็วและมีประสิทธิภาพที่สุด คือ แท่นสารดูดซับ การทำสมดุล พลังงานจะทำให้ทราบได้ว่าถ่านกัมมันต์ได้รับความร้อนไปในสัดส่วนเท่าใดจากทั้งหมด ในทาง กลับกันในช่วงการดูดซับสาร ความร้อนจะต้องถูกระบายออกจากแท่นสารดูดซับอย่างรวดเร็วและ แพร่ออกไปยังน้ำหล่อเย็นใน Water jacket และ CLOHP โดยรวดเร็วและมีประสิทธิผลเช่นกัน

ผลการวิเคราะห์ความร้อนที่ถ่ายเทเข้าและออกจากองค์ประกอบต่าง ๆ ในเครื่องดูคซับ แสดงในรูปสมคุลพลังงานของเครื่องดูคซับ ตลอคช่วงวัฏจักรทำงาน ดังแสดงในรูปที่ 4.7 ในการ ทดลองที่กำหนด<u>อุณหภูมิเครื่องดูคซับ 80°C และอุณหภูมิเครื่องควบแน่นคือ 10°C</u> สำหรับค่า อัตราความร้อน (J) กับร้อยละการกระจายพลังงานในส่วนต่าง ๆ ของเครื่องดูคซับ

สมคุลพลังงานในระบบดูคซับสามารถแบ่งได้เป็น 2 ช่วง คือ ช่วงการคายสารดูคซับ และ ช่วงการดูคซับ

- ช่วงการคายสารดูดซับ ประกอบด้วย ช่วงการให้ความร้อน และ ช่วงการให้ความร้อน พร้อมกับการคายสารดูดซับ รูปที่ 4.5 (ก) แสดงถึงค่าอัตราความร้อน และ รูปที่ 4.5 (ข) แสดงถึงร้อยละค่าการถ่ายเทความร้อน สังเกตได้ว่า
 - ก. ช่วงให้ความร้อนต้องการให้ความร้อนแก่ถ่านกัมมันต์เป็นหลัก แต่พลังงานความร้อน
 สะสมอยู่ในทองแคงมากที่สุด คือ 17.6 W คิดเป็นร้อยละ 35 ของพลังงานที่ให้
 ทั้งหมด ในขณะที่ถ่านกัมมันต์ได้รับเพียง 9 W หรือร้อยละ 18

- กวามร้อนสูญเสียมีก่าถึง 14.6 W ในช่วงให้กวามร้อน และ 24.9 W สำหรับช่วงให้ กวามร้อนและกายสารดูดซับ กิดเป็นร้อยละ 29 และ 25.6 ตามลำคับ โดยการสูญเสีย กวามร้อนนี้เกิดจากการถ่ายเทความร้อนจากเครื่องดูดซับไปยังอุปกรณ์ชิ้นอื่นในระบบ ที่ต่อเชื่อมกัน โดยไม่มีส่วนฉนวนกั้น (Adiabatic section) เช่น ท่อทางเดินสาร ทำงานที่ต่อเชื่อมกับเกรื่องดูดซับไปยังเกรื่องควบแน่น รวมไปถึงโกรงสร้างของชุด ทดสอบที่ประกอบด้วยเหล็กและทองแดง
- ค. สามารถแก้ไขการสูญเสียความร้อนออกนอกระบบได้โดยการเพิ่มฉนวนรอบเครื่องดูด
 ซับ เพื่อไม่ให้เครื่องดูดซับสัมผัสกับวัสดุแวดล้อม และสิ่งแวดล้อมโดยตรง และเพิ่ม
 Adiabatic section กั้นระหว่างเครื่องดูดซับและระบบท่อที่ต่อเชื่อมไปยังเครื่อง
 ควบแน่น
- เครื่องดูดซับสามารถนำความร้อนไปใช้ในการคายสารดูดซับได้ถึง 39.7 W คิดเป็น ร้อยละ 41 ของพลังงานความร้อนที่ให้แก่เครื่องดูดซับในช่วงให้ความร้อนและคาย สารดูดซับ แสดงว่าปริมาณความร้อนที่ง่ายเพื่อการแตกพันธะเมทานอลออกจาก ถ่านกัมมันต์มากพอ
- ช่วงการให้ความร้อนและคายสารดูดซับนี้ท่อความร้อนแบบสั่นวงรอบ (CLOHP) ยัง ไม่ทำงาน เนื่องจากได้ป้องกันการระเหยของสารทำงานเมทานอลในส่วนทำระเหย ของ CLOHP เอาไว้แล้ว โดยหุ้มฉนวนที่ส่วนควบแน่นของ CLOHP ไว้และด้วย ขนาดที่เล็กของ CLOHP เมื่อเทียบกับแท่นสารดูดซับ ทำให้ความร้อนสะสมในส่วน CLOHP มีสัดส่วนน้อยมาก คือไม่ถึงร้อยละ 1 ของพลังงานที่ให้ทั้งหมด
- (2) ช่วงการดูดซับ ประกอบด้วย ช่วงระบายความร้อน และ ช่วงการระบายความร้อนพร้อมกับ การดูดซับ ดังรูปที่ 4.5 (ก) แสดงถึงค่าอัตราความร้อน และ รูปที่ 4.5 (ง)แสดงถึงร้อยละค่า การถ่ายเทความร้อน ชี้ประเด็นได้ว่า

 ก. ช่วงระบายความร้อน ความร้อนสัมผัสในส่วนท่อทองแคงของถูกระบายออกไปมาก ที่สุด โดยมีค่าถึง 20 W กิคเป็นร้อยละ 37 ในขณะที่ถ่านกัมมันต์ระบายออกไป 10.3 W กิดเป็นร้อยละ 19 ซึ่งในช่วงการระบายความร้อนต้องการสัดส่วนการระบายจาก ถ่านกัมมันต์ที่มากด้วยอัตราที่สูง หากเพิ่มการแพร่และการพาความร้อนออกจาก ถ่านกัมมันต์ได้ ในขณะเดียวกันก็ลดการสูญเสียความร้อนที่มีอยู่ถึง 13 W หรือร้อยละ 24.4 ได้ จะทำให้ลดอุณหภูมิได้เร็วยิ่งขึ้น

 ข. ช่วงการระบายความร้อนร่วมกับการดูดซับสาร เครื่องดูดซับมีความร้อนที่เกิดจากการ ดูดซับออกมาเป็นสัดส่วนถึงร้อยละ 60 เท่ากับ 39.7 W ซึ่งมีค่าสูง และต้องการ ระบายออกไปอย่างรวดเร็วเพื่อไม่ให้กระบวนการดูดซับสิ้นสุดก่อนเวลาอันควร และ ขณะเดียวกันพบว่าความร้อนสูญเสียถึง 12.1 W หรือคิดเป็นร้อยละ 18 ของระบบ อย่างไรก็ดีท่อความร้อนสามารถถ่ายโอนความร้อนออกจากเครื่องดูดซับได้ถึงร้อยละ 13 และร้อยละ 4 สำหรับทั้งสองช่วงตามลำดับจากการนำความร้อน นอกเหนือจาก ความร้อนแฝงของการกลายเป็นไอของสารทำงานที่ส่วนทำระเหย

<u>รายการสัญลักษณ์</u>สำหรับรูปที่ 4.7 มีดังนี้

คือ ความร้อนสัมผัสในถ่านกัมมันต์ AC Copper คือ ความร้อนสัมผัสในเครื่องดูคซับและท่อน้ำแลกเปลี่ยนความร้อนส่วนที่เป็นทองแคง HP,MET คือ ความร้อนสัมผัสในเมทานอลภายในท่อความร้อน HP.COP คือ ความร้อนสัมผัสในท่อความร้อนส่วนที่เป็นทองแคง ้ คือ ความร้อนสัมผัสในเมทานอลที่อยู่ภายในเครื่องดูคซับ MET คือ อัตราการถ่ายเทความร้อนที่ใช้ในกระบวนการกายสารถูกดุดซับ **Q**des ้ คือ อัตราการถ่ายเทความร้อนที่ ใอเมทานอลพาออกจากเครื่องคุดซับ Qvap คือ อัตราการถ่ายเทความร้อนจากกระบวนการดุดซับ Oads ้ คือ อัตราการถ่ายเทความร้อนที่ไอเมทานอลพาเข้าสู่เครื่องดูดซับ Oconv คือ ความร้อนส่วนที่ไม่สามารถประเมินสาเหตุได้ (Unaccountable) จึงพิจารณาเป็น Loss

ความร้อนที่สูญเสียจากเครื่องดูดซับ

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

จากการแสดงสมดุลพลังงานของเครื่องดูดซับตามรูปที่ 4.7 พบว่า ความร้อนสูญเสียเกิดขึ้น ในทุกช่วงกระบวนการ และจำเป็นที่ต้องหาวิธีการลดค่าความร้อนสูญเสียนี้ให้มากที่สุดเพื่อทำให้ ระบบมีประสิทธิภาพมากขึ้น

นอกจากนี้หากเปรียบเทียบสัคส่วนของความร้อนสัมผัสจากทั้ง 2 กระบวนการ พบว่า

- (1) ท่อทองแคงของเครื่องดูดซับมีสัดส่วนของพลังงานความร้อนสะสมที่มากที่สุด อาจเกิด จากความหนาของชั้นทองแดงที่นำมาเป็นผนังเครื่องดูดซับมากเกินความจำเป็น ทำให้ พื้นที่ส่วนที่เป็นทองแคงมากตามไปด้วย
- (2) ควรหาค่าความหนาของทองแคงที่เหมาะสม และลคปริมาตรขององค์ประกอบที่ไม่ใช่สาร ดูคซับ (Non-adsorbent material) ให้น้อยที่สุด เพื่อให้การถ่ายเทความร้อนตรงไปยัง สารดูดซับเป็นสำคัญ
- (3) ปรับปรุงคุณสมบัติและสัมประสิทธิ์ที่เกี่ยวกับการถ่ายโอนความร้อนและมวลของวัสดุ องค์ประกอบระบบเพื่อเพิ่มความสามารถในการส่งผ่านความร้อนมายังและไปจากถ่านกัม มันต์ อาทิ ค่าการนำความร้อน (thermal conductivity), ค่าสภาพการแพร่ความร้อน (thermal diffusivity), สัมประสิทธิ์ความค้านทานของผิวสัมผัส (contact resistance), ความพรุนของวัสดุ (porosity), ความสามารถในการแทรกผ่าน (permeability), สัมประสิทธิ์การถ่ายโอนความร้อนภายในและภายนอก (h_i,h_o), ความด้านทานต่อการนำ ความร้อน (thermal resistance)

ผลการวิเคราะห์สมดุลพลังงานสำหรับเครื่องดูดซับจากการทดลองที่มีเงื่อนไขการทำงานที่ แตกต่างกัน คือ อุณหภูมิเครื่องดูดซับสูงสุดคือ 70 °C, 80 °C และ 90 °C อุณหภูมิเครื่องทำระเหย คือ 5 °C, 10 °C และ 15 °C โดยทดสอบทั้งหมดดังเงื่อนไข คือ (70, 5), (70, 10), (70,15), (80,5), (80,10), (80,15), (90,5), (90,10) และ (90,15) ทำการทดลองละ 3 ครั้ง รวมทั้งสิ้น 27 การทดลอง

สรุปได้ดังตารางที่ 4.1 ซึ่งแสดงก่าน้อยที่สุด (MIN), ก่ามากที่สุด (MAX), ก่าเฉลี่ย (AVERAGE) และก่าความเบี่ยงเบนมาตรฐานของชุดข้อมูล (STANDARD DEVIATION, SD) ในหน่วยกิโลจูล (kJ) สำหรับ 4 ช่วงการทำงานของระบบ ซึ่งจะทำให้เห็นถึงภาพรวมของการ กระจายพลังงานจากแหล่งความร้อนไปยังองก์ประกอบต่างๆ ของเครื่องดูดซับ ตลอดจนการ กระจายกวามสามารถในการระบายกวามร้อนออกไปยังแหล่งรับความร้อนในช่วงการทำงานถัดมา ของระบบดูดซับ

PROCESS		Hea	ting		H	leating & Desorption			
\backslash	MIN	MAX	AVG	SD	MIN	MAX	AVG	SD	
VARIABLE	(kJ)	(kJ)	(kJ)	kJ	(kJ)	(kJ)	(kJ)	kJ	
Q _H	52.84	307.23	169.24	90.89	39.94	428.28	162.23	114.58	
AC	9.42	35.78	21.14	9.53	2.05	10.15	6.78	3.67	
Copper	18.38	69.82	40.99	18.42	4.01	19.92	13.26	7.18	
MET	2.36	8.98	5.29	2.38	0.51	3.17	1.84	1.09	
HP,COP	1.49	5.65	3.33	1.50	0.32	2.49	1.27	0.85	
HP,MET	5.73	21.76	12.82	5.77	1.25	7.76	4.45	2.64	
Loss	15.47	165.24	85.68	53.36	0.00	296.02	92.68	88.03	
Qdes	-				17.77	63.04	28.51	14.09	
Qvap	-	- \	- 6		8.36	30.09	13.93	6.84	
Qads	° _	- 6			-	-	7205	-	
Qconv	-	-			-	-	306	-	
QC	-	-	-	-) _	-	-	- 1	
Heatnine		_	- ^	-)/		-	X I	-	
PROCESS	Cooling				Cooling & Adsorption				
	MIN	MAX	AVG	SD	MIN	MAX	AVG	SD	
VARIABLE	(kJ)	(kJ)	(kJ)	kJ	(kJ)	(kJ)	(kJ)	kJ	
Q _H			•	-	-2	D´-//	-	-	
AC	5.88	49.75	16.50	12.86	6.64	31.65	10.77	7.16	
Copper	11.47	97.08	32.20	25.09	12.96	59.35	20.74	13.90	
MET	1.47	12.48	4.14	3.23	1.67	7.63	2.67	1.78	
HP,COP	0.93	7.85	2.60	2.03	1.05	4.80	1.68	1.11	
HP,MET	3.57	30.26	10.04	7.82	4.04	18.50	6.46	4.32	
Loss	38.32	168.85	70.98	42.76	1.57	34.96	15.59	38.37	
Qdes	-	-	-	-	-	-	-	_	
		The second se	the second se			· · · · · · · · · · · · · · · · · · ·			
Qvap	-L+C) -h	, Eh	iana		-	N IVOR	city.	
Qvap Qads	<u>sht</u> ©	by	<u>Ch</u>	iang	- 17.77	- 63.04	28.51	- 14.09	
Qvap Qads Qconv	<u>ht</u>	<u>by</u>	- Ch	iang	- 17.77 0.21	- 63.04 0.93	28.51 0.39	14.09 0.22	
Qvap Qads Qconv QC		- - 296.00	- 88.65	81.15	- 17.77 0.21 24.00	- 63.04 0.93 133.36	28.51 0.39 55.08	- 14.09 0.22 33.10	

ตารางที่ 4.1 ตารางวิเคราะห์ผลการทำสมคุลพลังงานในเครื่องดูดซับ

4.2.6 สมรรถนะระบบดูดซับ

การประเมินสมรรถนะของระบบดูดซับ นิยมคำนวณค่าดัชนี 3 ตัว ได้แก่ สัมประสิทธิ์ สมรรถนะของระบบดูดซับ (COP) และค่าสมรรถนะการทำความเย็นจำเพาะ (SCP) และค่า ปริมาตรต่อกำลังความเย็นที่ได้ (VCP) โดยพิจารณาอิทธิพลของตัวแปรสำคัญ 2 ตัวที่มีผลต่อ สมรรถนะ ได้แก่ อุณหภูมิของเครื่องดูดซับในช่วงให้ความร้อนเมื่อเริ่มเปิดวาล์วระบายไอเมทานอล และเกิดการกายสารดูดซับ (70, 80 และ 90 °C) และอุณหภูมิของเครื่องควบแน่นโดยพิจารณาจาก อุณหภูมิน้ำระบายความร้อนที่จ่ายให้กับเครื่องควบแน่น (5, 10, 15 °C)

4.2.6.1 อิทธิพลของอุณหภูมิเครื่องดูดซับ

ปัจจัยที่มีผลในการคายสารดูดซับของถ่านกัมมันต์คือ ความร้อนที่ให้แก่เครื่องดูดซับ ซึ่ง อัตราการถ่ายโอน ระดับอุณหภูมิ และปริมาณความร้อนที่น้อยเกินไปทำให้ถ่านกัมมันต์คายสารถูก ดูดซับได้น้อยและช้า ทำให้ ค่า COP และ SCP ไม่สูง ตลอดจนระบบอาจต้องมีมวลมากหรือ น้ำหนักมากเกินจำเป็น ซึ่งการทำให้ความร้อนจากแหล่งให้ความร้อนที่มีอุณหภูมิในระดับที่ต่างจาก เครื่องดูดซับถ่ายโอนเข้ามายังถ่านกัมมันต์โดยเฉพาะบริเวณที่เกิดการดูดซับได้อย่างรวดเร็วใน อัตราที่สูงจะส่งผลให้ระบบมีประสิทธิภาพการทำงานที่สูงขึ้น

ผลจากการเปลี่ยนแปลงอุณหภูมิของเครื่องดูดซับในกระบวนการกายสารดูดซับ คือ 70, 80 และ 90°C โดยกำหนดก่ากงที่ ได้แก่ อุณหภูมิน้ำหล่อเย็นเครื่องกวบแน่น 10°C และน้ำถ่าย โอนกวามร้อนที่เครื่องทำระเหย 27°C ผลการวิเกราะห์ก่า COP, SCP และ VCP แสดงในรูปที่ 4.8 – 4.10

จากรูปที่ 4.8 และ 4.10 แสดงผลการทดสอบระบบที่มีการเปลี่ยนค่าอุณหภูมิเริ่มต้นกาย สารดูดซับ พบว่า

- (1) ค่า COP และ SCP แปรผันตามอุณหภูมิที่เพิ่มขึ้นของเครื่องดูดซับอภิปรายได้ดังนี้ ก. การเพิ่มขึ้นของการถ่ายเทความร้อนจากน้ำถ่ายโอนความร้อนเข้าสู่เครื่องดูดซับ อันได้แก่ ถ่านกัมมันต์และเมทานอล ส่งผลให้เมทานอลแยกตัวออกจากถ่านกัม มันต์ได้มากขึ้น
 - ถ่านกัมมันต์จะมีอัตราส่วนเมทานอลลดลงจึงมีที่ว่างสำหรับให้ไอเมทานอลแทรก ตัวเข้าไปเกาะในรูพรุนของถ่านกัมมันต์ในช่วงกระบวนการดูดซับมากขึ้น

- ค. ดังนั้นในกระบวนการดูดซับของวัฏจักรต่อมาจะเกิดการระเหยของเมทานอลกลาย
 เป็นไอไปเกาะกับถ่านกัมมันต์ในเครื่องดูดซับมากขึ้น ค่าความเย็นที่ทำได้จึงมาก
 ขึ้น ส่งผลให้ค่า COP และ SCP ของระบบสูงขึ้นตามไปด้วย
- ความร้อนที่ให้แก่ถ่านกัมมันต์ในเครื่องดูดซับที่ระดับอุณหภูมิสูงขึ้นจะมีช่วงเวลา การจ่ายพลังงาน ซึ่งหมายถึงปริมาณที่มากกว่ากรณีให้ความร้อนที่อุณหภูมิต่ำกว่า ทำให้อุณหภูมิแตกต่างระหว่างน้ำถ่ายโอนความร้อนและเครื่องดูดซับมากกว่า
- การที่ระบบคายสารถูกดูดซับที่อุณหภูมิสูงขึ้น ทำให้ความร้อนสูญเสียเพิ่มขึ้น เช่นกัน ซึ่งแสดงให้เห็นได้จากค่า COP และ SCP ที่ระดับ 90°C แทบไม่แตกต่าง จากค่าที่ระดับ 80°C
- NCP แปรผกผันกับอุณหภูมิของเครื่องดูดซับ ซึ่งหมายความว่า หากต้องการ
 ระบบมีขนาดเล็กควรใช้แหล่งความร้อนสำหรับกระบวนการคายสารดูดซับที่มี
 อุณหภูมิสูง
- ช. สรุปได้ว่า ระบบดูดซับ(ถ่านกัมมันต์-เมทานอล) ที่มีการระบายความร้อนโดย CLOHP ร่วมกับน้ำหล่อเย็นในช่วงกายสารดูดซับ ควรควบกุมอุณหภูมิเริ่มการ กายสารดูดซับไม่ให้เกิน 80°C
- (2) พิจารณาแนวโน้มของกราฟ
 - n. COP เพิ่มอย่างรวคเร็วในช่วง 70 80°C จากนั้นเพิ่มน้อยมากจาก 80 90°C และค่า COP จากเส้นแนวโน้มบริเวณจุดยอครูปโค้งที่แสดงในรูปที่ 4.8 ค่ามาก ที่สุดที่ระบบทำได้คือ 0.35 ที่อุณหภูมิเครื่องดูดซับ 80°C
 - เมื่อเพิ่มอุณหภูมิเครื่องดูคซับให้มากกว่า 80°C ทำให้ COP ของระบบมีแนวโน้ม คงที่และลคลงในที่สุด เนื่องจากการทคลองที่อุณหถูมิถ่านกัมมันต์สูงต้องใช้เวลา ในการให้กวามร้อนแก่เครื่องดูคซับมากขึ้นด้วย
 - ค. อุณหภูมิเครื่องดูดซับ 70°C ให้ก่า VCP 36.5 cm³/W แต่เมื่อเพิ่มอุณหภูมิ
 เกรื่องดูดซับเป็น 90°C ก่า VCP ของระบบลดเหลือ 28 cm³/W ทำให้ก่า VCP
 ของระบบลดลงได้ถึงร้อยละ 24
 - การหาจุดเหมาะสมของระบบต้องกำนึงถึงข้อดีและข้อด้อยของระดับอุณหภูมิของ แหล่งกวามร้อนสำหรับการไล่สารทำงานในเกรื่องดูดซับ ตลอดจนประเภทและ กวามเหมาะสมของแหล่งกวามร้อนที่มีอยู่ด้วยเช่นกัน

4.2.6.2 อิทธิพลของอุณหภูมิเครื่องควบแน่น

อุณหภูมิและความคันของเครื่องควบแน่นที่ทำหน้าที่เปลี่ยนสถานะไอสารเมทานอลให้ กลายเป็นของเหลว ควบคุมได้ด้วยอุณหภูมิน้ำระบายความร้อน ไอสารเมทานอลที่คายออกจาก ถ่านกัมมันต์ภายหลังกระบวนการให้ความร้อนและคายสารดูดซับ จะเคลื่อนที่ออกจากเครื่องดูดซับ ผ่านเกรื่องควบแน่นและเปลี่ยนสถานะตัวเองให้กลายเป็นของเหลว เพื่อเตรียมพร้อมในการเกิด กระบวนการดูดซับระหว่างถ่านกัมมันต์กับไอเมทานอลในวัฏจักรต่อไป ดังนั้นสภาวะการทำงาน ของเครื่องควบแน่นจึงเป็นอีกปัจจัยหนึ่งที่ส่งผลต่อสมรรถนะของระบบ

ผลจากการเปลี่ยนแปลงอุณหภูมิน้ำเย็นที่ป้อนเข้าสู่เครื่องควบแน่น ที่ถูกแปรเปลี่ยนในช่วง 5, 10 และ 15°C โดยกำหนดค่าคงที่การทดลอง ได้แก่ อุณหภูมิเครื่องดูดซับช่วงการคายสารดูดซับ 80°C และน้ำถ่ายโอนความร้อนที่เครื่องดูดซับ 27°C ผลการวิเคราะห์ก่า COP, SCP และ VCP แสดงในรูปที่ 4.11 – 4.13 อภิปรานได้ดังนี้

- พิจารณาค่าต่าง ๆ ที่ปรากฏในกราฟ
 - ก. COP และ SCP สูงสุดคือ 0.35 และ 103 W/kg ตามลำดับ ค่า VCP ที่ดีที่สุดคือ 30 cm³/W ในกรณีอุณหภูมิน้ำระบายความร้อนของเครื่องควบแน่น 5°C เนื่องจากไอ ของเมทานอลสามารถควบแน่นกลายเป็นของเหลวและไหลไปยังกระบอกเก็บเมทา นอลได้เร็ว ส่งผลให้พื้นที่สำหรับการแลกเปลี่ยนความร้อนในเครื่องควบแน่นสูญเสีย น้อยและความดันไอลดลงเร็ว และเวลาในการควบแน่นสั้นลง
- 2) พิจารณาแนวโน้มของกราฟ
 - ก. จากรูป 4.11 ถึง 4.13 ค่อนข้างชัดเจนว่า COP และ SCP แปรผกผันตรงกับอุณหภูมิ
 เครื่องควบแน่นมากกว่ากรณีการแปรเปลี่ยนอุณหภูมิการคายสารของเครื่องดูดซับ ดัง
 หัวข้อ 4.2.6.1
 - ข. ที่อุณหภูมิเครื่องควบแน่น 5°C ให้ค่า VCP 30 cm³/W แต่เมื่อเพิ่มอุณหภูมิเครื่อง ควบแน่นเป็น 10°C และ15°C ค่า VCP ของระบบเพิ่มขึ้นเป็น 31.5 และ 33.7 cm³/W ทำให้ค่า VCP ของระบบเพิ่มขึ้นร้อยละ 4.9 และ 12.3 ตามลำดับ
 - ค. ผลการทดสอบซ้ำ 3 ครั้ง มีความแปรปรวนของค่าที่ได้น้อยมาก (จุดในกราฟเกาะกลุ่ม กัน) แสดงให้เห็นอิทธิพลของเครื่องควบแน่นนี้อย่างชัดเจน
 - ง. ในทำนองเดียวกันพบการแปรผันตรงของ VCP กับอุณหภูมิเครื่องควบแน่น แสดงว่า อุณหภูมิการควบแน่นของไอเมทานอลในช่วง 5 - 15°C นี้ มีอิทธิพลโดยตรงต่อ สมรรถนะระบบโดยรวม ซึ่งหมายความว่า หากต้องการระบบที่มีขนาดเล็ก อุณหภูมิ เครื่องควบแน่นจำเป็นต้องกวบคุมให้ต่ำ

รูปที่ 4.10 VCP ที่อุณหภูมิเครื่องดูดซับ 70, 80 และ 90°C

		อุณหภูมิ (°C)			Q _{ads}	Q _{evap}	COP	SCP	VCP	
การ ทคลอง	เริ่มต้น	เริ่ม เปิด วาถ์ว	เกรื่องดูค ซับ	เครื่อง ควบแน่น	เครื่อง ทำ ระเหย	(kJ)	(kJ)	(-)	W/kg. _{ac}	(cm ³ /W)x10 ⁵
1	33.0	60	70	5	18.2	44.0	63.5	0.39	94.7	3.2
2	34.0	60	70	5	19.7	34.0	73.6	0.36	87.4	3.5
3	38.0	60	70	5	16.8	31.9	74.3	0.27	82.0	4.0
4	34.0	60	70	10	22.4	30.5	65.6	0.30	91.4	3.3
5	31.2	60	70	10	20.1	28.6	73.9	0.27	81.0	3.8
6	31.6	60	70	10	22.7	25.7	66.0	0.17	78.0	3.9
7	31.7	60	70	15	22.1	28.2	65.9	0.24	80.2	3.8
8	31.9	60	70	15	21.2	31.9	74.0	0.26	77.8	3.9
9	31.4	60	70	15	22.9	24.5	57.9	0.12	74.4	4.1
10	35.4	70	80	5	19.4	47.4	97.4	0.45	103.0	3.0
11	32.7	70	80	5	19.3	40.0	89.8	0.39	102.2	3.0
12	31.9	70	80	5	20.9	39.0	98.5	0.34	99.3	3.1
13	32.5	70	80	10	19.2	39.7	89.9	0.36	97.9	3.1
14	33.5	70	80	10	19.7	40.9	97.9	0.37	93.6	3.3
15	31.5	70	80	10	19.5	38.6	90.1	0.32	96.6	3.2
16	32.2	70	80	15	20.6	29.5	73.8	0.33	91.8	3.3
17	33.1	70	80	15	21.2	37.0	90.1	0.31	91.5	3.3
18	38.0	70	80	15	20.8	44.9	79.6	0.32	87.0	3.5
19	33.0	80	90	5	16.1	75.5	160.7	0.41	188.9	1.6
20	36.4	80	90	5	19.7	56.0	121.6	0.32	132.3	2.3
21	33.7	80	90	5	17.8	48.7	105.6	0.24	113.9	2.7
22	34.0	80	90	10	16.0	41.6	88.9	0.33	111.4	2.7
23	33.6	80	90	10	18.5	34.2	81.4	0.23	108.1	2.8
24	32.9	80	90	10	18.2	30.1	73.3	0.23	101.0	3.0
25	34.0	80	90	15	19.1	35.5	160.5	0.28	103.2	3.0
26	28.0	80	90	15	19.0	39.0	124.0	0.16	94.1	3.2
27	30.8	80	90	15	20.0	34.6	98.6	0.22	91.2	3.3
MIN	-	_	-	_	16.0	24.5	57.9	0.12	74.4	1.6
MAX	-	-	-	-	22.9	75.5	160.7	0.45	188.9	4.1

ตารางที่ 4.2 ประมวลเงื่อนไขการทคสอบและสมรรถนะของระบบจากทุกการทคลอง

การประมวลผลทดสอบและผลวิเคราะห์ระบบทำความเย็นแบบดูดซับร่วมกับท่อความ ร้อนแบบสั่นวงรอบปลายปิด (CLOHP) สามารถสรุปได้ดังตารางที่ 4.2 ซึ่งประกอบด้วยข้อมูลจาก 27 การทดลอง ที่มีการกำหนดเงื่อนไขการทดลองแบ่งเป็น 2 กรณีหลัก (1) แปรผันอุณหภูมิสูงสุด ในเครื่องดูดซับเป็น 70, 80 และ 90°C โดยกำหนดอุณหภูมิเปิดวาล์วให้ไอเมทานอลออกจาก เครื่องดูดซับน้อยกว่าอุณหภูมิที่กำหนด 10°C และ (2) แปรผันอุณหภูมิเครื่องควบแน่นที่กำหนด โดยอุณหภูมิน้ำหล่อเย็นขาเข้า เป็น 5, 10 ,15°C โดยทดสอบแบบพบกันทุกกรณี คือ 3x3 และ ทำซ้ำ 3 ครั้ง รวมเป็น 27 การทดลอง

จากตารางที่ 4.2 อุณหภูมิเริ่มต้นการทคสอบระบบเฉลี่ยที่ 28°C เป็นอุณหภูมิที่วัคจาก ภายในเกรื่องดูดซับ และเมื่อทำการให้กวามร้อนแก่เครื่องดูดซับให้อุณหภูมิเกรื่องดูดซับถึงตามที่ กำหนดก่าการทดสอบนั้น จะต้องเริ่มเปิดวาล์วให้ไอเมทานอลออกจากเกรื่องดูดซับก่อนหน้าที่จะ ถึงอุณหภูมิที่กำหนด 10°C เนื่องจากเป็นอุณหภูมิที่ให้ประสิทธิภาพสูงที่สุด

ใอเมทานอลที่คายออกมาจากถ่านกัมมันต์สามารถไหลลงไปยังเครื่องควบแน่นได้ จึงไม่ สะสมในเครื่องดุดซับอย่างหนาแน่น ทำให้มีพื้นที่สำหรับไอเมทานอลที่ถูกคายออกมาภายหลังได้

หากเปิดวาล์วเร็วเกินไปจะทำให้ความร้อนสูญเสียออกนอกระบบ และต้องเพิ่มเวลาและ ปริมาณความร้อนที่ให้มากขึ้น

ในขณะที่เริ่มเปิดวาล์วเครื่องควบแน่นจะถูกป้อนน้ำเย็นเพื่อควบแน่นไอเมทานอลให้ กลายเป็นของเหลว เมื่ออุณหภูมิเครื่องดูดซับถึงค่าที่กำหนด ระบบจะเข้าสู่กระบวนการดูดซับ โดย กระบวนการนี้ได้ทำการเก็บข้อมูลอุณหภูมิเครื่องทำระเหย

ซึ่งอุณหภูมิเครื่องทำระเหยแสดงถึงเป้าหมายการลดอุณหภูมิ หรือระบบสามารถทำความ เย็นได้ค่ำสุดเท่ากับ 16.1°C และกรณีสูงที่สุดคือ 22.9 °C

เมื่อพิจารณาความร้อนสัมผัสในการเกิดกระบวนการดูดซับ (Q_{ads}) อยู่ในช่วง 24.5 – 75.5 kJ โดยค่าเฉลี่ยคือ 38.2 kJ ซึ่งสำหรับระบบดูดซับที่มีค่า Q_{ads} ที่มากแสดงว่ากระบวนการดูดซับ สารเป็นไปอย่างต่อเนื่อง ทำให้ไอเมทานอลจากส่วนทำระเหยมาได้เรื่อย ๆ ส่งผลให้เครื่องทำระเหย มีประสิทธิภาพการทำกวามเย็นดีที่สุด สังเกตได้จากการทดลองที่ 19 ค่า Q_{ads} มากที่สุดคือ 75.5 kJ อุณหภูมิเครื่องทำระเหยเป็น 16.1 ซึ่งเป็นอุณหภูมิที่ดีที่สุดที่ระบบทำได้

ค่า COP มากที่สุดของระบบคือ 0.45 จากการทดลองที่ 19 อุณหภูมิเครื่องดูดซับคือ 90°C อุณหภูมิเครื่องควบแน่นคือ 5°C

ค่า SCP ที่ได้อยู่ในช่วง 74.4-188.9 W/kg._{ac} ค่ามากที่สุดได้จากการทดลองที่ 19 เช่นกัน ในขณะเดียวกันการทดลองนี้ก็ให้ค่า VCP ที่ดีที่สุดด้วย คือ 1.61x10⁻⁵ cm³/W

4.2.7 เปรียบเทียบสมรรถนะกับระบบอื่นจากเอกสารอ้างอิง

งานวิจัยชิ้นนี้ได้ทดสอบผลการนำท่อความร้อนแบบสั่นวงรอบ(CLOHP) มาติดตั้งใน เครื่องดูดซับ เพื่อให้ทราบสมรรถนะของระบบดูดซับเพื่อการทำความเย็น และเมื่อเปรียบเทียบ งานวิจัยชิ้นนี้กับงานวิจัยระบบทำความเย็นแบบดูดซับที่พบจากเอกสารอ้างอิง สามารถเปรียบเทียบ ค่าได้ดังตาราง 4.3

ที่	Author	รูปแบบระบบ/คู่สาร	COP (-)	SCP (W/kg)	VCP (L/kW)	
1	ยิ่งลักษณ์, (2549)	ใช้ท่อความร้อนแบบเทอร์โมไซฟอนสำหรับ การให้ความร้อนและระบายความร้อนแก่ เครื่องดูดซับ / ถ่านกัมมันต์,เมทานอล	0.13 - 0.50	11 – 28	0.164 – 0.412	
2	Wang et al. (2005)	ระบบดูดซับสำหรับทำน้ำแขึ่งในเรือหาปลา /ถ่านกัมมันต์ผสมกับแกลเซียมคลอไรด์ (CaCl ₂) ,แอมโมเนีย	0.38	57 50	-	
3	Chen et al. (2006)	ประยุกต์ใช้ท่อกวามร้อนแบบเทอร์โมไซ ฟอนเข้ากับระบบดูดซับ ที่ใช้ในระบบผลิต น้ำแข็งสำหรับเรือหาปลา	- 4	521.3	-	
4	Wang et al. (2007)	การนำท่อความร้อนใช้กับระบบทำความเย็น แบบดูดซับในเรือหาปลา	0.38	-	-	
5	พีระพงษ์ (2548)	ระบบทำความร้อนและความเย็นแบบดูดซับ พลังงานแสงอาทิตย์ / ถ่านกัมมันต์, เมทานอล	0.012	ะเอให	411	
6	El Fadar et al.(2009)	การศึกษาระบบดูคซับพลังงานแสงอาทิตย์ / ถ่านกัมมันต์,แอมโมเนีย	0.18	nivers	ity	
7	Daou et al.(2008)	ระบบทำความเย็นแบบดูคซับ / ซิลิกาเจล(ธรรมคาม,ผสม),น้ำ	0.1 - 0.4	10-70	d-	
8	งานวิจัยนี้	ใช้ท่อความร้อนแบบสั่นวงรอบช่วยในการ ระบายความร้อน / ถ่านกัมมันต์, เมทานอล	0.12 - 0.45	74.4 -188.9	16 - 46	

ิตารางที่ 4.3 เปรียบเทียบสมรรถนะกับระบบทคสอบอื่น

จากการเปรียบเทียบงานวิจัยที่ผ่านมาดังตารางที่ 4.3 พบว่า ระบบทำความเย็นแบบดูดซับ ร่วมกับท่อความร้อนแบบสั่นวงรอบในงานวิจัยนี้ มีศักยภาพสูงเมื่อเทียบกับงานวิจัยที่เกี่ยวข้อง เมื่อ พิจารณาจากค่า COP,SCP และ VCP ที่อยู่ในช่วงที่ยอมรับได้ และหากมีการพัฒนาการใช้ท่อ ความร้อนแบสั่นวงรอบให้มีประสิทธิภาพการทำงานที่ดีขึ้น และขนาดเล็กกะทัดรัดลง คาดว่าน่าจะ ประยุกต์ให้สามารถใช้งานเพื่อการทำความเย็นให้ที่อยู่อาศัยหรืออุตสาหกรรมต่อไป ซึ่งระบบทำ ความเย็นแบบดูดซับจะเป็นอีกทางเลือกหนึ่งของการประหยัดพลังงานและการใช้ประโยชน์จาก ความร้อนทิ้งได้อย่างแน่นอน

4.3 แบบจำลองการทดลอง (Empirical Model)

ประสิทธิภาพของระบบดูดซับเพื่อการทำความเย็นบอกได้ในรูปของสัมประสิทธิ์ สมรรถนะ (Coefficient of Performance: COP) เช่นเดียวกับระบบทำความเย็นแบบอัดไอ ในทางทฤษฎีก่า COP ของระบบดูดซับ เมื่อพิจารณาหลักการทางอุณหพลศาสตร์ตามกฎข้อที่หนึ่ง และกฎข้อที่สองของวัฎจักร ก่าสูงสุดของ COP ทางทฤษฎีเรียกว่า COPแบบการ์ โนต์ (COP_{carnot}) สำหรับวัฎจักร Carnot ของ Adsorption cooling โดยก่า COP_{carnot} จะเป็นฟังก์ชันของระดับ อุณหภูมิ 4 ระดับ ได้แก่ อุณหภูมิแหล่งกวามร้อน (T_H) อุณหภูมิระบบดูดซับ (T_{ads}) อุณหภูมิเครื่อง ทำระเหย (T_{ev}) และอุณหภูมิเครื่องกวบแน่น (T_{cond}) โดยสมการ COP_{carnot} สำหรับระบบทำกวาม เย็นแบบดูดซับ (ยิ่งลักษณ์, 2549) คือ

$$COP_{carnot} = \begin{pmatrix} 1 - \frac{\overline{T}_{ads}}{\overline{T}_{H}} \\ \frac{\overline{\overline{T}_{cond}}}{\overline{T}_{ev}} - 1 \end{pmatrix}$$
(4.1)

โดย
$$ar{T}_{ads}$$
 = อุณหภูมิเครื่องดูดซับ
 $ar{T}_{H}$ = อุณหภูมิแหล่งความร้อน
 $ar{T}_{cond}$ = อุณหภูมิเครื่องควบแน่น
 $ar{T}_{ev}$ = อุณหภูมิเครื่องทำระเหย

จากสมการดังกล่าวพบว่า COP เป็นฟังก์ชันของอุณหภูมิเครื่องดูดซับในช่วงการคายสาร ดูดซับ, อุณหภูมิแหล่งความร้อน, อุณหภูมิเครื่องควบแน่น และอุณหภูมิเครื่องทำระเหย ดังนั้นการ สร้างแบบจำลองจากการทดลองสำหรับระบบดูดซับในงานวิจัยจึงเริ่มต้นจากรูปแบบสมการที่ คล้ายคลึงกับสมการ (4.1) โดยมีค่าสัมประสิทธิ์สมรรถนะที่เหมาะสมกับระบบดูดซับร่วมกับท่อ ความร้อน โดยพิจารณาค่า Input 4 ตัวเป็นหลัก ได้แก่ T_H, T_{ads}, T_{ev} และ T_{ad} ซึ่งจะให้ค่า Output เป็น COP แต่จากการพยายามในขั้นต้น พบว่าไม่สามารถสร้างแบบจำลองที่มีความ กลาดเกลื่อนต่ำได้ จึงได้เพิ่ม Input อีกตัว คือ T_{amb} ดังรูป 4.14 และได้ใช้ซอฟท์แวร์ MLeast 3 ในการทดลองและปรับแก้ความผิดพลาด (Trial&Error) จนได้แบบจำลองจากการทดลอง ดัง สมการที่ 4.2

$$COP_{model} = 5.8276 \times 10^{-4} \left(\frac{\left(1 - \frac{T_{ad}}{T_H}\right)^{1.1635}}{\left|\frac{T_{cond}}{T_{ev}} - 1\right|^{0.6169}} \right) \left(\frac{T_{amb}}{T_{cond}}\right)^{25.694} \left(\frac{T_{ad}}{T_{amb}}\right)^{30.376} (4.2)$$

เมื่อนำข้อมูลจากการทดสอบระบบจริงมาแทนในสมการแบบจำลองการทดลองแล้วนำมา สร้างกราฟเปรียบเทียบกับค่าสัมประสิทธิ์สมรรถนะจากการทดลอง พบว่า แบบจำลองมีค่า กลาดเคลื่อน 15%, R² = 0.833, Root Mean Square Error (RMSE) = 0.0359, Mean Absolute Deviation (MAD) = 0.0304 ดังแสดงในรูปที่ 4.15 ซึ่งตัวแปรที่นำมาวิเคราะห์ แสดง ดังตารางที่ 4.4

Copyright[©] by Chiang Mai University AII rights reserved

รูปที่ 4.15 เปรียบเทียบค่าสัมประสิทธิสมรรถนะที่ได้จากแบบจำลองกับการทดลอง

1- Tad/Th	(Tcon/Tev -1)	Tamb/con	Tad/Tamb	COPexp	COPmodel
0.2632	0.0453	1.0791	1.1433	0.3919	0.3433
0.2632	0.0502	1.0791	1.1433	0.3575	0.3222
0.2632	0.0407	1.0791	1.1433	0.2707	0.3200
0.2632	0.0420	1.0600	1.1433	0.3000	0.3100
0.2632	0.0344	1.0600	1.1433	0.2700	0.2572
0.2632	0.0429	1.0600	1.1433	0.1693	0.1800
0.2632	0.0240	1.0416	1.1433	0.2409	0.2047
0.2632	0.0211	1.0416	1.1433	0.2571	0.2222
0.2632	0.0267	1.0416	1.1433	0.1154	0.1400
0.1579	0.0492	1.0791	1.1766	0.4500	0.4308
0.1579	0.0489	1.0791	1.1766	0.3900	0.4325
0.1579	0.0479	1.0791	1.1766	0.3362	0.4000
0.1579	0.0315	1.0600	1.1766	0.3608	0.3591
0.1579	0.0331	1.0600	1.1766	0.3700	0.3480
0.1579	0.0325	1.0600	1.1766	0.3200	0.3523
0.1579	0.0191	1.0416	1.1766	0.3288	0.3121
0.1579	0.0211	1.0416	1.1766	0.3100	0.2934
0.1579	0.0197	1.0416	1.1766	0.3249	0.3055
0.0526	0.0384	1.0791	1.2099	0.4101	0.3267
0.0526	0.0502	1.0791	1.2099	0.3238	0.2768
0.0526	0.0440	1.0791	1.2099	0.2396	0.3003
0.0526	0.0208	1.0600	1.2099	0.3280	0.3021
0.0526	0.0291	1.0600	1.2099	0.2323	0.2449
0.0526	0.0281	1.0600	1.2099	0.2302	0.2503
0.0526	0.0140	1.0416	1.2099	0.2800	0.2453
0.0526	0.0137	1.0416	1.2099	0.1646	0.2000
0.0526	0.0171	1.0416	1.2099	0.2207	0.2174

ตารางที่ 4.4 ข้อมูลที่ใช้ในการสร้างแบบจำลองทางการทดลอง